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This review provides an overview of the queueing modeling issues and the related performance evaluation and optimization
approaches framed in a joined manufacturing and product engineering. Such networks are represented as queueing networks.
The performance of the queueing networks is evaluated using an advanced queueing network analyzer: the generalized expansion
method. Secondly, different model approaches are described and optimized with regard to the key parameters in the network (e.g.,
buffer and server sizes, service rates, and so on).

1. Introduction

Queueing theory is the mathematical study of waiting lines
and it enables the mathematical analysis of several related
processes, including arrivals at the queue, waiting in the
queue, and being served by the server.The theory enables the
derivation and calculation of several performance measures
which can be used to evaluate the performance of the queue-
ing system under study. More specifically, the focus in this
paper is on finite buffer queueing networks which are char-
acterized by the blocking effect, which eventually degrades
the performance, commonly measured via, for example, the
throughput of the network.

Queueing modeling and optimization of large scale man-
ufacturing systems and complex production lines have been
and continue to be the focus of numerous studies for decades
(e.g., see Smith [1–3]). Queueing networks are commonly
used to model such complex systems (see Suri [4]). The
main reason to use queueing modeling is because of their
ability to accurately model the resource allocation problems
we are interested in (i.e., the buffer, server, and buffer-
server combination problems), under approximate Poisson
arrivals and general service rates. Of course, there are other
methodologies tailored for different settings as, for instance,
simulation methods (see Law and Kelton [5]) and advanced
methods that explore the spectral characteristics of the

associated matrices in Markovian models (e.g., see the works
of Yeralan and Tan [6] and Fadiloglu and Yeralan [7], among
others).

This review aims at providing an overview of modeling,
performance evaluation, and optimization approaches from
a queueing theory point of view. Additionally, the algorithms
selectedwere implemented and tested in some basic queueing
network topologies, namely, series, merges, and splits. The
numerical results provide new insight into this important
class of manufacturing network design problems.

Thepaper is structured as follows. In Section 2, we present
the performance evaluation method considered for the
queueing networks analyzed. Also in Section 2, we elaborate
on the different optimization models that exist and discuss
some of the optimization tools that are used to optimize
these models. Section 3 gives computational results for some
selected optimization models for a complex network. Finally,
Section 4 concludes the paper and gives some pointers for
future research in the area.

2. Material and Methods

2.1. Finite Queueing Networks. Queueing networks are
defined as either open, closed, or mixed. In open queueing
networks, customers enter the system from outside, receive
some service at one ormore nodes, and then leave the system.
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In closed queueing networks, customers never leave or enter
the system but a fixed number of customers circulate within
the network (see Whitt [9] and Smith [10]). Mixed queueing
networks are systems that are open with respect to some
customers and are closedwith respect to other customers (see
Balsamo et al. [11]). Research in the area of queueing networks
is very active as we shall see and resulted in a vast amount
of journal papers, books, and reports. For a more general
discussion on queueing networks, the reader is referred to
Walrand [12] among others. In this paper, we will focus on
finite queueing networks.

The assumption is that the capacity of the buffer space
between two consecutive connected service stations is finite.
As a consequence, each node in the networkmight be affected
by events at other nodes, leading to the phenomena of
blocking or starvation. In the literature, two general blocking
mechanisms are presented: blocking after service (BAS) and
blocking before service (BBS). BAS occurs when after service
a customer sees that the buffer in front of her/him is full and
as a consequence s/he cannot continue her/his way in the
network. BBS implied that a server can start processing a next
customer only if there is a space available in the downstream
buffer. If not, the customer has to wait until a space becomes
available. Most production lines operate under BAS system.
Moreover, in the literature it is the most commonly made
assumption regarding the buffer behavior (see Dallery and
Gershwin [13]).

2.2. Network Performance Evaluation. Performance evalua-
tion tools for queues include product formmethods, numerical
methods, approximatemethods, and simulation. Let us discuss
each of them a bit more in detail. More in-depth information
can be found in the references mentioned as follows.

Initially, the product formmethods decompose the system
into single pairs or triplets of nodes instead of analyzing
the entire system at once. Details may be found in Perros
[14]. Each decomposed node can then be treated as an inde-
pendent service provider, for which all results and insights
of the single node queueing models can be used (see, e.g.,
Gross et al. [15]). Jackson [16, 17] firstly showed that the joint
distribution of the entire network is made up of the product
of the marginal distributions at each of the nodes under
some strict conditions (e.g., exponential arrivals and services,
under no blocking). A decomposition technique yields exact
results for queueing networks with product form solutions.
For networks without a product form solution, the technique
gives a good approximation (see Balsamo et al. [11]).

