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The aim of this paper is to show the strong convergence theorems of the𝐶𝑄 algorithm for𝐻-monotone operators in Hilbert spaces
by hybrid method in the mathematical programming. The main results extend and improve the corresponding results. Moreover,
the assumption conditions of our results are weaker than those of the corresponding results.

1. Introduction

In this paper, we show a 𝐶𝑄 algorithm for solving the
inclusion problem inHilbert spaceH.The inclusion problem
is finding the zero solutions of 𝑇; that is,

𝑥 ∈H, s.t. 0 ∈ 𝑇 (𝑥) . (1)

This problem is closely related to many problems, such
as variational inequalities, fixed points problem, and com-
plementarity problem of mathematical programming, and
it plays an important role in convex analysis and some
partial differential equations. The inclusion problem (1) on
monotone operator and maximal monotone operators is
extensively investigated by somany researchers. See Tseng [1],
Kamimura et al. [2–19], and so on.

In 2003, Fang and Huang [20] firstly introduced 𝐻-
monotone operators and discussed some properties of this
class of operators.

Motivated by Fang and Huang [20], very recently, we
firstly consider the inclusion problem 0 ∈ 𝑇(𝑥) of 𝐻-mono-
tone operator for finding the solutions of it in a Hilbert space
H [21].

In [21], we mainly presented strong and weak conver-
gence theorems for Halpern type and Mann type algorithms,
respectively, and the relations between maximal monotone
operators and𝐻-monotone operators are analyzed in detail.
Simultaneously, we apply these results to the minimization
problem for 𝑇 = 𝜕𝑓 and provide some numerical examples

to support the theoretical findings. These results start a new
branch of research for the inclusion problem 0 ∈ 𝑇(𝑥), and
we do further extending study for this subject.

Motivated by the main results of Nakajo and Takahashi
[22], we propose a so-called 𝐶𝑄 iteration algorithm as fol-
lows:

𝑥
0
= 𝑥 ∈H,

𝑦
𝑛
= 𝛼
𝑛
(𝑥
𝑛
+ 𝑓
𝑛
) + (1 − 𝛼

𝑛
) 𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐻 |

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 + 𝑓𝑛 − 𝑧
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐻 | ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
,

(2)

where {𝛼
𝑛
} ⊂ [0, 1] and {𝑟

𝑛
} ⊂ (0, +∞).

The aim of this paper is to establish the strong con-
vergence theorems to approximate the zero point of 𝐻-
monotone operator, namely, finding the 𝑥 ∈ H such that
0 ∈ 𝑇(𝑥).

2. Preliminaries

Definition 1. A multivalued operator 𝑇 : H → 2
H is said to

be
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(i) monotone if

⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0, ∀𝑢, V ∈H, 𝑥 ∈ 𝑇𝑢, 𝑦 ∈ 𝑇V; (3)

(ii) maximal monotone if 𝑇 is monotone and (𝐼 +

𝜆𝑇)(H) = H for all 𝜆 > 0, where 𝐼 denotes the
identity mapping onH.

We note that the 𝑇 is maximal monotone if and only if 𝑇
is monotone and the graph

𝐺 (𝑇) = {(𝑧, 𝑤) ∈H ×H | 𝑤 ∈ 𝑇𝑧} (4)

is not properly contained in the graph of any other monotone
operator 𝑇 :H → 2

H.

Definition 2 (see [20]). Let𝐻 :H → H be a singlemapping
and 𝑇 :H → 2

H a multivalued mapping. 𝑇 is said to be

(i) 𝐻-monotone if𝑇 is monotone and (𝐻+𝜆𝑇)(H) =H
holds for every 𝜆 > 0;

(ii) strongly 𝐻-monotone if 𝑇 is strongly monotone and
(𝐻 + 𝜆𝑇)(H) =H holds for every 𝜆 > 0.

