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We construct two metric tensor fields; by means of these metric tensor fields, sinh-Gordon equation and elliptic sinh-Gordon
equation are obtained, which describe pseudospherical surfaces of constant negative Riemann curvature scalar 𝜎 = −2, 𝜎 = −1,
respectively. By employing the Bäcklund transformation, nonlinear superposition formulas of sinh-Gordon equation and elliptic
sinh-Gordon equation are derived; various new exact solutions of the equations are obtained.

1. Introduction

The soliton equation [1] is related to several fields in math-
ematics [2] (such as differential geometry and nonlinear
partial differential equation [3, 4]) and theoretical physics
(such as Josephson transition line [5], solitary Rossby waves
and internal solitary waves in the ocean [6–9], chain of
coupled pendula [10], pulse propagation in two-level atomic
system [11], and quantum field theory [12]). Soliton equation
can be derived from pseudospherical surfaces. Extensions to
other soliton equations are straightforward. Soliton equations
have several remarkable properties in common. Firstly, the
initial value problem can be solved exactly by means of
the inverse scattering methods [13]. Secondly, they have
an infinite number of conservation laws [14, 15]. Thirdly,
they have Bäcklund transformations [16, 17]. Fourthly, they
pass the Painlevé test [18]. Furthermore they describe pseu-
dospherical surfaces, that is, surfaces of constant negative
Gaussian curvature [19, 20].

Sinh-Gordon equation and elliptic sinh-Gordon equa-
tion are two important soliton equations in the field of
soliton. From the model building perspective, there are
various interesting examples making use of the sinh-Gordon
equation and elliptic sinh-Gordon equation [21], such as
the propagation of splay waves on a lipid membrane,

one-dimensional models for elementary particles, self-
induced transparency of short optical pulses, and domain
walls in ferroelectric and ferromagneticmaterials.The second
point worth noting is the historical development of the
equations.They first appeared in differential geometry, where
they were used to describe surfaces with a constant negative
Gaussian curvature, but the previous study mainly focuses
on sine-Gordon equation [22–25]; there are few scholarstic
research on sinh-Gordon equation and elliptic sinh-Gordon
equation.

In this paper, we will first construct two metric tensor
fields; through these metric tensor fields, sinh-Gordon equa-
tions and elliptic sinh-Gordon equation are obtained. The
method to derive soliton equations is greatly different from
the previous papers [26]. Then, we will discuss analytic solu-
tions of the sinh-Gordon equation and elliptic sinh-Gordon
equation by using Bäcklund transformation. On the basis
of the Bäcklund transformation, the formulas of nonlinear
superposition of sinh-Gordon equation and elliptic sinh-
Gordon equation are proposed in this paper, and the single-
soliton (breather) solution and double-soliton (breather)
solution have been calculated. Finally, computer simulations
of the single-soliton (breather) solution and double-soliton
(breather) solution are presented by using the mathematical
software Matlab.
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2. General Method to Derive Soliton Equations
from Pseudospherical Surfaces

Metric tensor is used to study the invariant quantity of a
surface [27, 28], such as the length of a curve drawn along
the surface, the angle between a pair of curves drawn along
the surface, and meeting at a common point, or tangent
vectors at the same point of the surface, the area of a piece
of the surface, and so on. However, many PDEs describe
constant curvature surfaces. So, we can derive PDE viametric
tensor. In this section, we introduce the general procedure
for deriving soliton equations from pseudospherical surfaces.
The metric tensor field for the PDE is given by

𝑓 = 𝑓
11
𝑑𝑥 ⊗ 𝑑𝑥 + 𝑓

12
𝑑𝑥 ⊗ 𝑑𝑡 + 𝑓

21
𝑑𝑡 ⊗ 𝑑𝑥 + 𝑓

22
𝑑𝑡 ⊗ 𝑑𝑡,

(1)

and the line element is

(

𝑑𝑠

𝑑𝜆

)

2

= 𝑓
11
(

𝑑𝑥

𝑑𝜆

)

2

+ (𝑓
12
+ 𝑓
21
)

𝑑𝑥

𝑑𝜆

𝑑𝑡

𝑑𝜆

+ 𝑓
22
(

𝑑𝑡

𝑑𝜆

)

2

.