The numerical methods are also useful, as in theory these
methods can be used to solve every Markovian model. The
problem, however, with numerical solutions is that the state
space of queueing networks grows exponentially with the
number of nodes, the number of customers, and the number
of buffers. As a consequence, numerical methods consume
extensive computer time to get to the solution. Numerical
methods are applied to smaller networks though (e.g., see
Balsamo et al. [11]).

Among the approximate methods, the decomposition
methods are very popular. These methods are approximate
because the subnetworks are only a part of the whole line

and, as such, do not have exactly the same behavior (see
Dallery and Gershwin [13]). However, if obtaining an exact
solution is too expensive in terms of computational effort,
approximate methods are justified. The main challenge with
approximate methods is to be as close as possible to the exact
values.The accuracy of an approximate method can be tested
with numerical solutions (for smaller networks) or by using
simulation.Themain idea of the decompositionmethods is to
try to generalize the ideas of independence and product form
solutions from the Jackson networks tomore general systems.
Reiser and Kobayashi [18] and Kuehn [19] were the first to
develop this approach. After them, several researchers came
up with a similar approach (e.g., Buzacott and Shanthikumar
[20] and Alves et al. [21]).

Finally, simulation is another way to obtain all relevant
performance measures for a queueing network (see Law and
Kelton [5]). Successful results on simulation based methods
were reported by Cruz et al. [22, 23], Pereira et al. [24], Dorda
and Teichmann [25], and Cardoso et al. [26], among many
others.

2.3. The Generalized Expansion Method. In this paper, the
Generalized Expansion Method (GEM) is used as the prime
performance evaluation tool. Consequently, this paper pro-
vides a selected review based on the GEM and does not
explicitly consider other methodologies to obtain the per-
formance measures. Note that the models described fit any
performance evaluation tool.

In general, we evaluate the performance of the network
via its throughput 𝜃.This throughput (and all othermeasures,
e.g., blocking probability, sojourn time,work-in-process, etc.)
can be obtained via a queueing network representation. This
queueing network representation then needs to be “solved”
to obtain the performance of the given network. Notice that
we will focus here on𝑀/𝐺/𝑐/𝐾 queueing models, which in
Kendall notation means a queueing system with Markovian
arrival rates, generally distributed service times, 𝑐 servers in
parallel in the queue, and a total capacity of 𝐾 users in the
queue (including those under service).

As it will be detailed soon, the GEM transforms the
queueing network into an equivalent Jackson network, which
can be decomposed so that each node can be solved inde-
pendently of each other (similar to a product form solution
approach).TheGEM is an effective and robust approximation
technique to measure the performance of open finite queue-
ing networks. The effectiveness of GEM as a performance
evaluation tool has been presented inmany papers, including
Kerbache and Smith [27–29], Jain and Smith [30], Smith [31],
and Andriansyah et al. [32].

The GEM uses BAS, which is prevalent in most systems
including production and manufacturing (see Dallery and
Gershwin [13]), transportation (see van Woensel and Van-
daele [33, 34]), and other similar systems. Developed by
Kerbache and Smith [27], the GEM has become an appeal-
ing approximation technique for performance evaluation of
queueing networks due to its accuracy and relative simplicity.
Moreover, exact solutions to performance measurement are
restricted only to very simple networks and simulation
requires a considerable amount of computational effort.
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The GEM is basically a combination of two approxima-
tion methods, namely, the repeated trials and the node-by-
node decomposition. In order to evaluate the performance
of a queueing network, the method first divides the network
into single nodes with revised service and arrival parameters.
Blocked customers are registered into an artificial “holding
node” and are repeatedly sent to this node until they are
serviced. The addition of the holding node expands the net-
work and transforms the network into an equivalent Jackson
network in which each node can be solved independently.