Definition 3. Let 𝑇 :H → H be a single-valued operator. 𝑇
is said to be

(i) strictly monotone if 𝑇 is monotone and

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ = 0, iff 𝑥 = 𝑦; (5)

(ii) strongly monotone if there exists some constant 𝑟 > 0
such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝑟
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈H; (6)

(iii) Lipschitz continuous if there exists some constant 𝑠 >
0 such that

𝑇𝑥 − 𝑇𝑦
 ≤ 𝑠

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈H. (7)

Remark 4. We note that if 𝑇 is strongly monotone, then 𝑇 is
strictly monotone, but vice is not. If 𝑇 is strongly monotone
with constant 𝑟 and Lipschitz continuous with constant 𝑠,
then we have 𝑟 ≤ 𝑠. As 𝑟 = 𝑠 > 0, then 𝑇 satisfies

𝑇𝑥 − 𝑇𝑦
 = 𝑟

𝑥 − 𝑦
 . (8)

Let 𝑇 : H → H be a single-valued operator and
let 𝐻 : H → H be a strongly monotone and Lipschitz
continuous operator with constant 𝛾. Let 𝑇 : H → 2

H be
an 𝐻-monotone operator and the resolvent operator 𝐽𝑇

𝐻,𝜌
:

H → H is defined by

𝐽
𝑇

𝐻,𝜌
(𝑢) = (𝐻 + 𝜌𝑇)

−1

(𝑢) , ∀𝑢 ∈H, (9)

for each 𝜌 > 0. We can define the following operators which
are called Yosida approximations:

𝐴
𝜌
=
1

𝜌
(𝐼 − 𝐻 ⋅ 𝐽

𝑇

𝐻,𝜌
) , ∀𝜌 > 0. (10)

We give some elementary properties of 𝐽𝑇
𝐻,𝜌

and 𝐴
𝜌
.

Lemma 5 (Proposition 4.1 in [21]). Let 𝐻 : H → H be
a strongly monotone and Lipschitz continuous operator with
constant 𝛾 and let 𝑇 : H → 2

H be an𝐻-monotone operator.
Then the following properties hold:

(i) ‖𝐽𝑇
𝐻,𝜌
(𝑥)−𝐽

𝑇

𝐻,𝜌
(𝑦)‖ ≤ (1/𝛾)‖𝑥−𝑦‖, for all 𝑥, 𝑦 ∈ 𝑅(𝐻+

𝜌𝑇);
(ii) ‖𝐻⋅𝐽𝑇

𝐻,𝜌
(𝑥)−𝐻⋅𝐽

𝑇

𝐻,𝜌
(𝑦)‖ ≤ ‖𝑥−𝑦‖, for all 𝑥, 𝑦 ∈H, or

‖𝐽
𝑇

𝐻,𝜌
⋅𝐻(𝑥)−𝐽

𝑇

𝐻,𝜌
⋅𝐻(𝑦)‖ ≤ ‖𝑥−𝑦‖, for all 𝑥, 𝑦 ∈H;

(iii) 𝐴
𝜌
is monotone and


𝐴
𝜌
𝑥 − 𝐴

𝜌
𝑦

≤
2

𝜌

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝑅 (𝐻 + 𝜌𝑇) ; (11)

(iv) 𝐴
𝜌
𝑥 ∈ 𝑇𝐽

𝑇

𝐻,𝜌
(𝑥), for all 𝑥 ∈ 𝑅(𝐻 + 𝜌𝑇).

Lemma 6 (Proposition 4.2 in [21]). Consider 𝑢 ∈ 𝑇−10 if and
only if 𝑢 satisfies the relation

𝑢 = 𝐽
𝑇

𝐻,𝜌
(𝐻 (𝑢)) , (12)

where 𝜌 > 0 is a constant and 𝐽𝑇
𝐻,𝜌

is the resolvent operator
defined by (9).

Lemma 7 (Proposition 2.1 in [20]). Let 𝐻 : H → H be a
strictly monotone single-valued operator and 𝑇 :H → 2

H an
𝐻-monotone operator. Then 𝑇 is maximal monotone.

Lemma 8 (see [23]). Let 𝐸 be a real Banach space.Then for all
𝑥, 𝑦 ∈ 𝐸

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ , ∀𝑗 (𝑥 + 𝑦)∈𝐽 (𝑥 + 𝑦).

