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We prove that the fractional derivative or the fractional primitive of a 𝑇-periodic function cannot be a �̃�-periodic function, for any
period �̃�, with the exception of the zero function.

1. Introduction

Periodic functions [1, Ch. 3, pp. 58–92] play a central role
in mathematics since the seminal works of Fourier [2, 3].
Nowadays, periodic functions appear in applications ranging
from electromagnetic radiation to blood flow and of course
in control theory in linear time-varying systems driven
by periodic input signals [4]. Linear time-varying systems
driven by periodic input signals are ubiquitous in control
systems, from natural sciences to engineering, economics,
physics, and the life science [4, 5]. Periodic functions also
appear in automotive engine applications [6], optimal peri-
odic scheduling of sensor networks [7, 8], or cyclic gene
regulatory networks [9], to give some applications.

It is an obvious fact that the classical derivative, if it exists,
of a periodic function is also a periodic function of the same
period. Also the primitive of a periodic function may be
periodic (e.g., cos 𝑡 as primitive of sin 𝑡).

The idea of integral or derivatives of noninteger order
goes back to Riemann and Liouville [3, 10]. Probably the first
application of fractional calculus was made by Abel in the
solution of the integral equation that arises in the formu-
lation of the tautochrone problem [11]. Fractional calculus
appears in many different contexts as speech signals, cardiac
tissue electrode interface, theory of viscoelasticity, or fluid
mechanics. The asymptotic stability of positive fractional-
order nonlinear systems has been proved in [12] by using the
Lyapunov function. We do not intend to give a full list of
applications but to show the wide range of them.

In this paper we prove that periodicity is not transferred
by fractional integral or derivative, with the exception of the
zero function. Although this property seems to be known
[10, 13, 14], in Section 3 we give a different proof by using
the Laplace transform. Our approach relies on the classical
concepts of fractional calculus and elementary analysis.
Moreover, by using a similar argument as in [15], in Section 4
we prove that the fractional derivative or primitive of a 𝑇-
periodic function cannot be �̃�-periodic for any period �̃�. A
particular but nontrivial example is explicitly given. Finally,
as a consequence we show in Section 5 that an autonomous
fractional differential equation cannot have periodic solu-
tions with the exception of constant functions.

2. Preliminaries

Let 𝑇 > 0. If 𝑓 : R → R is 𝑇 periodic and 𝑓 ∈ C1(R), then
the derivative𝑓 is also𝑇-periodic. However, the primitive of
𝑓

𝐹 (𝑡) = ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 (1)

is not, in general, 𝑇-periodic. Just take 𝑓(𝑡) = 1 so that
𝐹(𝑡) = 𝑡 is not 𝑇-periodic for any 𝑇


> 0. The necessary

and sufficient condition for 𝐹 to be 𝑇-periodic is that

∫

𝑇

0

𝑓 (𝑠) 𝑑𝑠 = 0. (2)
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2 Abstract and Applied Analysis

The purpose of this note is to show that the fractional
derivative or the fractional primitive of a𝑇-periodic function
cannot be 𝑇-periodic function with the exception, of course,
of the zero function. We use the notation

𝐹 = 𝐼
1
𝑓, 𝑓


= 𝐷
1
𝑓 (3)

and note that

𝐷
1
(𝐼
1
𝑓) (𝑡) = 𝐷

1
𝐹 (𝑡) = 𝑓 (𝑡) (4)

but

𝐼
1
(𝐷
1
𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (0) , (5)

and 𝐼1(𝐷1𝑓) does not coincide with 𝑓 unless 𝑓(0) = 0.
We recall some elements of fractional calculus. Let 𝛼 ∈

(0, 1) and 𝑓 : R → R. We point out that 𝑓 is not necessarily
continuous. The fractional integral of 𝑓 of order 𝛼 is defined
by [16]

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (6)

provided the right-hand side is defined for a.e. 𝑡 ∈ R. If, for
example, 𝑓 ∈ L1(R), then the fractional integral (6) is well
defined and 𝐼