In the remaining part of this section, we will present
a high-level overview of the method. For more detailed
information and applications of the GEM, the reader is
referred to, for example, Kerbache and Smith [28]. The GEM
described below assumes that one wants to solve𝑀/𝐺/𝑐/𝐾
queueing networks. Note that the methodology is generic
such that𝑀/𝑀/1/𝐾,𝑀/𝑀/𝑐/𝐾,𝑀/𝐺/1/𝐾,𝐺𝐼/𝐺/1/𝐾, and
𝐺𝐼/𝐺/𝑐/𝐾 queueing networks could also be analyzed. Only
the relevant equations (e.g., the blocking probabilities) need
to be adapted for these other cases.

There are three main steps in the GEM, namely, network
reconfiguration, parameter estimation, and feedback elimina-
tion. The notation for the GEM, presented in Basic Network
Notation section will be used throughout the paper.The steps
are described as follows.

Stage I: Network Reconfiguration. For each finite node in the
queueing network, an artificial node is created to register the
blocked jobs. By introducing such artificial nodes, we also
create new routing probabilities in the network. The result of
network reconfiguration can be seen from Figure 1.

There are twopossible states of the finite node, namely, the
saturated and the unsaturated states. Arriving jobs will try to
access the finite node 𝑗. With a probability of (1 − 𝑝

𝐾𝑗
), the

job will find the the finite node unsaturated, when it will enter
the queue and eventually be serviced. However, if the finite
node 𝑗 is saturated (with a probability of 𝑝

𝐾𝑗
), then the job

will be directed to the artificial holding node ℎ
𝑗
, where it will

be delayed.The delay at the artificial node is modeled using a
𝑀/𝐺/∞ queue, representing a delay time without queueing.
Afterward, the blocked job will try to reenter the finite queue
with a success probability of (1 − 𝑝󸀠

𝐾𝑗
). There is a probability

of 𝑝󸀠
𝐾𝑗

that the blocked job still finds the finite node saturated
and thus it will be directed again to the artificial holding node
ℎ
𝑗
. This process repeats until the blocked job is able to enter

the finite node.

Stage II: Parameter Estimation. At this stage, the values for
parameters 𝑝

𝐾
, 𝑝󸀠
𝐾
, and 𝜇

ℎ
are determined. Notice that the

node index 𝑗 is omitted for the sake of simplicity.
𝑝
𝐾
: In order to determine 𝑝

𝐾
, exact analytical formulas

should be used whenever possible (see Kerbache and Smith
[29]). For cases where exact 𝑝

𝐾
formula is unavailable,

approximations for 𝑝
𝐾

in 𝑀/𝐺/𝑐/𝐾 setting provided by
Smith [31] can be used. These approximations are based on
a closed-form expression derivable from the finite capac-
ity exponential queue (𝑀/𝑀/𝑐/𝐾) using Kimura’s [35]

i
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Figure 1: The generalized expansion method.

two-moment approximation. The following 𝑝
𝐾
formula for

𝑀/𝐺/2/𝐾 is presented as an example (see Smith [31]):

𝑝
𝐾
=

2𝜌
2((√𝜌/𝑒𝑠

2
−√𝜌/𝑒+𝐾)/(2+√𝜌/𝑒𝑠

2
−√𝜌/𝑒))

(2𝜇 − 𝜆)

−2𝜌2((√𝜌/𝑒𝑠
2
−√𝜌/𝑒+𝐾)/(2+√𝜌/𝑒𝑠

2
−√𝜌/𝑒))𝜆 + 2𝜇 + 𝜆

. (1)

The 𝑝
𝐾
for the 𝑀/𝐺/𝑐/𝐾, for 𝑐 = 3, 4, . . ., will not be

shown for brevity but are available in Smith [31].
𝑝
󸀠

𝐾
, since no exact method is available to calculate 𝑝󸀠

𝐾
,

an approximation from Labetoulle and Pujolle [36], based on
diffusion techniques, is used:

𝑝
󸀠

𝐾
= [

𝜇
𝑗
+ 𝜇
ℎ

𝜇
ℎ

−
𝜆 [(𝑟
𝐾

2
− 𝑟
𝐾

1
) − (𝑟

𝐾−1

2
− 𝑟
𝐾−1

1
)]

𝜇
ℎ
[(𝑟
𝐾+1

2
− 𝑟
𝐾+1

1
) − (𝑟𝐾
2
− 𝑟𝐾
1
)]
]

−1

, (2)

in which 𝑟
1
and 𝑟
2
are the roots of the polynomial.