(2)

The quantity 𝑓 can be written in matrix form

𝑓 = (
𝑓
11

𝑓
12

𝑓
21

𝑓
22

) , (3)

and then the inverse of 𝑓 is given by

𝑓
−1
= (

𝑓
11

𝑓
12

𝑓
21

𝑓
22) . (4)

Next we have to calculate the Christoffel symbols. They are
defined as

𝜏
𝑎

𝑚𝑛
:= ∑

𝑏

1

2

𝑓
𝑎𝑏
(𝑓
𝑏𝑚,𝑛

+ 𝑓
𝑏𝑛,𝑚

− 𝑓
𝑚𝑛,𝑏

) , (5)

where

𝑓
𝑏𝑚,1

:=

𝜕𝑓
𝑏𝑚

𝜕𝑥

, 𝑓
𝑏𝑚,2

=

𝜕𝑓
𝑏𝑚

𝜕𝑡

. (6)

Following, we calculate the Riemann curvature tensor which
is given by

𝜎
𝑟

𝑚𝑠𝑞
:= 𝜏
𝑟

𝑚𝑞,𝑠
− 𝜏
𝑟

𝑚𝑠,𝑞
+∑

𝑛

(𝜏
𝑟

𝑛𝑠
𝜏
𝑛

𝑚𝑞
− 𝜏
𝑟

𝑛𝑞
𝜏
𝑛

𝑚𝑠
) . (7)

The Ricci tensor follows as

𝜎
𝑚𝑞

:= 𝜎
𝑎

𝑚𝑎𝑞
= −𝜎
𝑎

𝑚𝑞𝑎
, (8)

and is constructed by contraction. From 𝜎
𝑛𝑞
, we obtain 𝜎𝑚

𝑞
via

𝜎
𝑚

𝑞
= 𝑓
𝑚𝑛
𝜎
𝑛𝑞
. (9)

Finally, the curvature scalar 𝜎 is given by

𝜎 := 𝜎
𝑚

𝑚
. (10)

If the given 𝜎 is a constant, we will get a partial differential
equation.

2.1. Sinh-Gordon Equation Derived from Pseudospherical
Surfaces. Sinh-Gordon equation and elliptic sinh-Gordon
equation appear in wide range of physical applications
including integrable quantum field theory, kink dynamics,
fluid dynamics, and nonlinear optics [29–31]. In this section,
we will derive sinh-Gordon equation from pseudospherical
surfaces following the method presented in the previous
section.Themetric tensor field for the sinh-Gordon equation
is given by

𝑓 = 𝑑𝑥 ⊗ 𝑑𝑥 + cosh (𝑢 (𝑥, 𝑡)) 𝑑𝑥 ⊗ 𝑑𝑡

+ cosh (𝑢 (𝑥, 𝑡)) 𝑑𝑡 ⊗ 𝑑𝑥 + 𝑑𝑡 ⊗ 𝑑𝑡,
(11)

and the line element is

(

𝑑𝑠

𝑑𝜆

)

2

= (

𝑑𝑥

𝑑𝜆

)

2

+ 2 cosh (𝑢 (𝑥, 𝑡)) 𝑑𝑥
𝑑𝜆

𝑑𝑡

𝑑𝜆

+ (

𝑑𝑡

𝑑𝜆

)

2

, (12)

where 𝑢 is a smooth function of 𝑥 and 𝑡. Firstly, we will
calculate the Riemann curvature scalar 𝜎 from 𝑓. Then the
sinh-Gordon equation followswhenwe impose the condition
𝜎 = −2. We have

𝑓
11
= 𝑓
22
= 1, 𝑓

21
= 𝑓
12
= cosh (𝑢) . (13)

The quantity 𝑓 can be written in matrix form

𝑓 = (
𝑓
11

𝑓
12

𝑓
21

𝑓
22

) , (14)

and the inverse of 𝑓 is given by

𝑓
−1
= (

𝑓
11

𝑓
12

𝑓
21

𝑓
22) , (15)

where

𝑓
11
= 𝑓
22
= −

1

sinh2 (𝑢)
, 𝑓

12
= 𝑓
21
=

cosh (𝑢)
sinh2 (𝑢)

.