(13)

3. Strong Convergence Theorems for
𝐶𝑄 Algorithm

We consider the following algorithm, and the sequence {𝑥
𝑛
}

is generated by

𝑥
0
= 𝑥 ∈H,

𝑦
𝑛
= 𝛼
𝑛
(𝑥
𝑛
+ 𝑓
𝑛
) + (1 − 𝛼

𝑛
) 𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐻 :

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 + 𝑓𝑛 − 𝑧
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐻 : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
,

(14)

where {𝛼
𝑛
} ⊂ [0, 1] and {𝑟

𝑛
} ⊂ (0, +∞). Motivated by Nakajo

and Takahashi [22] and Fang et al. [12, 13, 20], we get the
following results.

Theorem 9. Let 𝐻 : H → H be a strongly monotone
and Lipschitz continuous operator with constant 𝛾. Let 𝑇 :

H → 2
H be an 𝐻-monotone operator; let 𝑥 ∈ H and

{𝑥
𝑛
} be a sequence defined by (14), where {𝛼

𝑛
} ⊂ [0, 1] and
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{𝑟
𝑛
} ⊂ (0, +∞) satisfy lim

𝑛→∞
𝛼
𝑛
= 0, ∑∞

𝑛=0
𝛼
𝑛
= ∞,

lim inf
𝑛→∞

𝑟
𝑛
> 0, and lim

𝑛→∞
‖𝑓
𝑛
‖ = 0. If 𝑇−10 ̸= 0, then

{𝑥
𝑛
} converges strongly to 𝑃𝑥, where 𝑃 is the metric projection

ofH onto 𝑇−10.

Proof. The proofs can be divided into three steps.

Step 1 ({𝑥
𝑛
} is well defined and 𝑇−10 ⊂ 𝐶

𝑛
∩𝑄
𝑛
). Based on the

definitions of 𝐶
𝑛
and 𝑄

𝑛
, we can get that 𝑄

𝑛
is a closed and

convex set ofH for every 𝑛 ∈ N.
And since the inequality

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 + 𝑓𝑛 − 𝑧
 (15)

is equivalent to

𝑦𝑛 − 𝑥𝑛 − 𝑓𝑛


2
+ 2 ⟨𝑦

𝑛
− 𝑥
𝑛
− 𝑓
𝑛
, 𝑥
𝑛
+ 𝑓
𝑛
− 𝑧⟩ ≤ 0, (16)

hence, 𝐶
𝑛
is closed and convex, so is 𝐶

𝑛
∩𝑄
𝑛
for every 𝑛 ∈ N.

From Lemma 6, there exists 𝑢 ∈ 𝑇
−1
0 such that 𝑢 =

𝐽
𝑇

𝐻,𝜌
(𝐻(𝑢)) for all 𝜌 > 0, and based on Lemma 5, we know

𝐽
𝑇

𝐻,𝜌
⋅ 𝐻 is a nonexpansive mapping fromH into itself.
For all 𝑢 ∈ 𝑇−10, it follows that
𝑦𝑛 − 𝑢



=

𝛼
𝑛
(𝑥
𝑛
+ 𝑓
𝑛
) + (1 − 𝛼

𝑛
) 𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑢



≤ 𝛼
𝑛

𝑥𝑛 + 𝑓𝑛 − 𝑢
 + (1 − 𝛼𝑛)


𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑢



≤
𝑥𝑛 + 𝑓𝑛 − 𝑢

 .

(17)

Then 𝑢 ∈ 𝐶
𝑛
for each 𝑛 ∈ N. Therefore, 𝑇−10 ⊂ 𝐶

𝑛
for every

𝑛 ∈ N.
Next, we show that {𝑥

𝑛
} is well defined and𝑇−10 ⊂ 𝐶

𝑛
∩𝑄
𝑛

by mathematical induction.
For 𝑛 = 0, we have 𝑥

0
= 𝑥 ∈ H and 𝑄

0
= H. Hence,

𝑇
−1
0 ⊂ 𝐶

0
∩ 𝑄
0
, because 𝑇−10 ⊂ 𝐶

𝑛
.

For 𝑛 = 𝑘, suppose that {𝑥
𝑘
} is given and 𝑇−10 ⊂ 𝐶

𝑘
∩ 𝑄
𝑘

for all 𝑘 ∈ N. Then, there exists a unique 𝑥
𝑘+1

∈ 𝐶
𝑘
∩𝑄
𝑘
such

that 𝑥
𝑘+1

= 𝑃
𝐶
𝑘
∩𝑄
𝑘

𝑥
0
, because 𝐶

𝑘
∩ 𝑄
𝑘
is closed and convex.

