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This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and
missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are
governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the
convexity property of thematrix inequality, a sufficient condition for the existence of the desired state estimator forMarkovian jump
systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by
using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions.
Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method.

1. Introduction

As a class of multimodal systems, Markovian jump systems
(MJSs) have received considerable attention in the past two
decades [1–6]. The system parameters usually jump in a
finite mode set, in which the transitions among different
modes are governed by a Markov chain. Due to the fact that
many dynamical systems subject to random abrupt variations
can be modeled by MJSs, many applications of MJSs can
be showed, such as power systems, failure prone man-
ufacturing systems, communication systems, biochemical
systems with diverse changes of environmental conditions,
and economy system. Quite a number of useful results have
been extensively studied, such as stability and stabilization,
robust control, optimal control, 𝐻

∞
control, synchroniza-

tion, 𝐻
∞

filtering, and sliding mode control [7–19]. For
example, the author in [7] studied the problem of unbiased
estimation of Markov jump systems with distributed delays,
and sufficient conditions are obtained for the unbiased 𝐻

∞

filtering scheme to MJSs by stochastic Lyapunov-Krasovskii
functional framework. The author in [8] considered robust
𝐻
∞

control problems for stochastic fuzzy neutral MJSs with

parameters uncertainties and multiple time delays, and a
sufficient condition and𝐻

∞
control criteria are formulated in

the form of linearmatrix inequalities by selecting appropriate
Lyapunov functions. In term of the peak-to-peak filtering
problem for a class of MJSs with uncertain parameters,
the author in [9] investigated it. Sufficient conditions that
the solution of the peak-to-peak filter existed are given by
using the constructed Lyapunov functional and linear matrix
inequalities. More details on this topic can be found in [20]
and the references therein.

In recent years, due to the fact that, for many practical
state estimation applications, the problem of state estimation
with linear or nonlinear time-delay systems has received
much attention, it is of great significance to estimate systems
states and then utilize the estimated systems states to achieve
certain design objectives. At the same time, in the procedure
of state estimator design, time delays cannot be neglected
and their existence often results in a poor performance. Some
nice results on state estimation for time-delay systems have
been showed in the literature [21–23]. Meanwhile, some state
estimation problem for JMSs has been hot topics so that
many important results have been reported in the literature
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[16, 24, 25]. The author in [16] studied the state estimation
and sliding-mode control problems for continuous-time
Markovian jump singular systems with unmeasured states.
The author in [24] concerned the problem of𝐻

∞
estimation

for a class of Markov jump linear systems (MJLSs) with time-
varying transition probabilities in discrete-time domain. In
[25] efficient simulation-based algorithms called particle
filters were used to solve the optimal state estimates for a class
of jumpMarkov linear systems.The author in [26] considered
state estimation for Markovian jumping delayed continuous-
time recurrent neural networks, where only matrix parame-
tersweremode-dependent.Different from the studies [26, 27]
studied state estimation problem for a class of discrete-time
neural networks with Markovian jumping parameters and
mode-dependent mixed time delay, where the discrete and
distributed delays were mode-dependent.

Recently, Liu et al. [28] studied the 𝐻
∞

filter design for
Markovian jump systems with time-varying delays. However,
these papers do not consider the data missing of sensor in
the process of transmission. Motivated by the idea of above
papers, we will investigate the problem of state estimation for
Markovian jump systems with both time delays and missing
measurements. This work is not a simple extension of [28]
to MJSs. Our main difficulties come from the state estimator
design and missing measurements analysis for the MJSs.
Thus, how to design an appropriate state estimator and how to
establish a sufficient condition for the existence of the desired
state estimator derived are the key problems to be solved.
Based on the above analysis, in this paper, we studied state
estimator design for MJSs with both missing measurements
and time delays via employing a new Lyapunov function and
using the convexity property of the matrix inequality. With
the proposed method, we established a sufficient condition
for the existence of the desired state estimator. Furthermore,
the problem of state estimator design is studied; that is, an
observer is designed for theMJSswithmissingmeasurements
to estimate the states.

In this paper, the problem of state estimator design for
MJSs with interval time-varying delay is narrated. A new
Lyapunov function is established to obtain less conservative
results, in which the lower and upper delay bound of interval
time-varying delay is included. Based on above analysis, the
item ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠)𝑄
2
(𝜃
𝑡
)𝑒(𝑠)𝑑𝑠 can depart into two parts to deal

with, respectively, and the convexity of the matrix functions
is used to avoid the conservative caused by enlarging 𝜏(𝑡) to
𝜏
𝑀
in the deriving results.
The rest of this paper is organized as follows. Section 2

presents the problem statement and preliminaries. An LMI-
based sufficient condition for the existence of the desired
state estimator derived is proposed in Section 3. A numerical
example is provided in Section 4 and we conclude this paper
in Section 5.

R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean space
and the set of 𝑛 × 𝑚 real matrices; the superscript “𝑇”
represents matrix transposition; ‖ ⋅ ‖ represents the Euclidean
vector normor the inducedmatrix 2-normas appropriate; 𝐼 is
the identitymatrix of appropriate dimension.E{𝑥} represents
the expectation of 𝑥 when 𝑥 is a stochastic variable. [ 𝐴 ∗

𝐵 𝐶
]

denote a symmetric matrix, where ∗ denotes the entries
implied by symmetry, for a matrix 𝐵 and two symmetric
matrices 𝐴 and 𝐶. The notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for
𝑋 ∈ R𝑛×𝑛, means that the matrix𝑋 is real symmetric positive
definite (resp., positive semidefinite).

2. Problem Statement and Preliminaries

Fix a probability space (Ω, F, and P) and consider the
following class of uncertain linear stochastic systems with
Markovian jump parameters and time-varying delays:

�̇� (𝑡) = 𝐴 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐴

𝜔
(𝜃
𝑡
) 𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶

𝜔
(𝜃
𝑡
) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐿 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐿

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐿

𝜔
(𝜃
𝑡
) 𝜔 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏
𝑀
, −𝜏
𝑚
] .