Consider

𝜆 − (𝜆 + 𝜇
ℎ
+ 𝜇
𝑗
) 𝑥 + 𝜇

ℎ
𝑥
2
= 0, (3)

in which 𝜆 = 𝜆
𝑗
− 𝜆
ℎ
(1 − 𝑝

󸀠

𝐾
), and 𝜆

𝑗
and 𝜆

ℎ
are the actual

arrival rates to the finite and artificial holding notes, respec-
tively. Furthermore, it can be argued that

𝜆
𝑗
= 𝜆̃
𝑖
(1 − 𝑝

𝐾
) = 𝜆̃
𝑖
− 𝜆
ℎ
. (4)

𝜇
ℎ
, the delay distribution at the holding node ℎ, is actually

nothing but the remaining service time of the finite node
𝑗. Based on the renewal theory, one can formulate the
remaining service time distribution as the following rate 𝜇

ℎ
:

𝜇
ℎ
=

2𝜇
𝑗

1 + 𝜎2
𝑗
𝜇2
𝑗

, (5)

in which 𝜎2
𝑗
is the service time variance of the finite node 𝑗.

At this point, one should notice that if the service time of the
finite node is exponentially distributed with rate 𝜇

𝑗
, then the

memoryless property of exponential distribution will hold,
such that

𝜇
ℎ
= 𝜇
𝑗
. (6)

Stage III: Feedback Elimination. As a result of the feedback
loop at the holding node, a strong dependency on the arrival



4 Journal of Applied Mathematics

process is created. In order to eliminate such dependency, the
service rate at the holding node must be adjusted as follows:

𝜇
󸀠

ℎ
= (1 − 𝑝

󸀠

𝐾
) 𝜇
ℎ
. (7)

As a consequence, the service rate at node 𝑖 preceding
the finite node 𝑗 is affected as well. One can see that the
mean service time at node 𝑖 is 𝜇−1

𝑖
when the finite node is

unsaturated, and 𝜇−1
𝑖
+𝜇
󸀠

ℎ

−1 when the finite node is saturated.
Thus, on average, the mean service time of node 𝑖 preceding
the finite node 𝑗 is

𝜇
−1

𝑖
= 𝜇
−1

𝑖
+ 𝑝
𝐾
𝜇
󸀠

ℎ

−1

. (8)

The above equations apply to all finite nodes in the
queueing network.

Summary. To sum up, all performance measures of the
network can be obtained by solving the following equations
simultaneously:

𝜆 = 𝜆
𝑗
− 𝜆
ℎ
(1 − 𝑝

󸀠

𝐾
) ,

𝜆
𝑗
= 𝜆̃
𝑖
(1 − 𝑝

𝐾
) ,

𝜆
𝑗
= 𝜆̃
𝑖
− 𝜆
ℎ
,

𝜆
𝑗
= 𝜆̃
𝑖
− 𝜆
ℎ
,

𝑝
󸀠

𝐾
= [

𝜇
𝑗
+ 𝜇
ℎ

𝜇
ℎ

−
𝜆 [(𝑟
𝐾

2
− 𝑟
𝐾

1
) − (𝑟

𝐾−1

2
− 𝑟
𝐾−1

1
)]

𝜇
ℎ
[(𝑟
𝐾+1

2
− 𝑟
𝐾+1

1
) − (𝑟𝐾
2
− 𝑟𝐾
1
)]
]

−1

,

𝑧 = (𝜆 + 2𝜇
ℎ
)
2
− 4𝜆𝜇

ℎ
,

𝑟
1
=
[(𝜆 + 2𝜇

ℎ
) − 𝑧
1/2
]

2𝜇
ℎ

,

𝑟
2
=
[(𝜆 + 2𝜇

ℎ
) + 𝑧
1/2
]

2𝜇
ℎ

,

(9)

𝑝
𝐾
≡ Equation (1) . (10)

Note that (1), for 𝑝
𝐾
, only applies to an𝑀/𝐺/2/𝐾 setting.

Other expressions for 𝑝
𝐾
for𝑀/𝐺/𝑐/𝐾 queues, with 𝑐 = 3 to

𝑐 = 10, have been developed by Smith [31] and can be used in
the set of (9) and (1).