(16)

Differentiating (14) with respect to 𝑥 and 𝑡, we obtain

𝑓
𝑥
= (

𝑓
11,1

𝑓
12,1

𝑓
21,1

𝑓
22,1

) , 𝑓
𝑡
= (

𝑓
11,2

𝑓
12,2

𝑓
21,2

𝑓
22,2

) , (17)

where

𝑓
𝑥
=

𝜕𝑓

𝜕𝑥

, 𝑓
11,1

= 𝑓
22,1

= 0,

𝑓
12,1

= 𝑓
21,1

= sinh (𝑢) 𝑢
𝑥
,

𝑓
𝑡
=

𝜕𝑓

𝜕𝑡

, 𝑓
11,2

= 𝑓
22,2

= 0,

𝑓
12,2

= 𝑓
21,2

= sinh (𝑢) 𝑢
𝑡
.

(18)

Since

𝜏
𝑎

𝑚𝑛
=

1

2

𝑓
𝑎𝑏
(𝑓
𝑏𝑚,𝑛

+ 𝑓
𝑏𝑛,𝑚

− 𝑓
𝑚𝑛,𝑏

) , (19)
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we obtain

𝜏
1

11
=

cosh (𝑢) 𝑢
𝑥

sinh (𝑢)
, 𝜏

2

11
= −

𝑢
𝑥

sinh (𝑢)
,

𝜏
1

12
= 0, 𝜏

2

12
= 0, 𝜏

1

21
= 0, 𝜏

2

21
= 0,

𝜏
1

22
= −

𝑢
𝑡

sinh (𝑢)
, 𝜏

2

22
=

cosh (𝑢) 𝑢
𝑡

sinh (𝑢)
.

(20)

Differentiating (20) with respect to 𝑥 and 𝑡, we obtain

𝜏
1

11,1
=

cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑥
− (𝑢
𝑥
)
2

sinh2 (𝑢)
,

𝜏
1

11,2
=

cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− 𝑢
𝑥
𝑢
𝑡

sinh2 (𝑢)
,

𝜏
2

11,1
=

cosh (𝑢) (𝑢
𝑥
)
2

− sinh (𝑢) 𝑢
𝑥𝑥

sinh2 (𝑢)
,

𝜏
2

11,2
=

cosh (𝑢) 𝑢
𝑡
𝑢
𝑥
− sinh (𝑢) 𝑢

𝑥𝑡

sinh2 (𝑢)
,

𝜏
1

12,1
= 𝜏
1

12,2
= 𝜏
2

12,1
= 𝜏
2

12,2
= 𝜏
1

21,1

= 𝜏
1

21,2
= 𝜏
2

21,1
= 𝜏
2

21,2
= 0,

𝜏
1

22,1
=

cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
− sinh (𝑢) 𝑢

𝑥𝑡

sinh2 (𝑢)
,

𝜏
1

22,2
=

cosh (𝑢) (𝑢
𝑡
)
2

− sinh (𝑢) 𝑢
𝑡𝑡

sinh2 (𝑢)
,

𝜏
2

22,1
=

cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− 𝑢
𝑥
𝑢
𝑡

sinh2 (𝑢)
,

𝜏
2

22,2
=

cosh (𝑢) sinh (𝑢) 𝑢
𝑡𝑡
− (𝑢
𝑡
)
2

sinh2 (𝑢)
.

(21)

By virtue of

𝜎
𝑟

𝑚𝑠𝑞
:= 𝜏
𝑟

𝑚𝑞,𝑠
− 𝜏
𝑟

𝑚𝑠,𝑞
+∑

𝑛

(𝜏
𝑟

𝑛𝑠
𝜏
𝑛

𝑚𝑞
− 𝜏
𝑟

𝑛𝑞
𝜏
𝑛

𝑚𝑠
) , (22)

we get

𝜎
1

111
= 0, 𝜎

1

112
= −

cosh (𝑢) 𝑢
𝑥𝑡

sinh (𝑢)
,

𝜎
1

211
= 0, 𝜎

1

212
= −

𝑢
𝑥𝑡

sinh (𝑢)

𝜎
2

121
= −

𝑢
𝑥𝑡

sinh (𝑢)
, 𝜎

2

122
= 0,

𝜎
2

221
= −

cosh (𝑢) 𝑢
𝑥𝑡

sinh (𝑢)
, 𝜎

2

222
= 0.

(23)

By virtue of

𝜎
𝑚𝑞

:= 𝜎
𝑎

𝑚𝑎𝑞
= −𝜎
𝑎

𝑚𝑞𝑎
, (24)

we get

𝜎
11
= −

𝑢
𝑥𝑡

sinh (𝑢)
, 𝜎

12
= −

cosh (𝑢) 𝑢
𝑥𝑡

sinh (𝑢)

𝜎
21
= −

cosh (𝑢) 𝑢
𝑥𝑡

sinh (𝑢)
, 𝜎

22
= −

𝑢
𝑥𝑡

sinh (𝑢)
.