(1)

𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑟 is the measu-
rement vector, 𝑧(𝑡) ∈ R𝑝 is the signal to be estimated,
𝜔(𝑡) ∈ 𝐿

2
[0,∞) is the exogenous disturbance signal, and

{𝜃
𝑡
} is a continuous-time Markovian process which has right

continuous trajectories and takes values in a finite set S =

{1, 2, . . . ,N} with stationary transition probabilities:

Prob {𝜃
𝑡+ℎ

= 𝑗 | 𝜃
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
ℎ + 𝑜 (ℎ) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
ℎ + 𝑜 (ℎ) , 𝑖 = 𝑗,

(2)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜋
𝑖𝑗
≥ 0, for 𝑗 ̸= 𝑖 is the

transition rate from mode 𝑖 at time 𝑡 to the mode 𝑗 at time
𝑡 + ℎ and

𝜋
𝑖𝑖
= −

𝑁

∑

𝑗=1, 𝑗 ̸= 𝑖

𝜋
𝑖𝑗
. (3)

In the system (1), the time delay 𝜏(𝑡) is a time-varying contin-
uous function satisfying the following assumption:

0 ≤ 𝜏
𝑚
≤ 𝜏 (𝑡) ≤ 𝜏

𝑀
< ∞, ̇𝜏 (𝑡) ≤ 𝜇, ∀𝑡 > 0, (4)

where 𝜏
𝑀

is the upper bound and 𝜏
𝑚
is the lower bound of

the communication delay, and 𝜇 is the upper bound of change
rate of communication delay.

When considering the datamissing in the sensor channel,
the actual output of sensormeasurements in system (1) can be
described as

𝑦 (𝑡) = Ξ𝑦 (𝑡)

= Ξ [𝐶 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐶

𝜔
(𝜃
𝑡
) 𝜔 (𝑡)] ,

(5)

where Ξ = diag{𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
} = ∑

𝑚

𝑖=1
𝜉
𝑖
𝐾
𝑖
, 𝐾
𝑖

=

diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑖

}, and 𝜉
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are unrelated

stochastic variables taking values in [0, 1]. The mathematical
expectation and variance of 𝜉

𝑖
are ̄𝜉
𝑖
and 𝜎2

𝑖
, respectively.
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Remark 1. It can be seen from (5) that stochastic Ξ is
introduced to reflect the unreliable sensors, which describes
the status of the whole sensor and has been extensively
studied in the literature such as [29–33]. Generally speaking,
different sensor has different failure rate. So it is reasonable to
assume that the failure rate for each individual sensor satisfies
individual probabilistic distribution, and the elements 𝜉

𝑖
(𝑖 =

1, 2, . . . , 𝑚) of the random matrix Ξ correspond to the status
of the 𝑖th sensor. At one moment, if 𝜉

𝑖
= 1, it indicates that

the 𝑖th sensor is well working; if 𝜉
𝑖
= 0, it indicates that 𝑖th

sensor fails completely or data missing in the sensor channel;
if 𝜉
𝑖
∈ (0, 1), itmeans that the 𝑖th sensor fails partly.Therefore,

while Ξ = diag{1, 1, . . . , 1}, it means the status of the whole
sensor is in good working condition. Thus the model which
we will establish in this paper is more general.

In this paper, considering the data missing of sensor in
the process of information communication and based on the
measurement 𝑦(𝑡), we consider the following state estimator
for system (1):

̇̂𝑥 (𝑡) = 𝐴 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐺 (𝜃
𝑡
) (𝑦
1
(𝑡) − 𝑦 (𝑡)) ,

𝑦 (𝑡) = 𝐶 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

�̂� (𝑡) = 𝐿 (𝜃
𝑡
) 𝑥 (𝑡) + 𝐿

𝑑
(𝜃
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

(6)

where 𝑦
1
(𝑡) = Ξ𝑦(𝑡) = Ξ[𝐶(𝜃

𝑡
)𝑥(𝑡) + 𝐶

𝑑
(𝜃
𝑡
)𝑥(𝑡 − 𝜏(𝑡))].

Remark 2. Similar to (5), we also consider the data missing of
sensor in the process of information communication for the
system (6) of state estimation.

The setS contains the various operationmodes of system
(1) and, for each possible value of 𝜃

𝑡
= 𝑖, 𝑖 ∈ S, the matrices

connected with “𝑖th mode” will be denoted by

𝐴
𝑖
:= 𝐴 (𝜃

𝑡
= 𝑖) , 𝐴

𝑑𝑖
:= 𝐴
𝑑
(𝜃
𝑡
= 𝑖) ,

𝐴
𝜔𝑖
:= 𝐴
𝜔
(𝜃
𝑡
= 𝑖) ,

𝐶
𝑖
:= 𝐶 (𝜃

𝑡
= 𝑖) , 𝐶

𝑑𝑖
:= 𝐶
𝑑
(𝜃
𝑡
= 𝑖) ,

𝐶
𝜔𝑖
:= 𝐶
𝜔
(𝜃
𝑡
= 𝑖) ,

𝐿
𝑖
:= 𝐿 (𝜃

𝑡
= 𝑖) , 𝐿

𝑑𝑖
:= 𝐿
𝑑
(𝜃
𝑡
= 𝑖) ,

𝐿
𝜔𝑖
:= 𝐿
𝜔
(𝜃
𝑡
= 𝑖) ,

(7)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐴
𝜔𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, 𝐶
𝜔𝑖
, 𝐿
𝑖
, 𝐿
𝑑𝑖
, and 𝐿

𝜔𝑖
are constant

matrices for any 𝑖 ∈ S. In this paper we assume that the
jumping process {𝜃

𝑡
} is accessible; that is, the operationmode

of system (1) is known for every 𝑡 ≥ 0.

Set the estimation error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) and �̃�(𝑡) =

�̂�(𝑡) − 𝑧(𝑡). Then the following error dynamics of the state
estimation system will be showed as follows:

̇𝑒 (𝑡) = �̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)

+ 𝐺
𝑖
(Ξ − Ξ̄) 𝐶

𝑖
𝑒 (𝑡) + 𝐺

𝑖
(Ξ − Ξ̄) 𝐶

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝐺
𝑖
(Ξ − Ξ̄) 𝐶

𝜔𝑖
𝜔 (𝑡) ,

�̃� (𝑡) = 𝐿
𝑖
𝑒 (𝑡) + 𝐿

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) − 𝐿

𝜔𝑖
𝜔 (𝑡) ,

(8)

where

�̄�
𝑖
= 𝐴
𝑖
+ 𝐺
𝑖
Ξ̄𝐶
𝑖
, �̄�

𝑑𝑖
= 𝐴
𝑑𝑖
+ 𝐺
𝑖
Ξ̄𝐶
𝑑𝑖
,

�̄�
𝜔𝑖
= −𝐴

𝜔𝑖
− 𝐺
𝑖
Ξ̄𝐶
𝜔𝑖
.