Based on the property of the projection operators, we can
get that 𝑥

𝑘+1
= 𝑃
𝐶
𝑘
∩𝑄
𝑘

𝑥
0
is equivalent to

⟨𝑥
𝑘+1

− 𝑧, 𝑥
0
− 𝑥
𝑘+1
⟩ ≥ 0, (18)

for all 𝑧 ∈ 𝐶
𝑘
∩ 𝑄
𝑘
. By the assumption 𝑇−10 ⊂ 𝐶

𝑘
∩ 𝑄
𝑘
, we

have 𝑇−10 ⊂ 𝑄
𝑘+1

.
Hence,

𝑇
−1
0 ⊂ 𝐶

𝑘+1
∩ 𝑄
𝑘+1
. (19)

Step 2 ({𝑥
𝑛
} is bounded and ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0). By Lemma 5,

we get that 𝐽𝑇
𝐻,𝑟
𝑛

𝐻 is nonexpansive. And from Lemma 6, we
have that 𝑢 ∈ 𝑇−10 is equivalent to 𝑢 = 𝐽𝑇

𝐻,𝜌
(𝐻(𝑢)). So, 𝑢 ∈

𝑇
−1
0 is a closed and convex subset ofH.

The rest of the proofs of this step can follow Lemmas 3.2
and 3.3 of [22].

Step 3 (𝑥
𝑛
→ 𝑧
0
= 𝑃
𝑇
−1
0
𝑥
0
). From lim

𝑛→∞
‖𝑓
𝑛
‖ = 0, we get

that {𝑓
𝑛
} is bounded. So, {𝑦

𝑛
} is bounded.

Now, we suppose a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} converges

weakly to 𝑤
0
. Since 𝑥

𝑛+1
∈ 𝐶
𝑛
, we have

𝑦𝑛 − 𝑥𝑛
 ≤

𝑦𝑛 − 𝑥𝑛+1
 +

𝑥𝑛+1 − 𝑥𝑛


≤
𝑥𝑛 + 𝑓𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑥𝑛



≤ 2
𝑥𝑛+1 − 𝑥𝑛

 +
𝑓𝑛
 .

(20)

From Step 2 ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 and the assumption

lim
𝑛→∞

‖𝑓
𝑛
‖ = 0, we obtain

𝑦𝑛 − 𝑥𝑛
 → 0. (21)

Hence,

𝑦
𝑛
𝑖

⇀ 𝑤
0
. (22)

And similarly, it follows from 𝑥
𝑛+1

∈ 𝐶
𝑛
and Step 2 that


𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑥
𝑛
− 𝑓
𝑛



=
1

1 − 𝛼
𝑛

𝑦𝑛 − 𝑥𝑛 − 𝑓𝑛


≤
1

1 − 𝛼
𝑛

(
𝑦𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑥𝑛 − 𝑓𝑛

)

≤
2

1 − 𝛼
𝑛

𝑥𝑛+1 − 𝑥𝑛 − 𝑓𝑛


≤
2

1 − 𝛼
𝑛

(
𝑥𝑛+1 − 𝑥𝑛

 +
𝑓𝑛
) .

(23)

Therefore,

𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑥
𝑛
− 𝑓
𝑛


→ 0, (24)


𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑥
𝑛



≤

𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑥
𝑛
− 𝑓
𝑛


+
𝑓𝑛
 .

(25)

This implies that

𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑥
𝑛


→ 0. (26)

Thus,

𝐽
𝑇

𝐻,𝑟
𝑛
𝑖

𝐻(𝑥
𝑛
𝑖

+ 𝑓
𝑛
𝑖

) ⇀ 𝑤
0
∈H. (27)