(25)

By virtue of

𝜎
𝑚

𝑞
= 𝑓
𝑚𝑛
𝜎
𝑛𝑞
, (26)

we get

𝜎
1

1
= −

𝑢
𝑥𝑡

sinh (𝑢)
, 𝜎

2

2
= −

𝑢
𝑥𝑡

sinh (𝑢)
. (27)

Finally, with the help of

𝜎 := 𝜎
𝑚

𝑚
, (28)

we get

𝜎 := −

2𝑢
𝑥𝑡

sinh (𝑢)
. (29)

When given 𝜎 = −2, the well-known sinh-Gordon equation

𝑢
𝑥𝑡
= sinh (𝑢) (30)

is obtained.

2.2. Elliptic Sinh-Gordon Equation Derived from Pseudospher-
ical Surfaces. In this section, we will derive elliptic sinh-
Gordon equation from pseudospherical surfaces. The metric
tensor field for the elliptic sinh-Gordon equation is given by

𝑓 = cosh (𝑢 (𝑥, 𝑡)) 𝑑𝑥 ⊗ 𝑑𝑥 + 𝑑𝑥 ⊗ 𝑑𝑡

+ 𝑑𝑡 ⊗ 𝑑𝑥 + cosh (𝑢 (𝑥, 𝑡)) 𝑑𝑡 ⊗ 𝑑𝑡,
(31)

and the line element is

(

𝑑𝑠

𝑑𝜆

)

2

= cosh (𝑢 (𝑥, 𝑡)) (𝑑𝑥
𝑑𝜆

)

2

+ 2

𝑑𝑥

𝑑𝜆

𝑑𝑡

𝑑𝜆

+ cosh (𝑢 (𝑥, 𝑡)) ( 𝑑𝑡

𝑑𝜆

)

2

.

(32)

Firstly, we calculate the Riemann curvature scalar 𝜎 from
𝑓. Then the elliptic sinh-Gordon equation follows when we
impose the condition 𝜎 = −1. We have

𝑓
11
= 𝑓
22
= cosh (𝑢) , 𝑓

21
= 𝑓
12
= 1. (33)

The quantity 𝑓 can be written in matrix form

𝑓 = (
𝑓
11

𝑓
12

𝑓
21

𝑓
22

) , (34)
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and the inverse of 𝑓 is given by

𝑓
−1
= (

𝑓
11

𝑓
12

𝑓
21

𝑓
22) , (35)

where

𝑓
11
= 𝑓
22
=

cosh (𝑢)
sinh2 (𝑢)

, 𝑓
12
= 𝑓
21
= −

1

sinh2 (𝑢)
. (36)

Differentiate (34) with respect to 𝑥 and 𝑡, we have

𝑓
𝑥
= (

𝑓
11,1

𝑓
12,1

𝑓
21,1

𝑓
22,1

) , 𝑓
𝑡
= (

𝑓
11,2

𝑓
12,2

𝑓
21,2

𝑓
22,2

) , (37)

where

𝑓
𝑥
=

𝜕𝑓

𝜕𝑥

, 𝑓
11,1

= 𝑓
22,1

= sinh (𝑢) 𝑢
𝑥
,

𝑓
12,1

= 𝑓
21,1

= 0,

𝑓
𝑡
=

𝜕𝑓

𝜕𝑡

, 𝑓
11,2

= 𝑓
22,2

= sinh (𝑢) 𝑢
𝑡
,

𝑓
12,1

= 𝑓
21,1

= 0.

(38)

Since

𝜏
𝑎

𝑚𝑛
=

1

2

𝑓
𝑎𝑏
(𝑓
𝑏𝑚,𝑛

+ 𝑓
𝑏𝑛,𝑚

− 𝑓
𝑚𝑛,𝑏

) , (39)