(9)

The state estimation problem which is addressed in this
paper is to design a state estimator in form of (8) such that

(i) the estimation error system (8) with 𝜔(𝑡) = 0 is
exponentially stable;

(ii) the 𝐻
∞

performance ‖�̃�(𝑡)‖
2
< 𝛾‖𝜔‖

2
is sure for all

nonzero 𝜔(𝑡) ∈ 𝐿
2
[0,∞) and a prescribed 𝛾 > 0

under the condition 𝑒(𝑡) = 0, for all 𝑡 ∈ [−𝜏
𝑀
, −𝜏
𝑚
].

Before giving the main results, the following lemmas and
definitions are needed in the proof of our main results.

Lemma 3 (see [34]). For any constant matrix 𝑅 ∈ R, 𝑅 =

𝑅
𝑇

> 0, vector function 𝑥 : [−𝜏
𝑀
, 0] → R𝑛, and constant

𝜏
𝑀
> 0 such that the following integration is well defined; then

the following inequality holds:

− 𝜏
𝑀
∫

𝑡

𝑡−𝜏𝑀

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤ [
𝑥 (𝑡)

𝑥 (𝑡 − 𝜏
𝑀
)
]

𝑇

[
−𝑅 𝑅

𝑅 −𝑅
] [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏
𝑀
)
] .

(10)

Lemma 4 (see [35]). Suppose Ξ
1
, Ξ
2
, and Ω are constant

matrices of appropriate dimensions, 0 ≤ 𝜏
𝑚
≤ 𝜏(𝑡) ≤ 𝜏

𝑀
; then

(𝜏 (𝑡) − 𝜏
𝑚
) Ξ
1
+ (𝜏
𝑀
− 𝜏 (𝑡)) Ξ

2
+ Ω < 0 (11)

if and only if the following two inequalities hold:

(𝜏
𝑀
− 𝜏
𝑚
) Ξ
1
+ Ω < 0,

(𝜏
𝑀
− 𝜏
𝑚
) Ξ
2
+ Ω < 0.

(12)

Definition 5. The system (8) is considered to be exponentially
stable in the mean-square sense (EMSS), if there exist
constants 𝜆 > 0, 𝛼 > 0, such that 𝑡 > 0:

𝐸 {‖𝑥 (𝑡)‖
2

} ≤ 𝛼𝑒
−𝜆𝑡 sup
−𝜏𝑀<𝑠<0

{
𝜙 (𝑠)



2

} . (13)
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Definition 6. For a given function𝑉 : 𝐶𝑏
𝐹0
([−𝜏
𝑀
, 0], 𝑅

𝑛

)×𝑆 →

𝑅, its infinitesimal operatorL [36] is defined as

L𝑉 (𝑥
𝑡
) = lim
Δ→0

+

1

Δ
[𝐸 (𝑉 (𝑥

𝑡+Δ
| 𝑥
𝑡
) − 𝑉 (𝑥

𝑡
))] . (14)

3. Main Results

Theorem 7. For some given constants 0 ≤ 𝜏
𝑚
≤ 𝜏
𝑀
and 𝛾, the

system (8) is exponentially mean-square stable (EMSS) with a
prescribed 𝐻

∞
performance 𝛾, if there exist 𝑃

𝑖
> 0, 𝑄

0
> 0,

𝑄
1
> 0,𝑄

2𝑖
> 0, 𝑅

0
> 0, 𝑅

1
> 0,𝑍

1
> 0, 𝑍

2
> 0,𝑀

𝑖𝑘
> 0, and

𝑁
𝑖𝑘
> 0 (𝑖 ∈ S, 𝑘 = 1, 2, . . . , 5) with appropriate dimensions,

so that the following matrix inequalities hold:

Ψ =

[
[
[
[
[
[
[

[

Ψ
11

∗ ∗ ∗ ∗ ∗

Ψ
21

Ψ
22

∗ ∗ ∗ ∗

Ψ
31

Ψ
32

Ψ
33

∗ ∗ ∗

Ψ
41
(𝑠) Ψ

42
(𝑠) 0 −𝑅

1
∗ ∗

Ψ
51

Ψ
52

0 0 Ψ
55

∗

Ψ
61

Ψ
62

0 0 0 Ψ
66

]
]
]
]
]
]
]

]

< 0,

𝑠 = 1, 2,

(15)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
≤ 𝑍
𝑘
, 𝑘 = 1, 2, (16)

where

Ψ
11
= 𝑃
𝑖
�̄�
𝑖
+ �̄�
𝑇

𝑖
𝑃
𝑖
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖
− 𝑅
0
+ 𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
,

Ψ
21
= [𝑃
𝑇

𝑖
�̄�
𝑑𝑖
−𝑀
𝑖1
+ 𝑁
𝑖1
, 𝑅
𝑇

0
+𝑀
𝑖1
, −𝑁
𝑖1
, 𝑃
𝑇

𝑖
�̄�
𝜔𝑖
]
𝑇

,

Ψ
22
=

[
[
[

[

− (1 − 𝜇)𝑄
2𝑖
−𝑀
𝑖2
−𝑀
𝑇

𝑖2
+ 𝑁
𝑖2
+ 𝑁
𝑇

𝑖2
∗ ∗ ∗

−𝑀
𝑖3
+𝑀
𝑇

𝑖2
+ 𝑁
𝑖3

−𝑄
0
− 𝑅
0
+𝑀
𝑖3
+𝑀
𝑇

𝑖3
∗ ∗

−𝑀
𝑖4
+ 𝑁
𝑖4
− 𝑁
𝑇

𝑖2
𝑀
𝑖4
− 𝑁
𝑇

𝑖3
−𝑄
1
− 𝑁
𝑖4
− 𝑁
𝑇

𝑖4
∗

−𝑀
𝑖5
+ 𝑁
𝑖5

𝑀
𝑖5

−𝑁
𝑖5

−𝛾
2

𝐼

]
]
]

]

,

Ψ
31
= [

[

𝜏
𝑚
𝑅
0
�̄�
𝑖

√𝛿𝑅
1
�̄�
𝑖

𝐿
𝑖

]

]

, Ψ
32
= [

[

𝜏
𝑚
𝑅
0
�̄�
𝑑𝑖

0 0 𝜏
𝑚
𝑅
0
�̄�
𝜔𝑖

√𝛿𝑅
1
�̄�
𝑑𝑖

0 0 √𝛿𝑅
1
�̄�
𝜔𝑖

𝐿
𝑑𝑖

0 0 −𝐿
𝜔𝑖

]

]