𝛼
𝑓 ∈ L1(0, 𝑇), for any 𝑇 > 0. Moreover, the

fractional operator

𝐼
𝛼
: L
1
(0, 𝑇) → L

1
(0, 𝑇) (7)

is linear and bounded.
The fractional Riemann-Liouville derivative of order 𝛼 of

𝑓 is defined as [16, 17]

𝐷
𝛼
𝑓 (𝑡) = 𝐷

1
𝐼
1−𝛼

𝑓 (𝑡) =
1

Γ (1 − 𝛼)

𝑑

𝑑𝑡
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝑓 (𝑠) 𝑑𝑠.

(8)

This is well defined if, for example, 𝑓 ∈ L1loc(R).
There are many more fractional derivatives. We are not

giving a complete list but recall the Caputo derivative [16, 17]

𝑐
𝐷
𝛼
𝑓 (𝑡) = 𝐼

1−𝛼
𝐷
1
𝑓 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝑓

(𝑠) 𝑑𝑠,

(9)

which is well defined, for example, for absolutely continuous
functions.

As in the integer case we have

𝐷
𝛼
(𝐼
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) ,

𝑐
𝐷
𝛼
(𝐼
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) (10)

but 𝐼𝛼(𝐷𝛼𝑓) or 𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) are not, in general, equal to 𝑓.

Indeed

𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (0) , (11)

and (see [17, (2.113), p. 71])

𝐼
𝛼
(𝐷
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) −

𝐷
𝛼−1

𝑓 (0)

Γ (𝛼)
𝑡
𝛼−1

. (12)

Also [16, (2.4.4), p. 91]
𝑐
𝐷
𝛼
𝑓 (𝑡) = 𝐷

𝛼
(𝑓 (𝑡) − 𝑓 (0)) . (13)

3. The Fractional Derivative or Primitive of a
𝑇-Periodic Function Cannot Be 𝑇-Periodic

We prove the following result in Section 3.1 below.

Theorem 1. Let 𝑓 : R → R be a nonzero 𝑇-periodic function
with 𝑓 ∈ L1loc(R). Then 𝐼𝛼𝑓 cannot be 𝑇-periodic for any 𝛼 ∈

(0, 1).

Corollary 2. Let 𝑓 : R → R be a nonzero 𝑇-periodic
function such that 𝑓 ∈ L1loc(R). Then the Caputo derivative
𝑐
𝐷
𝛼
𝑓 cannot be 𝑇-periodic for any 𝛼 ∈ (0, 1). The same result

holds for the fractional derivative𝐷𝛼𝑓.

Proof. Suppose that 𝑐𝐷𝛼𝑓 is 𝑇-periodic. Then by Theorem 1,
𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) cannot be 𝑇-periodic. However,

𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (0) (14)

is 𝑇-periodic. In relation to the fractional Riemann-Liouville
derivative, suppose that 𝐷𝛼𝑓 is 𝑇-periodic and consider the
function 𝑓 = 𝑓 − 𝑓(0) which is also 𝑇-periodic. Then

𝑐
𝐷
𝛼
𝑓 = 𝐷

𝛼
𝑓 (15)

cannot be 𝑇-periodic.

3.1. Proof ofTheorem 1. Let 𝛼 ∈ (0, 1) and𝑇 > 0. By reduction
to the absurd, in this section we suppose that 𝐼𝛼𝑓 is 𝑇-
periodic. Then

𝐼
𝛼
𝑓 (0) = 0 = 𝐼

𝛼
𝑓 (𝑇) ; (16)

that is,

∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 = 0. (17)

Lemma 3. Assume 𝑓 ∈ L1loc(R) is 𝑇-periodic. If 𝐼
𝛼
𝑓 is also

𝑇-periodic, then

∫

𝑇

0

(𝑛𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 = 0, (𝑛 ∈ N := {1, 2, 3, . . .}) . (18)
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Proof. For 𝑛 = 1 the latter equality reduces to (17). For 𝑛 = 2,