we obtain

𝜏
1

11
=

cosh (𝑢) 𝑢
𝑥
+ 𝑢
𝑡

2 sinh (𝑢)
, 𝜏

2

11
= −

𝑢
𝑥
+ cosh (𝑢) 𝑢

𝑡

2 sinh (𝑢)
,

𝜏
1

12
=

cosh (𝑢) 𝑢
𝑡
− 𝑢
𝑥

2 sinh (𝑢)
, 𝜏

2

12
=

−𝑢
𝑡
+ cosh (𝑢) 𝑢

𝑥

2 sinh (𝑢)
,

𝜏
1

21
=

cosh (𝑢) 𝑢
𝑡
− 𝑢
𝑥

2 sinh (𝑢)
, 𝜏

2

21
=

−𝑢
𝑡
+ cosh (𝑢) 𝑢

𝑥

2 sinh (𝑢)
,

𝜏
1

22
= −

cosh (𝑢) 𝑢
𝑥
+ 𝑢
𝑡

2 sinh (𝑢)
, 𝜏

2

22
=

𝑢
𝑥
+ cosh (𝑢) 𝑢

𝑡

2 sinh (𝑢)
.

(40)

Differentiating (40) with respect to 𝑥 and 𝑡, we obtain

𝜏
1

11,1
=

− cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
+ cosh (𝑢) sinh (𝑢) 𝑢

𝑥𝑥
+ sinh (𝑢) 𝑢

𝑥𝑡
− (𝑢
𝑥
)
2

2sinh2 (𝑢)
,

𝜏
1

11,2
=

− cosh (𝑢) (𝑢
𝑡
)
2

+ cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
+ sinh (𝑢) 𝑢

𝑡𝑡
− 𝑢
𝑥
𝑢
𝑡

2sinh2 (𝑢)
,

𝜏
2

11,1
= −

cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− cosh (𝑢) (𝑢

𝑥
)
2

− 𝑢
𝑥
𝑢
𝑡
+ sinh (𝑢) 𝑢

𝑥𝑥

2sinh2 (𝑢)
,

𝜏
2

11,2
= −

cosh (𝑢) sinh (𝑢) 𝑢
𝑡𝑡
− cosh (𝑢) 𝑢

𝑥
𝑢
𝑡
− (𝑢
𝑡
)
2

+ sinh (𝑢) 𝑢
𝑥𝑡

2sinh2 (𝑢)
,

𝜏
1

12,1
=

cosh (𝑢) (𝑢
𝑥
)
2

+ cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− 𝑢
𝑥
𝑢
𝑡
− sinh (𝑢) 𝑢

𝑥𝑥

2sinh2 (𝑢)
,

𝜏
2

12,1
=

cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
+ cosh (𝑢) sinh (𝑢) 𝑢

𝑡𝑡
− (𝑢
𝑡
)
2

− sinh (𝑢) 𝑢
𝑥𝑡

2sinh2 (𝑢)
,

𝜏
1

12,2
=

cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
+ cosh (𝑢) sinh (𝑢) 𝑢

𝑥𝑥
− (𝑢
𝑥
)
2

− sinh (𝑢) 𝑢
𝑥𝑡

2sinh2 (𝑢)
,

𝜏
2

12,2
=

cosh (𝑢) (𝑢
𝑡
)
2

+ cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− 𝑢
𝑥
𝑢
𝑡
− sinh (𝑢) 𝑢

𝑡𝑡

2sinh2 (𝑢)
,

𝜏
1

21,1
=

cosh (𝑢) (𝑢
𝑥
)
2

+ cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− 𝑢
𝑥
𝑢
𝑡
− sinh (𝑢) 𝑢

𝑥𝑥

2sinh2 (𝑢)
,

𝜏
1

21,2
=

cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
+ cosh (𝑢) sinh (𝑢) 𝑢

𝑡𝑡
− (𝑢
𝑡
)
2

− sinh (𝑢) 𝑢
𝑥𝑡

2sinh2 (𝑢)
,

𝜏
2

21,1
=

cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
+ cosh (𝑢) sinh (𝑢) 𝑢

𝑥𝑥
− (𝑢
𝑥
)
2

− sinh (𝑢) 𝑢
𝑥𝑡

2sinh2 (𝑢)
,

𝜏
2

21,2
=

cosh (𝑢) (𝑢
𝑡
)
2

+ cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− 𝑢
𝑥
𝑢
𝑡
− sinh (𝑢) 𝑢

𝑡𝑡

2sinh2 (𝑢)
,

𝜏
1

22,1
=

cosh (𝑢) 𝑢
𝑥
𝑢
𝑡
− cosh (𝑢) sinh (𝑢) 𝑢

𝑥𝑥
− sinh (𝑢) 𝑢

𝑥𝑡
+ (𝑢
𝑥
)
2

2sinh2 (𝑢)
,

𝜏
1

22,2
=

cosh (𝑢) (𝑢
𝑡
)
2

− cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− sinh (𝑢) 𝑢

𝑡𝑡
+ 𝑢
𝑥
𝑢
𝑡

2sinh2 (𝑢)
,

𝜏
2

22,1
=

cosh (𝑢) sinh (𝑢) 𝑢
𝑥𝑡
− cosh (𝑢) (𝑢

𝑥
)
2

− 𝑢
𝑥
𝑢
𝑡
+ sinh (𝑢) 𝑢