, Ψ
33
= diag {−𝑅

0
, −𝑅
1
, −𝐼} ,

Ψ
41
(1) = √𝛿𝑀

𝑇

𝑖1
, Ψ

41
(2) = √𝛿𝑁

𝑇

𝑖1
, 𝛿 = 𝜏

𝑀
− 𝜏
𝑚
,

Ψ
42
(1) = [√𝛿𝑀

𝑇

𝑖2

√𝛿𝑀
𝑇

𝑖3

√𝛿𝑀
𝑇

𝑖4

√𝛿𝑀
𝑇

𝑖5
] , Ψ

42
(2) = [√𝛿𝑁

𝑇

𝑖2

√𝛿𝑁
𝑇

𝑖3

√𝛿𝑁
𝑇

𝑖4

√𝛿𝑁
𝑇

𝑖5
] ,

Ψ
51
= [𝜏
𝑚
𝜎
1
𝐶
𝑇

𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

0
, . . . , 𝜏

𝑚
𝜎
𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 0, . . . , 0]

𝑇

,

Ψ
52
= [Θ
5𝑑
, 0, 0, Θ

5𝜔
] , Ψ

55
= diag {−𝑅

0
, −𝑅
0
, . . . , −𝑅

0
} ,

Ψ
61
= [√𝛿𝜎

1
𝐶
𝑇

𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

1
, √𝛿𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

1
, . . . , √𝛿𝜎

𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

1
, 0, . . . , 0]

𝑇

,

Ψ
62
= [Θ
6𝑑
, 0, 0, Θ

6𝜔
] , Ψ

66
= diag {−𝑅

1
, −𝑅
1
, . . . , −𝑅

1
} ,

Θ
5𝑑
= [0, 𝜏

𝑚
𝜎
1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

0
, . . . , 𝜏

𝑚
𝜎
𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

0
, 0, . . . , 0]

𝑇

,

Θ
5𝜔
= [0, . . . , 0, −𝜏

𝑚
𝜎
1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

0
, −𝜏
𝑚
𝜎
2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

0
, . . . , −𝜏

𝑚
𝜎
𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

0
]
𝑇

,

Θ
6𝑑
= [√𝛿𝜎

1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

1
, √𝛿𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

1
, . . . , √𝛿𝜎

𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

1
, 0, . . . , 0]

𝑇

,

Θ
6𝜔
= [0, . . . , 0, −√𝛿𝜎

1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
𝐺
𝑇

𝑖
𝑅
𝑇

1
, −√𝛿𝜎

2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
𝐺
𝑇

𝑖
𝑅
𝑇

1
, . . . , −√𝛿𝜎

𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
𝐺
𝑇

𝑖
𝑅
𝑇

1
]
𝑇

,

(17)

Proof. Introduce a new vector

𝜁
𝑇

(𝑡)=[ 𝑒
𝑇

(𝑡) 𝑒
𝑇

(𝑡−𝜏 (𝑡)) 𝑒
𝑇

(𝑡−𝜏
𝑚
) 𝑒
𝑇

(𝑡−𝜏
𝑀
) 𝜔
𝑇

(𝑡) ]

(18)

and two matrices
Γ
1
= [�̄�
𝑖
�̄�
𝑑𝑖

0 0 �̄�
𝜔𝑖
] ,

Γ
2
= [𝐿
𝑖
𝐿
𝑑𝑖

0 0 −𝐿
𝜔𝑖
] .

(19)
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The system (8) can be rewritten as

̇𝑒 (𝑘) = Γ
1
𝜁 (𝑡) + 𝐺

𝑖
(Ξ − Ξ̄) 𝐶

𝑖
𝑒 (𝑡)

+ 𝐺
𝑖
(Ξ − Ξ̄) 𝐶

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) − 𝐺

𝑖
(Ξ − Ξ̄) 𝐶

𝜔𝑖
𝜔 (𝑡) ,

�̃� (𝑡) = Γ
2
𝜁 (𝑡) .

(20)

Let𝑥
𝑡
(𝑠) = 𝑥(𝑡+𝑠), (−𝜏(𝑡) ≤ 𝑠 ≤ 0).Then, the same as [37],

{(𝑥
𝑡
, 𝜃
𝑡
), 𝑡 ≥ 0} is a Markov process. Choose the following

Lyapunov functional candidate:

𝑉 (𝑥
𝑡
, 𝜃
𝑡
) =

4

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
, 𝜃
𝑡
) , (21)

where

𝑉
1
(𝑥
𝑡
, 𝜃
𝑡
) = 𝑒
𝑇

(𝑡) 𝑃 (𝜃
𝑡
) 𝑒 (𝑡) ,

𝑉
2
(𝑥
𝑡
, 𝜃
𝑡
) = ∫

𝑡

𝑡−𝜏𝑚

𝑒
𝑇

(𝑠) 𝑄
0
𝑒 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏𝑀

𝑒
𝑇

(𝑠) 𝑄
1
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠) 𝑄
2
(𝜃
𝑡
) 𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥
𝑡
, 𝜃
𝑡
) = 𝜏
𝑚
∫

𝑡

𝑡−𝜏𝑚

∫

𝑡

𝑠

̇𝑒
𝑇

(V) 𝑅
0
̇𝑒 (V) 𝑑V 𝑑𝑠

+ ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

∫

𝑡

𝑠

̇𝑒
𝑇

(V) 𝑅
1
̇𝑒 (V) 𝑑V 𝑑𝑠,

𝑉
4
(𝑥
𝑡
, 𝜃
𝑡
) = ∫

𝑡

𝑡−𝜏𝑚

∫

𝑡

𝑠

𝑒
𝑇

(V) 𝑍
1
𝑒 (V) 𝑑V 𝑑𝑠

+ ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

∫

𝑡

𝑠

𝑒
𝑇

(V) 𝑍
2
𝑒 (V) 𝑑V 𝑑𝑠.