0 = 𝐼
𝛼
𝑓 (2𝑇)

=
1

Γ (𝛼)
∫

2𝑇

0

(2𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0

(2𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

2𝑇

𝑇

(2𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0

(2𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑟)
𝛼−1

𝑓 (𝑟 + 𝑇) 𝑑𝑟

=
1

Γ (𝛼)
∫

𝑇

0

(2𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑟)
𝛼−1

𝑓 (𝑟) 𝑑𝑟

=
1

Γ (𝛼)
∫

𝑇

0

(2𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(19)

The proof follows by induction on 𝑛. Assume that (18) is valid
for some 𝑛 ∈ N. Then

∫

(𝑛+1)𝑇

0

((𝑛 + 1)𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=

𝑛

∑

𝑗=0

∫

(𝑗+1)𝑇

𝑗𝑇

((𝑛 + 1)𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

(20)

and, by periodicity,

∫

(𝑛+1)𝑇

0

((𝑛 + 1)𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 = 𝐼
𝛼
𝑓 ((𝑛 + 1) 𝑇) = 0.

(21)

Moreover, for 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

∫

(𝑗+1)𝑇

𝑗𝑇

((𝑛 + 1)𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑇

0

((𝑛 + 1 − 𝑗)𝑇 − 𝑟)
𝛼−1

𝑓 (𝑟) 𝑑𝑟 = 0

(22)

by hypothesis of induction since 1 ≤ 𝑛 + 1 − 𝑗 ≤ 𝑛. Hence,

0 =

𝑛

∑

𝑗=0

∫

(𝑗+1)𝑇

𝑗𝑇

((𝑛 + 1)𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0

((𝑛 + 1)𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(23)

Lemma 4. Under the hypothesis of Lemma 3,

∫

𝑇

0

𝑓 (𝑠) 𝑑𝑠 = 0. (24)

Proof. Let 𝑓+ and 𝑓− be the positive and negative parts of 𝑓,

𝑓
+
(𝑥) = max (𝑓 (𝑥) , 0) ,

𝑓
−
(𝑥) = −min (𝑓 (𝑥) , 0) ,

𝑓 = 𝑓
+
− 𝑓
−
.

(25)

Equation (18) implies that

∫

𝑇

0

(𝑛𝑇 − 𝑠)
𝛼−1

𝑓
+
(𝑠) 𝑑𝑠 = ∫

𝑇

0

(𝑛𝑇 − 𝑠)
𝛼−1

𝑓
−
(𝑠) 𝑑𝑠. (26)

If ∫𝑇
0
𝑓
+
(𝑠)𝑑𝑠 = 0 or ∫𝑇

0
𝑓
−
(𝑠)𝑑𝑠 = 0, then from (18) we get

𝑓 = 0. We consider the case

∫

𝑇

0

𝑓
+
(𝑠) 𝑑𝑠 > ∫

𝑇

0

𝑓
−
(𝑠) 𝑑𝑠 > 0. (27)

For 𝑛 large

(
𝑛𝑇

(𝑛 − 1)𝑇
)

𝛼−1

>

∫
𝑇

0
𝑓
−
(𝑠) 𝑑𝑠

∫
𝑇

0
𝑓+ (𝑠) 𝑑𝑠

(28)

or equivalently

(𝑛𝑇)
𝛼−1

∫

𝑇

0

𝑓
+
(𝑠) 𝑑𝑠 > ((𝑛 − 1)𝑇)

𝛼−1
∫

𝑇

0

𝑓
−
(𝑠) 𝑑𝑠. (29)

Hence,

0 = ∫

𝑇

0

(𝑛𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

≥ (𝑛𝑇)
𝛼−1

∫

𝑇

0

𝑓
+
(𝑠) 𝑑𝑠 − ((𝑛 − 1)𝑇)