Next, we show that 𝑤
0
∈ 𝑇
−1
0. Since 𝑇 is monotone and

𝐴
𝑟
𝑛

(𝐻(𝑥
𝑛
+𝑓
𝑛
)) ∈ 𝑇𝐽

𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+𝑓
𝑛
) due to𝐴

𝜌
(𝑥) ∈ 𝑇𝐽

𝑇

𝐻,𝜌
(𝑥)

for all 𝑥 ∈H, we obtain

⟨𝑧 − 𝐽
𝑇

𝐻,𝑟
𝑛
𝑖

𝐻(𝑥
𝑛
𝑖

+ 𝑓
𝑛
𝑖

) , 𝑧

− 𝐴
𝑟
𝑛
𝑖

(𝐻 (𝑥
𝑛
𝑖

+ 𝑓
𝑛
𝑖

))⟩ ≥ 0,

(28)
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for all 𝑧 ∈ 𝑇𝑧. Due to the assumption lim inf
𝑛→∞

𝑟
𝑛
> 0 and

inequality (24), we have


𝐴
𝑟
𝑛

(𝐻 (𝑥
𝑛
+ 𝑓
𝑛
))

=



𝐻 (𝑥
𝑛
+ 𝑓
𝑛
) − 𝐻𝐽

𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
)

𝑟
𝑛



≤
𝛾

𝑟
𝑛


𝐽
𝑇

𝐻,𝑟
𝑛

𝐻(𝑥
𝑛
+ 𝑓
𝑛
) − 𝑥
𝑛
− 𝑓
𝑛


.

(29)

So, 𝐴
𝑟
𝑛

(𝐻(𝑥
𝑛
+ 𝑓
𝑛
)) → 0 and

⟨𝑧 − 𝑤
0
, 𝑧

⟩ ≥ 0, ∀𝑧


∈ 𝑇𝑧. (30)

By Lemma 5, we know 𝑇 is a maximal monotone operator;
from the maximality property of 𝑇; we have

𝑤
0
∈ 𝑇
−1
0. (31)

If 𝑧
0
= 𝑃
𝑇
−1
0
𝑥
0
, by the lower semicontinuity of the norm, we

get

𝑥0 − 𝑧0
 ≤

𝑥0 − 𝑤0
 ≤ lim inf
𝑖→∞


𝑥
0
− 𝑥
𝑛
𝑖



≤ lim sup
𝑖→∞


𝑥
0
− 𝑥
𝑛
𝑖



≤
𝑥0 − 𝑧0

 .

(32)

Therefore, we obtain

lim
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥
0


=
𝑥0 − 𝑤0

 =
𝑥0 − 𝑧0

 . (33)

Adding 𝑥
𝑛
𝑖

⇀ 𝑤
0
, we can get that 𝑥

𝑛
𝑖

→ 𝑤
0
= 𝑧
0
.

Thus, 𝑥
𝑛
→ 𝑧
0
= 𝑃
𝑇
−1
0
𝑥
0
.

Remark 10. In the main results, Theorem 9 of this paper, the
assumption condition is lim inf

𝑛→∞
𝑟
𝑛
> 0, and we can

obtain the conclusion 𝐴
𝑟
𝑛

(𝐻(𝑥
𝑛
+ 𝑓
𝑛
)) → 0. However, the

conclusion 𝐴
𝑟
𝑛

(𝐻(𝑥
𝑛
+ 𝑓
𝑛
)) → 0 is obtained by assuming

the condition lim inf
𝑛→∞

𝑟
𝑛
= ∞ that appeared in [2, 20].

It is worth noting that condition lim inf
𝑛→∞

𝑟
𝑛
> 0 is

weaker than condition
lim inf

𝑛→∞
𝑟
𝑛
= ∞ by observing

lim inf
𝑛→∞

𝑟
𝑛
= ∞ ⇒ lim inf

𝑛→∞
𝑟
𝑛
> 0. (34)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Fundamental Research
Funds for the Central Universities, no. K5051370004, and the
National Science Foundation for Young Scientists of China,
nos. 11101320, 61202178, and 61373174.

References

[1] P. Tseng, “Alternating projection-proximal methods for convex
programming and variational inequalities,” SIAM Journal on
Optimization, vol. 7, no. 4, pp. 951–965, 1997.

[2] S. Kamimura and W. Takahashi, “Approximating solutions of
maximal monotone operators in Hilbert spaces,” Journal of
Approximation Theory, vol. 106, no. 2, pp. 226–240, 2000.

[3] R. T. Rockafellar, “Monotone operators and the proximal point
algorithm,” SIAM Journal on Control and Optimization, vol. 14,
no. 5, pp. 877–898, 1976.
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