(22)

LetL be the weak infinite generator of the random pro-
cess {𝑥

𝑡
, 𝜃
𝑡
}. Then, for each 𝜃

𝑡
= 𝑖, 𝑖 ∈ S, taking expectation

on it, we obtain

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)}

≤ 𝑒
𝑇

(𝑡)(2𝑃
𝑖
�̄�
𝑖

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖
+ 𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
)𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑃
𝑖
�̄�
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + 2𝑒

𝑇

(𝑡) 𝑃
𝑖
�̄�
𝜔𝑖
𝜔 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝜏
𝑚
) 𝑄
0
𝑒 (𝑡 − 𝜏

𝑚
) − ∫

𝑡

𝑡−𝜏𝑚

𝑒
𝑇

(𝑠) 𝑍
1
𝑒 (𝑠) 𝑑𝑠

+ E {𝛿 ̇𝑒
𝑇

(𝑡) 𝑅
1
̇𝑒 (𝑡)} − 𝜏

𝑚
∫

𝑡

𝑡−𝜏𝑚

̇𝑒
𝑇

(𝑠) 𝑅
0
̇𝑒 (𝑠) 𝑑𝑠

− (1 − 𝜇) 𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

+ E {𝜏
2

𝑚
̇𝑒
𝑇

(𝑡) 𝑅
0
̇𝑒 (𝑡)} − ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

̇𝑒
𝑇

(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

− 𝑒
𝑇

(𝑡 − 𝜏
𝑀
) 𝑄
1
𝑒 (𝑡 − 𝜏

𝑀
) − ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑒
𝑇

(𝑠) 𝑍
2
𝑒 (𝑠) 𝑑𝑠.

(23)

Note that

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

= ∫

𝑡−𝜏𝑚

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏𝑚

𝑒
𝑇

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠.

(24)

From (16) and (24), we can derive that

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝜏𝑚

𝑒
𝑇

(𝑠) 𝑍
1
𝑒 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑒
𝑇

(𝑠) 𝑍
2
𝑒 (𝑠) 𝑑𝑠

= ∫

𝑡

𝑡−𝜏𝑚

𝑒
𝑇

(𝑠) [

[

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
− 𝑍
1

]

]

𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏𝑚

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
)𝑒 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑒
𝑇

(𝑠) 𝑍
2
𝑒 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝜏𝑚

𝑒
𝑇

(𝑠) [

[

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
− 𝑍
1

]

]

𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏𝑚

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠) [

[

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
− 𝑍
2

]

]

𝑒 (𝑠) 𝑑𝑠 < 0.

(25)
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It follows from Lemma 3 that

− 𝜏
𝑚
∫

𝑡

𝑡−𝜏𝑚

̇𝑒
𝑇

(𝑠) 𝑅
0
̇𝑒 (𝑠) 𝑑𝑠

≤ [
𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

𝑇

[
−𝑅
0

𝑅
0

𝑅
0

−𝑅
0

] [
𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
] .

(26)

Combining ((23), (25), and (26)) and introducing slack
matrices𝑀

𝑖
, 𝑁
𝑖
, 𝑖 = 1, 2 . . . 5, we obtain

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)} − 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + �̃�
𝑇

(𝑡) �̃� (𝑡)

≤ 𝑒
𝑇

(𝑡)(2𝑃
𝑖
�̄�
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖

+𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
)𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑃
𝑖
�̄�
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + 2𝑒

𝑇

(𝑡) 𝑃
𝑖
�̄�
𝜔𝑖
𝜔 (𝑡)

+ [
𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

𝑇

[
−𝑅
0

𝑅
0

𝑅
0

−𝑅
0

] [
𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

− 𝑒
𝑇

(𝑡 − 𝜏
𝑀
) 𝑄
1
𝑒 (𝑡 − 𝜏

𝑀
)

− (1 − 𝜇) 𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ E {𝜏
2

𝑚
̇𝑒
𝑇

(𝑡) 𝑅
0
̇𝑒 (𝑡)} − ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

̇𝑒
𝑇

(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

+ E {𝛿 ̇𝑒
𝑇

(𝑡) 𝑅
1
̇𝑒 (𝑡)} − 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝜁(𝑡)
𝑇

Γ
𝑇

2
Γ
2
𝜁 (𝑡)

+ 2𝜁
𝑇

(𝑡)𝑀
𝑖
[𝑒 (𝑡 − 𝜏

𝑚
) − 𝑒 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡−𝜏𝑚

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠]

− 𝑒
𝑇

(𝑡 − 𝜏
𝑚
) 𝑄
0
𝑒 (𝑡 − 𝜏

𝑚
)

+ 2𝜁
𝑇

(𝑡)𝑁
𝑖
[𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − 𝜏

𝑀
)

−∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑀

̇𝑒 (𝑠) 𝑑𝑠] ,

(27)

where 𝑀
𝑇

𝑖
= [𝑀

𝑇

𝑖1
𝑀
𝑇

𝑖2
𝑀
𝑇

𝑖3
𝑀
𝑇

𝑖4
𝑀
𝑇

𝑖5
], 𝑁

𝑇

𝑖
=

[𝑁
𝑇

𝑖1
𝑁
𝑇

𝑖2
𝑁
𝑇

𝑖3
𝑁
𝑇

𝑖4
𝑁
𝑇

𝑖5
].

Note that

− 2𝜁
𝑇

(𝑡)𝑀
𝑖
∫

𝑡−𝜏𝑚

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠

≤ ∫

𝑡−𝜏𝑚

𝑡−𝜏(𝑡)

̇𝑒
𝑇

(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

+ (𝜏 (𝑡) − 𝜏
𝑚
) 𝜁
𝑇

(𝑡)𝑀
𝑖
𝑅
−1

1
𝑀
𝑇

𝑖
𝜁 (𝑡) ,

− 2𝜁
𝑇

(𝑡)𝑁
𝑖
∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑀

̇𝑒 (𝑠) 𝑑𝑠

≤ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏𝑀

̇𝑒
𝑇

(𝑠) 𝑅
1
̇𝑒 (𝑠) 𝑑𝑠

+ (𝜏
𝑀
− 𝜏 (𝑡)) 𝜁

𝑇

(𝑡)𝑁
𝑖
𝑅
−1

1
𝑁
𝑇

𝑖
𝜁 (𝑡) ,

E {𝛿 ̇𝑒
𝑇

(𝑡) 𝑅
1
̇𝑒 (𝑡)}

= 𝛿[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
1
[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

+ 𝛿𝑒
𝑇

(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝛿𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐶
𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝛿𝜔
𝑇

(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡) ,

(28)

E {𝜏
2

𝑚
̇𝑒
𝑇

(𝑡) 𝑅
0
̇𝑒 (𝑡)}

= 𝜏
2

𝑚
[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
0
[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

+ 𝜏
2

𝑚
𝑒
𝑇

(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝜏
2

𝑚
𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐶
𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝜏
2

𝑚
𝜔
𝑇

(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡) .

(29)

Combining (27)–(29), we can obtain

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)} − 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + �̃�
𝑇

(𝑡) �̃� (𝑡)

≤ 𝑒
𝑇

(𝑡)(2𝑃
𝑖
�̄�
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝑄
0
+ 𝑄
1
+ 𝑄
2𝑖
+ 𝜏
𝑚
𝑍
1
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+𝛿𝑍
2
)𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑃
𝑖
�̄�
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡) 𝑃
𝑖
�̄�
𝜔𝑖
𝜔 (𝑡)

+ 𝛿𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐶
𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝑒
𝑇

(𝑡 − 𝜏
𝑚
) 𝑄
0
𝑒 (𝑡 − 𝜏

𝑚
) − 𝑒
𝑇

(𝑡 − 𝜏
𝑀
) 𝑄
1
𝑒 (𝑡 − 𝜏

𝑀
)

− (1 − 𝜇) 𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝛿𝑒
𝑇

(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝛿[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
1
[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

− 𝛿𝜔
𝑇

(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
1
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡)

+ 𝜏
2

𝑚
𝑒
𝑇

(𝑡) 𝐶
𝑇

𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑖
𝑒 (𝑡)

+ 𝜏
2

𝑚
𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐶
𝑇

𝑑𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

− 𝜏
2

𝑚
𝜔
𝑇

(𝑡) 𝐶
𝑇

𝜔𝑖

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝐾
𝑇

𝑖
𝐺
𝑇

𝑖
𝑅
0
𝐺
𝑖
𝐾
𝑖
𝐶
𝜔𝑖
𝜔 (𝑡)

+ 𝜏
2

𝑚
[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

𝑇

× 𝑅
0
[�̄�
𝑖
𝑒 (𝑡) + �̄�

𝑑𝑖
𝑒 (𝑡 − 𝜏 (𝑡)) + �̄�

𝜔𝑖
𝜔 (𝑡)]

+ [
𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

𝑇

[
−𝑅
0

𝑅
0

𝑅
0

−𝑅
0

] [
𝑒 (𝑡)

𝑒 (𝑡 − 𝜏
𝑚
)
]

− 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝜁(𝑡)
𝑇

Γ
𝑇

2
Γ
2
𝜁 (𝑡)

+ 2𝜁
𝑇

(𝑡)𝑀
𝑖
[𝑥 (𝑡 − 𝜏

𝑚
) − 𝑥 (𝑡 − 𝜏 (𝑡))]

+ 2𝜁
𝑇

(𝑡)𝑁
𝑖
[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏

𝑀
)]

+ (𝜏 (𝑡) − 𝜏
𝑚
) 𝜁
𝑇

(𝑡)𝑀
𝑖
𝑅
−1

1
𝑀
𝑇

𝑖
𝜁 (𝑡)

+ (𝜏
𝑀
− 𝜏 (𝑡)) 𝜁

𝑇

(𝑡)𝑁
𝑖
𝑅
−1

1
𝑁
𝑇

𝑖
𝜁 (𝑡) .

(30)

By using Lemma 4 and Schur complement, it is easy to see
that (15) and 𝑠 = 1, 2 are sufficient conditions to guarantee

E {L𝑉 (𝑥
𝑡
, 𝜃
𝑡
)} − 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + �̃�
𝑇

(𝑡) �̃� (𝑡) < 0.

(31)

Then, the following inequality can be concluded:

E {L𝑉 (𝑥
𝑡
, 𝑖, 𝑡)} < −𝜆min (Ψ)E {𝜁

𝑇

(𝑡) 𝜁 (𝑡)} . (32)

Define a new function as

𝑊(𝑥
𝑡
, 𝑖, 𝑡) = 𝑒

𝜖𝑡

𝑉 (𝑥
𝑡
, 𝑖, 𝑡) . (33)

Its infinitesimal operatorL is given by

W (𝑥
𝑡
, 𝑖, 𝑡) = 𝜖𝑒

𝜖𝑡

𝑉 (𝑥
𝑡
, 𝑖, 𝑡) + 𝑒

𝜖𝑡

L𝑉 (𝑥
𝑡
, 𝑖, 𝑡) . (34)

By the generalized Itô formula [36], we can obtain from
(34) that

E {𝑊 (𝑥
𝑡
, 𝑖, 𝑡)} − E {𝑊 (𝑥

0
, 𝑖)}

= ∫

𝑡

0

𝜖𝑒
𝜖𝑠

E {𝑉 (𝑥
𝑠
, 𝑖)} 𝑑𝑠 + ∫

𝑡

0

𝑒
𝜖𝑠

E {L𝑉 (𝑥
𝑠
, 𝑖)} 𝑑𝑠.

(35)

Then, similar to the method of [1], we can see that there
exists a positive number 𝛼 such that for 𝑡 > 0

E {𝑉 (𝑥
𝑡
, 𝑖, 𝑡)} ≤ 𝛼 sup

−𝜏𝑀≤𝑠≤0

{
𝜙 (𝑠)



2

} 𝑒
−𝜖𝑡

. (36)

Since 𝑉(𝑥
𝑡
, 𝑖, 𝑡) ≥ {𝜆min(𝑃𝑖)}𝑥

𝑇

(𝑡)𝑥(𝑡), it can be shown
from (36) that for 𝑡 ≥ 0

E {𝑥
𝑇

(𝑡) 𝑥 (𝑡)} ≤ �̄�
−𝜖𝑡 sup
−𝜏𝑀≤𝑠≤0

{
𝜙 (𝑠)



2

} , (37)

where �̄� = 𝛼/(𝜆min𝑃𝑖). Recalling Definition 5, the proof can
be completed.

Remark 8. In the above proof, a new Lyapunov function is
constructed, and the term ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠)(∑
𝑁

𝑗=1
𝜋
𝑖𝑗
𝑄
2𝑗
)𝑥(𝑠)𝑑𝑠 in

(25) is separated into two parts. It is easy to see that this
method is less conservative than the ones in the literature
[5, 38].

Remark 9. A delay-dependent stochastic stability condition
for MJSs with interval time-varying delays is provided in
Theorem 7. In the proof ofTheorem 7, the convexity property
of the matrix inequality is treated in terms of Lemma 4,
which need not enlarge 𝜏(𝑡) to 𝜏

𝑀
, so the common existed

conservatism caused by this kind of enlargement in [39–
42] can be avoided, and thus the conservative result will be
decreased.

Theorem 7 established some analysis results. In the fol-
lowing, the problem of state estimator design is to be
considered and the following results can be readily obtained
fromTheorem 7.