𝛼−1
∫

𝑇

0

𝑓
−
(𝑠) 𝑑𝑠 > 0,

(30)

which is a contradiction.
The case

∫

𝑇

0

𝑓
−
(𝑠) 𝑑𝑠 > ∫

𝑇

0

𝑓
+
(𝑠) 𝑑𝑠 > 0 (31)

is analogous.
Therefore,

∫

𝑇

0

𝑓
−
(𝑠) 𝑑𝑠 = ∫

𝑇

0

𝑓
+
(𝑠) 𝑑𝑠 > 0,

∫

𝑇

0

𝑓 (𝑠) 𝑑𝑠 = 0.

(32)
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Lemma 5. Under the hypothesis of Lemma 3,

∫

𝑇

0

(𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 = 0, ∀𝛿 ∈ [0, 𝑇] . (33)

Proof. If 𝛿 = 0 and 𝛿 = 𝑇, the equation reduces to (17) and
(18), respectively. Let 0 < 𝛿 < 𝑇.

𝐼
𝛼
𝑓 (𝑇 + 𝛿) =

1

Γ (𝛼)
∫

𝑇+𝛿

0

(𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0

(𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇+𝛿

𝑇

(𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0

(𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝛿

0

(𝛿 − 𝑟)
𝛼−1

𝑓 (𝑟 + 𝑇) 𝑑𝑟

=
1

Γ (𝛼)
∫

𝑇

0

(𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 + 𝐼
𝛼
𝑓 (𝛿) .

(34)

By using the periodicity of 𝐼𝛼𝑓 we get (33).

Lemma 6. Under the hypothesis of Lemma 3,

∫

𝑇

0

(𝑇 + 𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 = 0, ∀𝑡 ∈ R. (35)

Proof. For 𝑡 ∈ [0, 𝑇] or 𝑡 = 𝑛𝑇, 𝑛 = 1, 2, . . ., relation (35) is
true. Let 𝑡 = 𝑛𝑇 + 𝛿, so that 𝑇 + 𝑡 = (𝑛 + 1)𝑇 + 𝛿. Then

𝐼
𝛼
𝑓 (𝛿) = 𝐼

𝛼
𝑓 (𝑇 + 𝑡)

=
1

Γ (𝛼)
∫

(𝑛+1)𝑇+𝛿

0

((𝑛 + 1)𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(36)

Now, using the additive property of the integral, we have

1

Γ (𝛼)
∫

(𝑛+1)𝑇+𝛿

0

((𝑛 + 1)𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)

𝑛

∑

𝑗=0

∫

(𝑗+1)𝑇

𝑗𝑇

((𝑛 + 1)𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

(𝑛+1)𝑇+𝛿

(𝑛+1)𝑇

((𝑛 + 1)𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(37)

Let us compute separately the integrals in the right-hand side.
In all the integrals depending on 𝑗, we use the (linear) change
of variable 𝑟 = 𝑠 − 𝑗𝑇 and rename 𝑡 = (𝑛 − 𝑗)𝑇 + 𝛿 to obtain

∫

(𝑗+1)𝑇

𝑗𝑇

(𝑛𝑇 + 𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0

(𝑇 + (𝑛 − 𝑗) 𝑇 + 𝛿 − 𝑟)
𝛼−1

𝑓 (𝑟 + 𝑗𝑇) 𝑑𝑟

= ∫

𝑇

0

(𝑇 + 𝑡

− 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(38)

For the last integral we use the (linear) change of variable 𝑟 =
𝑠 − (𝑛 + 1)𝑇 to get

∫

(𝑛+1)𝑇+𝛿

(𝑛+1)𝑇

((𝑛 + 1)𝑇 + 𝛿 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= ∫

𝛿

0

(𝛿 − 𝑟)
𝛼−1

𝑓 (𝑟 + (𝑛 + 1) 𝑇) 𝑑𝑟 = 𝐼
𝛼
𝑓 (𝛿) .