𝑥𝑥

2sinh2 (𝑢)
,

𝜏
2

22,2
=

cosh (𝑢) sinh (𝑢) 𝑢
𝑡𝑡
− cosh (𝑢) 𝑢

𝑥
𝑢
𝑡
− (𝑢
𝑡
)
2

+ sinh (𝑢) 𝑢
𝑥𝑡

2sinh2 (𝑢)
.

(41)

By virtue of

𝜎
𝑟

𝑚𝑠𝑞
:= 𝜏
𝑟

𝑚𝑞,𝑠
− 𝜏
𝑟

𝑚𝑠,𝑞
+∑

𝑛

(𝜏
𝑟

𝑛𝑠
𝜏
𝑛

𝑚𝑞
− 𝜏
𝑟

𝑛𝑞
𝜏
𝑛

𝑚𝑠
) , (42)

we get

𝜎
1

111
= 0, 𝜎

1

112
= −

𝑢
𝑥𝑥
+ 𝑢
𝑡𝑡

2 sinh (𝑢)
,

𝜎
1

211
= 0, 𝜎

1

212
= −

(𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥
) cosh (𝑢)

2 sinh (𝑢)

𝜎
2

121
= −

(𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥
) cosh (𝑢)

2 sinh (𝑢)
, 𝜎

2

122
= 0,

𝜎
2

221
= −

𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥

2 sinh (𝑢)
, 𝜎

2

222
= 0.

(43)
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By virtue of

𝜎
𝑚𝑞

:= 𝜎
𝑎

𝑚𝑎𝑞
= −𝜎
𝑎

𝑚𝑞𝑎
, (44)

we get

𝜎
11
= −

(𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥
) cosh (𝑢)

2 sinh (𝑢)
, 𝜎

12
= −

𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥

2 sinh (𝑢)

𝜎
21
= −

𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥

2 sinh (𝑢)
, 𝜎

22
= −

(𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥
) cosh (𝑢)

2 sinh (𝑢)
.

(45)

By virtue of

𝜎
𝑚

𝑞
= 𝑓
𝑚𝑛
𝜎
𝑛𝑞
, (46)

we get

𝜎
1

1
= −

𝑢
𝑥𝑥
+ 𝑢
𝑡𝑡

2 sinh (𝑢)
, 𝜎

2

2
= −

𝑢
𝑥𝑥
+ 𝑢
𝑡𝑡

2 sinh (𝑢)
. (47)

Finally, with the help of

𝜎 := 𝜎
𝑚

𝑚
, (48)

we get

𝜎 := −

𝑢
𝑥𝑥
+ 𝑢
𝑡𝑡

sinh (𝑢)
. (49)

When given 𝜎 = −1, the well-known elliptic sinh-Gordon
equation

𝑢
𝑥𝑥
+ 𝑢
𝑡𝑡
= sinh (𝑢) (50)

is obtained.

3. Solutions to the Sinh-Gordon Equation and
Elliptic Equation

Bäcklund transformations play an important role in finding
solutions of a certain class of nonlinear partial differential
equations [32, 33]. From a solution of a nonlinear partial
differential equation, we can sometimes find a relationship
that will generate the solution of a different partial differential
equation, which is known as a Bäcklund transformation, or of
the same partial differential equation where such a relation is
then known as an auto-Bäcklund transformation.

As to elliptic sinh-Gordon equation

𝑢
𝑥𝑥
+ 𝑢
𝑡𝑡
= sinh (𝑢) (51)

under the transformation

𝑥 󳨃󳨀→

𝑏

2

(𝑥 − 𝑖𝑡) , 𝑡 󳨃󳨀→

1

2𝑏

(𝑥 + 𝑖𝑡) , (52)

where 𝑏 is a positive constant, (51) is transformed into the
sinh-Gordon equation

𝑢
𝑥𝑡
= sinh (𝑢) . (53)
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Figure 1: Waterfall of (58), where 𝛼 = 1.5, 𝐶 = 0.