Theorem 10. For some given constants 𝛾 and 0 ≤ 𝜏
𝑚
≤ 𝜏
𝑀
, the

augmented system (8) is stochastically stable with a prescribed
𝐻
∞

performance 𝛾 if there exist 𝑃
𝑖
> 0, 𝑄

0
> 0, 𝑄

1
> 0,

𝑄
2𝑖
> 0, 𝑅

0
> 0, 𝑅

1
> 0, 𝑍

1
> 0, 𝑍

2
> 0, �̄�

𝑖
, 𝑀
𝑖𝑘
, and
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𝑁
𝑖𝑘
(𝑖 ∈ S, 𝑘 = 1, 2 . . . , 5)with appropriate dimensions so that

the following LMIs hold for a given 𝜀 > 0:

Ψ̂ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ̂
11

∗ ∗ ∗ ∗ ∗

Ψ̂
21

Ψ
22

∗ ∗ ∗ ∗

Ψ̂
31

Ψ̂
32

Ψ̂
33

∗ ∗ ∗

Ψ
41
(𝑠) Ψ

42
(𝑠) 0 −𝑅

1
∗ ∗

Ψ̂
51

Ψ̂
52

0 0 Ψ̂
55

∗

Ψ̂
61

Ψ̂
62

0 0 0 Ψ̂
66

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑠 = 1, 2,

(38)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
2𝑗
≤ 𝑍
𝑘
, 𝑘 = 1, 2, (39)

where

Ψ̂
11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+ �̄�
𝑖
𝐶
𝑖
+ 𝐶
𝑇

𝑖
�̄�
𝑇

𝑖
+ 𝑄
0
+ 𝑄
1

+ 𝑄
2𝑖
− 𝑅
0
+ 𝜏
𝑚
𝑍
1
+ 𝛿𝑍
2
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
,

Ψ̂
21
= [𝑃
𝑇

𝑖
𝐴
𝑑𝑖
+ �̄�
𝑖
𝐶
𝑑𝑖
−𝑀
𝑖1
+ 𝑁
𝑖1
, 𝑅
𝑇

0
+𝑀
𝑖1
,

−𝑁
𝑖1
, −𝑃
𝑇

𝑖
𝐴
𝜔𝑖
− �̄�
𝑖
𝐶
𝜔𝑖
]
𝑇

,

Ψ̂
31
=

[
[
[

[

𝜏
𝑚
𝑃
𝑖
𝐴
𝑖
+ 𝜏
𝑚
�̄�
𝑖
𝐶
𝜔𝑖

√𝛿𝑃
𝑖
𝐴
𝑖
+ √𝛿�̄�

𝑖
𝐶
𝜔𝑖

𝐿
𝑖

]
]
]

]

,

Ψ̂
32
=

[
[
[
[

[

𝜏
𝑚
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜏
𝑚
�̄�
𝑖
𝐶
𝑑𝑖

0 0 −𝜏
𝑚
𝑃
𝑖
𝐴
𝜔𝑖
− 𝜏
𝑚
�̄�
𝑖
𝐶
𝜔𝑖

√𝛿𝑃
𝑖
𝐴
𝑑𝑖
+ √𝛿�̄�

𝑖
𝐶
𝑑𝑖

0 0 −√𝛿𝑃
𝑖
𝐴
𝜔𝑖
− √𝛿�̄�

𝑖
𝐶
𝜔𝑖

𝐿
𝑑𝑖

0 0 −𝐿
𝜔𝑖

]
]
]
]

]

,

Ψ̂
33
= diag {−2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
0
, −2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
1
, −𝐼} ,

Ψ̂
51
= [𝜏
𝑚
𝜎
1
𝐶
𝑇

𝑖
𝐾
𝑇

1
�̄�
𝑇

𝑖
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
�̄�
𝑇

𝑖
, . . . ,

𝜏
𝑚
𝜎
𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
�̄�
𝑇

𝑖
, 0, . . . , 0]

𝑇

,

Ψ̂
52
= [Θ̂
5𝑑
, 0, 0, Θ̂

5𝜔
] ,

Ψ̂
55
= diag {−2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
0
, −2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
0
, . . . ,

−2𝜀𝑃
𝑖
+ 𝜀
2

𝑅
0
} ,

Ψ̂
61
= [√𝛿𝜎

1
𝐶
𝑇

𝑖
𝐾
𝑇

1
�̄�
𝑇

𝑖
, √𝛿𝜎
2
𝐶
𝑇

𝑖
𝐾
𝑇

2
�̄�
𝑇

𝑖
, . . . ,

√𝛿𝜎
𝑚
𝐶
𝑇

𝑖
𝐾
𝑇

𝑚
�̄�
𝑇

𝑖
, 0, . . . , 0 ]

𝑇

,

Ψ̂
62
= [Θ̂
6𝑑
, 0, 0, Θ̂

6𝜔
] ,

Ψ̂
66
= diag {−2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
1
, −2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
1
, . . . , −2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
1
} ,

Θ̂
5𝑑
= [0, 𝜏

𝑚
𝜎
1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
�̄�
𝑇

𝑖
, 𝜏
𝑚
𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
�̄�
𝑇

𝑖
, . . . ,

𝜏
𝑚
𝜎
𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
�̄�
𝑇

𝑖
, 0, . . . , 0]

𝑇

,

Θ̂
5𝜔
= [0, . . . , 0, −𝜏

𝑚
𝜎
1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
�̄�
𝑇

𝑖
, −𝜏
𝑚
𝜎
2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
�̄�
𝑇

𝑖
, . . . ,

−𝜏
𝑚
𝜎
𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
�̄�
𝑇

𝑖
]
𝑇

,

Θ̂
6𝑑
= [0,√𝛿𝜎

1
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

1
�̄�
𝑇

𝑖
, √𝛿𝜎
2
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

2
�̄�
𝑇

𝑖
, . . . ,

√𝛿𝜎
𝑚
𝐶
𝑇

𝑑𝑖
𝐾
𝑇

𝑚
�̄�
𝑇

𝑖
, 0, . . . , 0 ]

𝑇

,

Θ̂
6𝜔
= [0, . . . , 0, −√𝛿𝜎

1
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

1
�̄�
𝑇

𝑖
, −√𝛿𝜎

2
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

2
�̄�
𝑇

𝑖
, . . . ,

−√𝛿𝜎
𝑚
𝐶
𝑇

𝜔𝑖
𝐾
𝑇

𝑚
�̄�
𝑇

𝑖
]
𝑇

,

(40)

and Ψ
22
, Ψ
41
(𝑠), Ψ

42
(𝑠), and 𝛿 are as defined in Theorem 7.