(39)

By induction on 𝑛, as in Lemma 3, the proof follows.

Lemma 7. Let𝑓 be a continuous and𝑇-periodic function,𝑇 >

0. Let 0 < 𝛼 < 1 be fixed. Assuming that

∫

𝑇

0

(𝑇 − 𝑠 + 𝑡)
𝛼−1

𝑓 (𝑠) = 0, ∀𝑡 ∈ R,

∫

𝑇

0

𝑓 (𝑠) 𝑑𝑠 = 0,

(40)

then 𝑓 ≡ 0.

Proof. Since ∫𝑇
0
𝑓(𝑠)𝑑𝑠 = 0 then 0 = ∫

𝑇

0
𝑓(𝑠)𝑑𝑠 = ∫

𝑇

0
(𝑓
+
(𝑠) −

𝑓
−
(𝑠))𝑑𝑠 and therefore we can define 𝑐 = ∫

𝑇

0
𝑓
+
(𝑠)𝑑𝑠 =

∫
𝑇

0
𝑓
−𝑠
(𝑠)𝑑𝑠 > 0. If 𝑐 = 0 then 𝑓 = 0.

Let us define

𝜙 (𝑡) = ∫

𝑇

0

(𝑇 − 𝑠 + 𝑡)
𝛼−1

𝑓 (𝑠) 𝑑𝑠. (41)

From the hypothesis, we have that 𝜙(𝑡) = 0 at any 𝑡 ∈ R.
Therefore, its integral is also zero. Let us integratewith respect
to 𝑡 from 𝑎 to 𝑏 for 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇

0 = ∫

𝑏

𝑎

𝜙 (𝑡) 𝑑𝑡 = ∫

𝑏

𝑎

(∫

𝑇

0

(𝑇 − 𝑠 + 𝑡)
𝛼−1

𝑓 (𝑠) 𝑑𝑠) 𝑑𝑡

= ∫

𝑇

0

(∫

𝑏

𝑎

(𝑇 − 𝑠 + 𝑡)
𝛼−1

𝑑𝑡)𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0

(
(𝑏 − 𝑠 + 𝑇)

𝛼
− (𝑎 − 𝑠 + 𝑇)

𝛼

𝛼
)𝑓 (𝑠) 𝑑𝑠,

(42)

where we have assumed 0 ≤ 𝑎 < 𝑏, 𝑠 < 𝑇. Thus,

∫

𝑇

0

[(𝑏 − 𝑠 + 𝑇)
𝛼
− (𝑎 − 𝑠 + 𝑇)

𝛼
] 𝑓 (𝑠) 𝑑𝑠 = 0 (43)
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which implies that

𝜓 (𝑡) = ∫

𝑇

0

(𝑇 − 𝑠 + 𝑡)
𝛼
𝑓 (𝑠) 𝑑𝑠 (44)

is a constant function.
Moreover, since

𝑡
𝛼
𝑐 − (𝑇 + 𝑡)

𝛼
𝑐 ≤ ∫

𝑇

0

(𝑇 − 𝑠 + 𝑡)
𝛼
𝑓 (𝑠) 𝑑𝑠

≤ (𝑇 + 𝑡)
𝛼
𝑐 − 𝑡
𝛼
𝑐,

(45)

where

𝑐 = ∫

𝑇

0

𝑓
+
(𝑠) 𝑑𝑠 = ∫

𝑇

0

𝑓
−
(𝑠) 𝑑𝑠 (46)

in view of (24) and

lim
𝑡→+∞

((𝑇 + 𝑡)
𝛼
− 𝑡
𝛼
) = 0, (47)

we have that

∫

𝑇

0

(𝑇 − 𝑠 + 𝑡)
𝛼
𝑓 (𝑠) 𝑑𝑠 = 0, ∀𝑡 ∈ R. (48)

Let

𝑓 = 𝑓 ⋅ 𝜒
[0,𝑇]

, 𝑓 (𝑡) = {
𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇]

0, 𝑡 > 𝑇.
(49)

If we define

𝜑 (𝑡) = (𝑇 + 𝑡)
𝛼 (50)

then the convolution of 𝜑 and 𝑓 is given by

(𝜑 ∗ 𝑓) = ∫

+∞

0

𝜑 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0

(𝑇 + 𝑡 − 𝑠)
𝛼
𝑓 (𝑠) 𝑑𝑠 = 0.