2.4. Optimization Models. In this section, we review some
of the optimization models found in the literature. Given a
directed graph 𝐺(𝑉,𝐴) to represent the queueing network,
characterized by Poisson arrivals, inwhich𝑉 is the set of node
(queues), with nonnegative buffers, multiple servers, and a
general service time distribution, and in which 𝐴 is the set of
directed arcs (pairs of queues) interconnecting the nodes, we
can optimize (i) on the number of buffers, (ii) on the number
of servers used in each vertex 𝑉

𝑖
, (iii) on the characteristics

of the service distribution (e.g., the service rates and/or the
service variability), (iv) on the routing probabilities related

to the arcs 𝐴, or (v) on any combination of these possible
decision variables.

In general, we can write the generic optimization model
as follows:

𝑍 = min𝑓 (x) , (11)

subject to

Θ (x) ≥ Θ𝜏,

x ≥ 0,
(12)

which minimizes the total allocation 𝑓(x) = ∑
𝑖∈𝑉
𝑥
𝑖
(i.e.,

over all vertices 𝑖 ∈ 𝑉), constrained to provide a minimum
throughput of Θ𝜏.

A number of specific models can be specified based on
the above generic model.

(i) When we set x ≡ B, the buffer allocation problem
(BAP) appears. One extra constraint needs to be
added to reflect the integrality condition, 𝐵

𝑖
∈ N,

for all 𝑖 ∈ 𝑉. The objective function is then 𝑍BAP =
min∑

𝑖∈𝑉
𝐵
𝑖
. This is a model formulation presented

and discussed in detail in Smith [37], Smith and Cruz
[8], and Smith et al. [38] in which series, merge, and
split topologies were examined using the GEM to
estimate the performance of these queueing networks
and an iterative searchmethodology based onPowell’s
[39] algorithm to find the optimal buffer allocation
within the network. The papers of Gershwin and
Schor [40] and Shi and Gershwin [41] also deal with
buffer allocation.

(ii) The server allocation problem (CAP) appears if we
have x ≡ c. Again, an extra integrality constraint is
needed, 𝑐

𝑖
∈N, for all 𝑖 ∈ 𝑉. The objective function is

then 𝑍CAP = min∑
𝑖∈𝑉
𝑐
𝑖
. The CAP was considered

by Smith et al. [42] in which a methodology was
developed built upon two-moment approximations
to the service time distribution embedded in the
GEM for computing the performance measures in
complex finite queueing networks and Powell’s [39]
algorithm for optimally allocating servers to the
network topology.

(iii) Combining the server and buffer allocation problems
by setting x ≡ (B, c) results in the joint buffer
and server allocation problem (BCAP). In this case,
the integrality constraints are 𝐵

𝑖
, 𝑐
𝑖
∈ N, for all

𝑖 ∈ 𝑉. Next to this integrality constraint, one more
constraint is needed. It is necessary to ensure that the
traffic intensity is such thar 𝜌

𝑖
≡ 𝜆
𝑖
/(𝑐
𝑖
𝜇
𝑖
) < 1 to

ensure a finite optimal solution. Note that buffers can
be equal to zero, hence, having a zero-buffer system
(more on bufferless systems in Andriansyah et al. [32]
in which such networks were evaluate in terms of the
throughput using theGEM thatwas compared to sim-
ulations and a multiobjective optimization approach
was adopted to derive the Pareto efficient curves
showing the trade-off between the total number of
servers used and the throughput). Secondly, note that
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the objective function needs to be adapted slightly to
take into account the two objectives (i.e., buffers and
servers).
We consider two options to rewrite the objective func-
tion depending onhow to dealwith themultiobjective
issue.

(a) First, the objective function can be written as a
weighted sum of the two objectives; that is,

𝑍BCAP1 = min{𝜔∑
𝑖∈𝑉

𝑐
𝑖
+ (1 − 𝜔)∑

𝑖∈𝑉

𝐵
𝑖
} . (13)

We assign a cost of 𝜔 to servers and (1 − 𝜔)
to buffers. We can then modify the value of 𝜔,
such that 0 < 𝜔 < 1, to reflect the relative cost
of servers versus buffers. As 𝜔 is decreased, the
cost of servers will become relatively lower than
that of buffers. That is, buffers are then more
expensive than servers. Alternatively, when the
value of 𝜔 is increased, the servers become
more costly relative to the buffers. In this way,
we evaluate whether different pricing of servers
and buffers results in a significantly different
buffer and server allocation. It is worthwhile
to mention that if 𝜔 = 0, the above problem
reduces to the pure BAP and if 𝜔 = 1, the
pure CAP is obtained. The BCAP1 problem
was treated in details by Woensel et al. [43],
when the joint optimization of the number of
buffers and servers was firstly solved by means
of Powell’s [39] method, a classical nonlinear
derivative-free optimization algorithm, while
a two-moment approximation and the GEM
compute the performance measure of interest
(the throughput). The proposed methodology
was capable of handling the trade-off between
the number of servers and buffers, yielding
better throughput than previously published
studies. Also, the importance of the squared
coefficient of variation of the service time was
stressed, since it strongly influenced the approx-
imate optimal allocation.