So, if we get the solutions of the sinh-Gordon equation, it
is very easy to get the solutions of the elliptic sinh-Gordon
equation.

The auto-Bäcklund transformations for the sinh-Gordon
equation

𝑢
𝑥𝑡
= sinh (𝑢) (54)

is given by

(

𝑢
󸀠
+ 𝑢

2

)

𝑥

= 𝑎 sinh(𝑢
󸀠
− 𝑢

2

) ,

(

𝑢
󸀠
− 𝑢

2

)

𝑡

=

1

𝑎

sinh(𝑢
󸀠
+ 𝑢

2

) .

(55)

If 𝑢 is a solution of the sinh-Gordon equation, 𝑢󸀠 is also a
solution of the sinh-Gordon equation. Here we are looking
for solutions of the sinh-Gordon equation by using the
Bäcklund transformations. Obviously 𝑢(𝑥, 𝑡) = 0 is a solution
of the sinh-Gordon equation. This is known as the vacuum
solution. We make use of the auto-Bäcklund transformation
to construct another solution of the sinh-Gordon equation
from the vacuum solution. Inserting this solution into the
given Bäcklund transformation results in

(

𝑢
󸀠

2

)

𝑥

= 𝑎 sinh(𝑢
󸀠

2

) , (

𝑢
󸀠

2

)

𝑡

=

1

𝑎

sinh(𝑢
󸀠

2

) . (56)

Since

∫

𝑑𝑢

sinh (𝑢/2)
= −4tanh−1 exp(𝑢

2

) , (57)

we obtain a new solution of the sinh-Gordon equation;
namely,

𝑢
󸀠
= 2 ln tanh(−𝑎

2

𝑥 −

1

2𝑎

𝑡 + 𝐶) , (58)

where 𝐶 is a constant of integration, and the computer
simulation of (58) is presented in Figures 1 and 2.
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Figure 2: Solution of (58), where 𝛼 = 1.5, 𝐶 = 0, and 𝑡 = 5.

This solution may be used to determine another solution
for the sinh-Gordon equation and so on. If we use this
method to calculate other new solutions, it is very difficult
to solve the first-order equation. However, we can get the
nonlinear superposition formula via (55). From 𝑢

0
, first by

employing 𝑎
1
, 𝑢
1
is obtained; then by employing 𝑎

2
, 𝑢
3
can be

obtained:

(

𝑢
1
+ 𝑢
0

2

)

𝑥

= 𝑎
1
sinh

𝑢
1
− 𝑢
0

2

,

(

𝑢
3
+ 𝑢
1

2

)

𝑥

= 𝑎
2
sinh

𝑢
3
− 𝑢
1

2

.

(59)

Meanwhile by changing the using order of 𝑎
1
and 𝑎
2
, 𝑢
2
and

𝑢
4
are also obtained, respectively. If 𝑢

3
= 𝑢
4
, then

(

𝑢
2
+ 𝑢
0

2

)

𝑥

= 𝑎
2
sinh

𝑢
2
− 𝑢
0

2

,

(

𝑢
3
+ 𝑢
2

2

)

𝑥

= 𝑎
1
sinh

𝑢
3
− 𝑢
2

2

.

(60)

From (59) and (60), we get

𝑎
1
(sinh

𝑢
1
− 𝑢
0

2

+ sinh
𝑢
3
− 𝑢
2

2

)

= 𝑎
2
(sinh

𝑢
2
− 𝑢
0

2

+ sinh
𝑢
3
− 𝑢
1

2

) .

(61)

By simple calculation, (61) can be rewritten as

2𝑎
1
sinh

𝑢
1
− 𝑢
0
+ 𝑢
3
− 𝑢
2

4

cosh
𝑢
1
− 𝑢
0
− 𝑢
3
+ 𝑢
2

4

= 2𝑎
2
sinh

𝑢
2
− 𝑢
0
+ 𝑢
3
− 𝑢
1

4

cosh
𝑢
2
− 𝑢
0
− 𝑢
3
+ 𝑢
1

4

,

(62)

or

𝑎
1
(sinh

𝑢
3
− 𝑢
0

4

cosh 𝑢1 − 𝑢2
4

+ sinh 𝑢1 − 𝑢2
4

cosh
𝑢
3
− 𝑢
0

4

)

= 𝑎
2
(sinh

𝑢
3
− 𝑢
0

4

cosh 𝑢2 − 𝑢1
4

+ sinh 𝑢2 − 𝑢1
4

cosh
𝑢
3
− 𝑢
0

4

) .