Moreover, the state estimator gain in the form of (6) is as
follows:

𝐺
𝑖
= 𝑃
−1

𝑖
�̄�
𝑖
. (41)

Proof. Defining �̄�
𝑖
= 𝑃
𝑖
𝐺
𝑖
, from (15) and using Schur com-

plement, the matrix inequality (15) holds if and only if

Ψ̆ =

[
[
[
[
[
[
[
[

[

Ψ̂
11

∗ ∗ ∗ ∗ ∗

Ψ̂
21

Ψ
22

∗ ∗ ∗ ∗

Ψ̂
31

Ψ̂
32

Ψ̆
33

∗ ∗ ∗

Ψ
41
(𝑠) Ψ

42
(𝑠) 0 −𝑅

1
∗ ∗

Ψ̂
51

Ψ̂
52

0 0 Ψ̂
55

∗

Ψ̂
61

Ψ̂
62

0 0 0 Ψ̂
66

]
]
]
]
]
]
]
]

]

< 0,

𝑠 = 1, 2,

(42)

where

Ψ̆
33
= diag {−𝑃

𝑖
𝑅
−1

0
𝑃
𝑖
, −𝑃
𝑖
𝑅
−1

1
𝑃
𝑖
, −𝐼} . (43)

Due to

(𝑅
𝑘
− 𝜀
−1

𝑃
𝑖
) 𝑅
−1

𝑘
(𝑅
𝑘
− 𝜀
−1

𝑃
𝑖
) ≥ 0, 𝑖 ∈ 𝑆, 𝑘 = 0, 1,

(44)

we can have

−𝑃
𝑖
𝑅
−1

𝑘
𝑃
𝑖
≤ −2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
𝑘
, 𝑖 ∈ 𝑆, 𝑘 = 0, 1. (45)
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Substituting −𝑃
𝑖
𝑅
−1

𝑘
𝑃
𝑖
with −2𝜀𝑃

𝑖
+ 𝜀
2

𝑅
𝑘
(𝑘 = 0, 1) in (42),

we obtain (38), so if (38) holds, we have (15) holds, and from
above proof, we know that the desired state estimator gain
matrix is 𝐺

𝑖
= 𝑃
−1

𝑖
�̄�
𝑖
. This completes the proof.

Remark 11. Inequality (45) is used to bound the term
−𝑃
𝑖
𝑅
−1

𝑘
𝑃
𝑖
. This step can be improved by adopting the cone

complementary algorithm [43], which is popular in recent
control designs. The scaling parameter 𝜀 > 0 here can be
used to improve conservatism in Theorem 10. In addition,
Theorem 10 shows that for given 𝜀 we can obtain the state
estimator gain by solving a set of LMIs in (38) and (39).

4. Numerical Example

In this section, well-studied example is considered to illus-
trate the effectiveness of above approaches proposed and also
to explain the proposed method on state estimator design.

Consider linear Markovian jump systems in the form of
(1) with two modes. For modes 1 and 2, the dynamics of
system with following parameters [28] are described as

𝐴
1
= [

[

−3 1 0

0.3 −2.5 1

−0.1 0.3 −3.8

]

]

, 𝐴
𝑑1
= [

[

−0.2 0.1 0.6

0.5 −1 −0.8

0 1 −2.5

]

]

,

𝐴
𝜔1
= [

[

1

0

1

]

]

,

𝐶
1
= [0.8 0.3 0] , 𝐶

𝑑1
= [0.2 −0.3 −0.6] ,

𝐶
𝜔1
= 0.2,

𝐿
1
= [0.5 −0.1 1] , 𝐿

𝑑1
= [0 0 0] , 𝐿

𝜔1
= 0,

𝐴
2
= [

[

−2.5 0.5 −0.1

0.1 −3.5 0.3

−0.1 1 −2

]

]

, 𝐴
𝑑2
= [

[

0 −0.3 0.6

0.1 0.5 0

−0.6 1 −0.8

]

]

,

𝐴
𝜔2
= [

[

−0.6

0.5

0

]

]

,

𝐶
2
= [0.5 0.2 0.3] , 𝐶

𝑑2
= [0 −0.6 0.2] ,

𝐶
𝜔2
= 0.5,

𝐿
2
= [0 1 0.6] , 𝐿

𝑑2
= [0 0 0] .

𝐿
𝜔2
= 0,

(46)

Suppose the initial conditions are given by 𝑥(0) =

[0.8 0.2 −0.9]
𝑇, 𝑥(0) = [0 0.2 0]

𝑇, and the transition pro-
bability matrix

𝜋 = [
0.5 0.5

0.3 0.7
] . (47)

By Theorem 10, we get the maximum time delay 𝜏
𝑀

=

5.9250 for 𝜏
𝑚
= 1, 𝜇 = 0.5, 𝜀 = 10, and 𝛾 = 1.2. Meanwhile,

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

M
od

e

Time t (s)

Figure 1: Operation modes.

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time t (s)

𝜏
(t
)

Figure 2: Interval time-varying delay.

we can get the fact that the maximum time delay will become
larger with decreasing rates of 𝜏(𝑡) when other variables are
fixed. For example, the maximum time delay is 𝜏

𝑀
= 6.4072

for 𝜇 = 0.1 if other parameters did not change.
The corresponding state estimator gain matrices for 𝜇 =

0.5 are given by

𝐺
1
= [

[

0.7370

−1.3432

−3.4025

]

]

, 𝐺
2
= [

[

0.7847

0.2051

−1.1228

]

]

. (48)

To illustrate the performance of the designed state esti-
mator, choose the disturbance function as follows:

𝜔 (𝑡) =

{{

{{

{

−0.425, 5 < 𝑡 < 8

0.375, 13 < 𝑡 < 18

0, otherwise.
(49)

With this state estimator, the simulation results are shown in
Figures 1, 2, and 3 which show the operation modes of the
MJSs, interval time-varying delay, and estimated signal error
𝜂(𝑡) = 𝑧(𝑡) − �̃�(𝑡), respectively. From Figures 1, 2, and 3, it can
be showed that the designed state estimator performs well.
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−0.2
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−0.8

−1

𝜂
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Figure 3: Estimated signals error 𝜂(𝑡) = 𝑧(𝑡) − �̃�(𝑡).

5. Conclusions

In this paper, we established the design method of state
estimation problem for a class of time-delay systems with
Markov jump parameters and missing measurements. By
employing a new Lyapunov function method and using the
convexity property of the matrix inequality, an LMI-based
sufficient condition for the existence of the desired state
estimator derived is proposed, which can lead to much less
conservative analysis results. Finally, a numerical example has
been carried out to show the effectiveness of our obtained
results of the proposed method.
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