(51)

Therefore, if we apply the Laplace transform [18, Chapter 17]
to the above equality it yields

L [𝜑 ∗ 𝑓] = L [𝜑]L [𝑓] = L [0] = 0. (52)

Since

L [𝜑] = 𝑠
−𝛼−1

𝑒
𝑠𝑇
Γ (𝛼 + 1, 𝑠𝑇) , (53)

where Γ(𝑎, 𝑧) denotes the incomplete gamma function [19,
Section 6.5], then L[𝜑] ̸= 0 which implies that L[𝑓] = 0

and therefore 𝑓 = 0, that is, 𝑓 = 0, on [0, 𝑇].

4. The Fractional Derivative or Primitive of a
𝑇-Periodic Function Cannot Be �̃�-Periodic
for any Period �̃�

Let 𝑓 be a 𝑇-periodic function and consider 𝑢 such that

𝑐
𝐷
𝛼
𝑢 = 𝑓 (𝑡) , 0 < 𝛼 < 1. (54)

Then

𝑢 (𝑡) = 𝑢 (0) + 𝐼
𝛼
𝑓 (𝑡) , (55)

and therefore

L [𝑢 (𝑡)] = L𝑢
0
+L [𝐼

𝛼
𝑓 (𝑡)] . (56)

Let us assume that 𝑢 is a �̃�-periodic function. Then by using
some basic properties of the Laplace transform it yields

∫
�̃�

0
𝑢 (𝑡) exp (−𝜆𝑡) 𝑑𝑡

1 − exp (−𝜆�̃�)
=
𝑢
0

𝜆
+

1

𝜆𝛼

∫
𝑇

0
𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡
1 − exp (−𝜆𝑇)

.

(57)

Therefore,

𝜆 (1 − exp (−𝜆𝑇)) ∫
�̃�

0

𝑢 (𝑡) exp (−𝜆𝑡) 𝑑𝑡

= 𝑢
0
(1 − exp (−𝜆𝑇)) (1 − exp (−𝜆�̃�))

+ 𝜆
1−𝛼

(1 − exp (−𝜆�̃�)) ∫
𝑇

0

𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡.

(58)

Let us consider V = 𝑢 − 𝑢
0
so that V is also �̃�-periodic and

V(0) = 0. The above equality becomes

𝜆 (1 − exp (−𝜆𝑇)) ∫
�̃�

0

V (𝑡) exp (−𝜆𝑡) 𝑑𝑡

= 𝜆
1−𝛼

(1 − exp (−𝜆�̃�)) ∫
𝑇

0

𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡

(59)

or equivalently

𝜆
𝛼
(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

∫

�̃�

0

V (𝑡) exp (−𝜆𝑡) 𝑑𝑡

= ∫

𝑇

0

𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡.

(60)

Thus,

(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

∞

∑

𝑖=0

(−1)
𝑖 𝜆
𝛼+𝑖

𝑖!
∫

�̃�

0

V (𝑡) 𝑡𝑖𝑑𝑡

=

∞

∑

𝑖=0

(−1)
𝑖 𝜆
𝑖

𝑖!
∫

𝑇

0

𝑓 (𝑡) 𝑡
𝑖
𝑑𝑡.