(b) Secondly, the objective function can be formu-
lated in a multicriteria way; that is,

𝑍BCAP2 = min {𝑓
1 (c) , 𝑓2 (B)} , (14)

in which each one of the two objectives are
considered explicitly, with 𝑓

1
(c) ≡ ∑

𝑖∈𝑉
𝑐
𝑖
, and

𝑓
2
(B) ≡ ∑

𝑖∈𝑉
𝐵
𝑖
.

Consequently, one obtains an approximation of
the Pareto set of solutions for the two objec-
tives. As such, this perspective is more general
than the BCAP1 formulation. For further details
on multiobjective optimization in general, see
Chankong andHaimes [44].TheBCAP2 formu-
lation was treated by Cruz et al. [45, 46] which

developed a multiobjective genetic algorithm
to satisfy these conflicting objectives and to
produce an approximation of the complete set of
all best solutions, known as the Pareto optimal
or noninferior set.

(iv) A slightly different formulation is the optimal routing
problem (OROP). Here, the routing probabilities 𝛼

𝑖,𝑗

are determined such that the throughput is maxi-
mized. Of course, the sum of all routing probabilities
𝛼
𝑖,𝑗
in the arcs leaving each vertex 𝑖 ∈ 𝑉 and reaching

its successors 𝑗, such that (𝑖, 𝑗) ∈ 𝐴 should sum up to
one

𝑍ORAP = maxΘ (𝛼) , (15)

subject to

0 ≤ 𝛼
𝑖,𝑗
≤ 1, ∀ (𝑖, 𝑗) ∈ 𝐴,

∑

∀𝑗∈𝛿(𝑖)

𝛼
𝑖,𝑗
= 1, ∀𝑖 ∈ 𝑉,

(16)

in which Θ(𝛼) is the throughput, which is the objec-
tive that must be maximized, 𝛼 the optimal routing
probability matrix, 𝛼 ≡ [𝛼

𝑖,𝑗
], that is, the matrix that

maximizes the objective function of this predefined
network, and 𝛿(𝑖) is the set of succeeding vertexes of
vertex 𝑖; that is, 𝛿(𝑖) ≡ {𝑗 | (𝑖, 𝑗) ∈ 𝐴}.
The throughput will thus be affected by the effective
routing of jobs through the network, the variability of
the service distribution, the number of servers, and
the number of buffers. Among the papers that dealt
with the ORAP, we could mention Gosavi and Smith
[47] and Daskalaki and Smith [48]. Additionally,
Cruz and vanWoensel [49] solved theORAP by using
the GEM as the performance evaluation tool of the
finite queueing network and optimizing by means of
a heuristics based on Powell’s [39] algorithm.

(v) A last variation considered is the profit maximization
model. The models are thus expanded with financial
indicators in order to maximize the profit generated.
This profit will be a function of the quantity one can
set in the market (i.e., the throughput) and the costs
to realize this throughput, which could be the buffer
and/or server allocation.The decision variable is thus
the investment in buffers or servers ((B, c)). Assume
the cost of the buffers or servers is 𝛾 and the gain
of a unit of throughput is equal to 𝜙. Then we can
formulate the objective function as follows:

𝑍PROFIT = max{𝜙Θ (B, c) − 𝛾∑
𝑖∈𝑉

(𝐵
𝑖
+ 𝑐
𝑖
)

−𝛽 [Θ
𝜏
− Θ (B, c)] } ,

(17)
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Figure 2: Achieved profit at the optimal buffer allocation forΘ𝜏 = 5.

in which [Θ𝜏 − Θ(B, c)] is either positive or zero
(i.e., Θ(B, c) ≤ Θ

𝜏). Penalty costs of size 𝛽 are
charged when the system throughput does not meet
the market demand (i.e., Θ(B, c) < Θ