(63)

After abbreviation, the following nonlinear superposition
formula obtained

tanh
𝑢
3
− 𝑢
0

4

=

𝑎
2
+ 𝑎
1

𝑎
2
− 𝑎
1

tanh 𝑢1 − 𝑢2
4

, (64)

or

𝑢
3
= 𝑢
0
+ 4tanh−1 𝑎2 + 𝑎1

𝑎
2
− 𝑎
1

tanh 𝑢1 − 𝑢2
4

. (65)

If we are given

𝑢
0
= 0, 𝑢

1
= 2 ln tanh(−𝑎1

2

𝑥 −

1

2𝑎
1

𝑡 + 𝐶
1
) ,

𝑢
2
= 2 ln tanh(−𝑎2

2

𝑥 −

1

2𝑎
2

𝑡 + 𝐶
2
) ,

(66)

by means of (65), we can easily get the fourth solution

𝑢
3
= 4tanh−1 𝑎2 + 𝑎1

𝑎
2
− 𝑎
1

× tanh((ln tanh(−𝑎1
2

𝑥 −

1

2𝑎
1

𝑡 + 𝐶
1
)

− ln tanh(−𝑎2
2

𝑥 −

1

2𝑎
2

𝑡 + 𝐶
2
)) × (2)

−1
) ,

(67)

and the computer simulation of the solution is presented in
Figures 3 and 4.

In this way, by algebraic operation, a series of new
solutions of sinh-Gordon equation can be easily obtained.
Similarly, from (52), (58), and (67), we can get the single
breather solution

𝑢
󸀠
= 2 ln tanh(−1

4

((𝑎𝑏 +

1

𝑎𝑏

) 𝑥 − 𝑖 (𝑎𝑏 −

1

𝑎𝑏

) 𝑡) + 𝐶)

(68)
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Figure 3: Waterfall of (67), where 𝐶
1
= 1, 𝐶

2
= 0, 𝛼

1
= 1.3, and
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= 1.7.
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Figure 4: Solution of (67), where𝐶
1
= 1,𝐶

2
= 0, 𝛼

1
= 1.3, 𝛼

2
= 1.7,

and 𝑡 = 5.

and double breather solution

𝑢
3
= 4tanh−1 𝑎2 + 𝑎1

𝑎
2
− 𝑎
1

× tanh(ln tanh(−1
4

((𝑎
1
𝑏 +

1

𝑎
1
𝑏

) 𝑥

− 𝑖 (𝑎
1
𝑏 −

1

𝑎
1
𝑏

) 𝑡) + 𝐶
1
)

− ln tanh( −

1

4

((𝑎
2
𝑏 +

1

𝑎
2
𝑏

) 𝑥

− 𝑖 (𝑎
2
𝑏 −

1

𝑎
2
𝑏

) 𝑡)+𝐶
2
)

× (2)
−1
)

(69)
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Figure 5: Waterfall of (68), where 𝛼 = 1, 𝑏 = 2, and 𝐶 = 0.
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Figure 6:Waterfall of (69), where𝐶
1
= 0,𝐶

2
= 0,𝛼
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= 1.7,

and 𝑏 = 1.

of the elliptic sinh-Gordon equation. The computer simula-
tion of the solutions is presented in Figures 5 and 6.

4. Summary and Discussion

In this paper, we obtain sinh-Gordon equation and elliptic
sinh-Gordon equation bymeans of pseudospherical surfaces.
In addition, we give the Bäcklund transformations and
nonlinear superposition formulas of sinh-Gordon equation
and elliptic sinh-Gordon equation, which lead to new exact
solutions of the sinh-Gordon equation and elliptic sinh-
Gordon equation. On the basis of the Bäcklund transfor-
mations and nonlinear superposition formulas, the single-
soliton (breather) solution and double-soliton (breather)
solution of the sinh-Gordon equation and elliptic sinh-
Gordon equation have been calculated. Finally, computer
simulations of the single-soliton (breather) solution and
double-soliton (breather) solution are presented by using the
mathematical software Matlab. In forthcoming days, we will
further discuss the problem. It is also interesting for us to see
how themetric tensor field will be for other soliton equations.
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