(61)
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Since

lim
𝜆→0

+

(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

=
𝑇

�̃�

, lim
𝜆→0

+

𝜆
𝛼+𝑖

= 0, (62)

by using 0 < 𝛼 < 1 and 𝑖 ≥ 0, the limit as 𝜆 → 0
+ of the

left-hand side is zero, which implies

∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡 = 0. (63)

Then

(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

∞

∑

𝑖=0

(−1)
𝑖 𝜆
𝑖

𝑖!
∫

�̃�

0

V (𝑡) 𝑡𝑖𝑑𝑡

= 𝜆
−𝛼

∞

∑

𝑖=1

(−1)
𝑖 𝜆
𝑖

𝑖!
∫

𝑇

0

𝑓 (𝑡) 𝑡
𝑖
𝑑𝑡

= 𝜆
1−𝛼

∞

∑

𝑖=0

(−1)
𝑖+1 𝜆

𝑖

(𝑖 + 1)!
∫

𝑇

0

𝑓 (𝑡) 𝑡
𝑖+1
𝑑𝑡.

(64)

If we consider 𝜆 → 0
+ in the latter expression we get

𝑇

�̃�

∫

�̃�

0

V (𝑡) 𝑑𝑡 = 0, (65)

and therefore

∫

�̃�

0

V (𝑡) 𝑑𝑡 = 0. (66)

By induction, we obtain that

∫

𝑇

0

𝑓 (𝑡) 𝑡
𝑖
𝑑𝑡 = 0, ∫

�̃�

0

V (𝑡) 𝑡𝑖𝑑𝑡 = 0, 𝑖 = 0, 1, 2, . . . . (67)

Therefore, 𝑓 = 𝑢 = 0 and there are no nonzero �̃�-periodic
𝐿
∞-solutions of the problem.

Example 8. Let 𝑓(𝑡) = sin(𝑡) and 0 < 𝛼 < 1. The Caputo-
fractional derivative of 𝑓(𝑡) is given by

𝑐
𝐷
𝛼
𝑓 (𝑡) =

𝑡
1−𝛼

Γ (2 − 𝛼)
1
𝐹
2
(1;

3 − 𝛼

2
, 1 −

𝛼

2
; −

𝑡
2

4
) , (68)

where the hypergeometric series
1
𝐹
2
(𝑎; 𝑏, 𝑐; 𝑑) is defined as

([20, 21], Chapter 15)

1
𝐹
2
(𝑎; 𝑏, 𝑐; 𝑑) =

∞

∑

𝑗=0

(𝑎)
𝑗

𝑗!(𝑏)
𝑗
(𝑐)
𝑗

𝑑
𝑗
, (69)

and the Pochhammer symbol (𝐴)
𝑗
= 𝐴(𝐴+ 1) ⋅ ⋅ ⋅ (𝐴 + 𝑗 − 1),

with (𝐴)
0
= 1.

Since
𝑐
𝐷
𝛼
𝑓 (𝜋)

𝑐𝐷𝛼𝑓 (𝜋 + �̃�)

= 𝜋
1−𝛼

(�̃� + 𝜋)
𝛼−1

1
𝐹
2
(1; 1 −

𝛼

2
,
3

2
−
𝛼

2
; −

𝜋
2

4
)

× (
1
𝐹
2
(1; 1 −

𝛼

2
,
3

2
−
𝛼

2
; −

1

4
(�̃� + 𝜋)

2

))

−1

,

𝑐
𝐷
𝛼
𝑓 (𝜋/2)

𝑐𝐷𝛼𝑓 (𝜋/2 + �̃�)

= (
2𝑇

𝜋
+ 1)

𝛼−1

1
𝐹
2
(1; 1 −

𝛼

2
,
3

2
−
𝛼

2
; −

𝜋
2

16
)

× (
1
𝐹
2
(1; 1 −

𝛼

2
,
3

2
−
𝛼

2
; −

1

16
(2𝑇 + 𝜋)

2
))

−1

,

(70)

we have that 𝑐𝐷𝛼𝑓(𝑡) is not a �̃�-periodic function for any
positive �̃� and 𝛼 ∈ (0, 1). Plotting both functions sin(𝑡) and
𝑐
𝐷
𝛼 sin(𝑡), this last function seems to be periodic but it is not

according to our results. Notice that Kaslik and Sivasundaram
[10] gave the following alternate representation:

𝑐
𝐷
𝛼 sin (𝑡) = 1

2
𝑡
1−𝛼

[𝐸
1,2−𝛼

(𝑖𝑡) + 𝐸
1,2−𝛼

(−𝑖𝑡)] , (71)

in terms of the two-parameter Mittag-Leffler function ([20,
21], Chapter 10)

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
. (72)

5. Periodic Solutions of Fractional
Differential Equations

In this section we show how Theorem 1 can be used to
give a nonexistence result of periodic solutions for fractional
differential equations.

Consider the first order ordinary differential equation

𝐷
1
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ R, (73)

where 𝜑 : R → R is continuous. An important question is
the existence of periodic solutions [22–24].

If 𝑢 : R → R is a 𝑇-periodic solution of (73) then
obviously

𝑢 (0) = 𝑢 (𝑇) . (74)

One can find 𝑇-periodic solutions of (73) by solving the
equation only on the interval [0, 𝑇] and then checking the
values 𝑢(0) and 𝑢(𝑇). If (74) holds, then extending by 𝑇-
periodicity the function 𝑢(𝑡), 𝑡 ∈ [0, 𝑇], to R we have a 𝑇-
periodic solution of (73).

However, this is not possible for a fractional differential
equation. Consider, for 𝛼 ∈ (0, 1), the equation

𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ R. (75)
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If 𝑢 is a solution of (75), let 𝑓(𝑡) = 𝜑(𝑢(𝑡)). Then

𝑢 (𝑡) = 𝑢 (0) + 𝐼
𝛼
𝑓 (𝑡) . (76)

In the case that 𝑢 is a 𝑇-periodic solution of (75) we have
that𝑓 is also𝑇-periodic. According toTheorem 1, 𝐼𝛼𝑓 cannot
be 𝑇-periodic unless it is the zero function and we have the
following relevant result.

Theorem 9. The fractional equation (75) cannot have periodic
solutions with the exception of constant functions 𝑢(𝑡) = 𝑢

0
,

𝑡 ∈ R, with 𝜑(𝑢
0
) = 0.

Remark 10. It is possible to consider the periodic boundary
value problem

𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) ,

(77)

as in, for example, [25], but one cannot extend the solution
of that periodic boundary value problem on [0, 𝑇] to a 𝑇-
periodic solution on R (unless 𝑢 is a constant function, as
indicated inTheorem 9).

Remark 11. The same applies to the Riemann-Liouville frac-
tional differential equation

𝐷
𝛼
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ R, (78)

taking into account that

lim
𝑡→0
+

𝑡
1−𝛼

𝑢 (𝑡) =
𝐷
𝛼−1

𝑢 (0)

Γ (𝛼)
. (79)

Example 12. Considering the fractional equation
𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝜓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (80)

with 𝜓 : R2 → R defined by

𝜓 (𝑡, 𝑢)

= 𝑢 +
𝑡
1−𝛼

Γ (2 − 𝛼)
1
𝐹
2
(1;

3 − 𝛼

2
, 1 −

𝛼

2
; −

𝑡
2

4
) − sin (𝑡) ,

(81)

we have that 𝑢(𝑡) = sin(𝑡) is a 2𝜋-periodic solution of (80).
This shows that the result of Theorem 9 is not valid for a
nonautonomous fractional differential equation as (80).

6. Conclusion

By using the classical concepts of fractional calculus and
elementary analysis, we have proved that periodicity is not
transferred by fractional integral or derivative, with the
exception of the zero function. We have also proved that the
fractional derivative or primitive of a 𝑇-periodic function
cannot be �̃�-periodic for any period �̃�. As a consequence
we have showed that an autonomous fractional differential
equation cannot have periodic solutions with the exception
of constant functions.
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