𝜏). Penalty
costs can include the cost of outsourcing production
to another factory. Figure 2 displays the behavior
of this optimization function for a network of three
𝑀/𝐺/𝑐/𝐾 queues in tandem, with 𝜇

𝑖
= 10, 𝑠2

𝑖
=

1.5, for all 𝑖, an external arrival rate Λ
1
= 5 and

Θ
𝜏
= 5. It shows the achieved profit, 𝑍PROFIT,

at the optimal buffer allocation, for 𝜙 = 1 and
different cost settings 𝛾 and 𝛽. When the operational
expense increases (𝑋 ≡ 𝛾/𝜙), it is more attractive
to underachieve market demand (i.e., Θ(B, c) ≪

Θ
𝜏); optimal throughput decreases.When the penalty

costs increase (𝑌 ≡ 𝛽/𝜙), it becomes less attractive
to underachievemarket demand; optimal throughput
increases.

It is worthwhile to state that the models described
above are difficult nonlinear integer programming problems.

Considering the BCAP model, it can be shown that for a
network with𝑁 nodes, the complexity involved is

[
𝐾 (𝐾 + 1)

2
]

𝑁

. (18)

Clearly, the solution space grows exponentially in the
number of nodes, but not (exponentially) in the capacity of
each node. The complexity of the BCAP model can thus be
written as 𝑂(𝐾𝑁).

2.5. Optimization Methodologies. While the GEM computes
the performance measures for the queueing network, many
of the above discussed models need to be optimized on
the decision variables defined in x. Note that there, of
course, exist many optimization methods. An exhaustive
discussion is left out of this paper, but the interested reader
is referred to Aarts and Lenstra [50] and the references
therein. We describe two methodologies which have proven
to be successful for the above described models, namely, the
Powell’s [39] algorithm and a genetic algorithm approach. Of
course, small problems can always be enumerated.

Powell’s [39] algorithm can be described as an uncon-
strained optimization procedure that does not require the
calculation of first derivatives of the function. Numerical
examples fromHimmelblau [51] have shown that themethod
is capable of minimizing a function with up to twenty
variables Powell’s method locates the minimum of 𝑓(x) of
a nonlinear function by successive unidimensional searches
from an initial starting point x(0) along a set of conjugate
directions. These conjugate directions are generated within
the procedure itself. Powell’s method is based on the idea
that if a minimum of a nonlinear function 𝑓(x) is found
along 𝑝 conjugate directions in a stage of the search, and an
appropriate step is made in each direction, the overall step
from the beginning to the 𝑝-th step is conjugate to all of the
𝑝 subdirections of the search.

Genetic algorithms (GA) are optimization algorithms
to perform an approximate global search relaying on the
information obtained from the evaluation of several points
in the search space and obtaining a population of these
points that converges to the optimum through the application
of the genetic operators mutation, crossover, selection, and
elitism. Each of these operators may be implemented in
several different ways, each one of them characterizing a
specific instance of GA. Additionally, convergence of GA is
guaranteed by assigning fitness to each population member
and preserving diversity at the same front. For instance,
recent successful applications ofGAwere reported by Lin [52]
and Calvete et al. [53], for single-objective applications, and
by Carrano et al. [54] and Cruz et al. [45, 46], for multiple-
objective applications. A wealth of references is given by
these authors. For an application of GA to manufacturing
problems, see Andriansyah et al. [32].

3. Results and Insights

In this section, we will focus on one example network and
describe the results for some of the different optimization
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Table 1: Results for the buffer allocation problem (see Smith and Cruz [8]).

𝑠
2 c B ∑

𝑖
𝑐
𝑖

∑
𝑖
𝐵
𝑖

𝜃(c,B)
0.5 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5) 16 69 4.9899
1.0 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (10 5 5 5 5 4 4 4 4 4 4 4 4 5 5 5) 16 77 4.9879
1.5 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6) 16 87 4.9877
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Figure 3: Combined topology.

models discussed above. We consider a combination of the
three basic topologies (series, split, and merge), as shown
in Figure 3. This network consists of 16 nodes with the
processing rate of servers in each node given in the figure.The
network is adopted from Smith and Cruz [8]. We use exactly
the same values for Λ, 𝜇, 𝑠2, and the routing probabilities
for the splitting node (#1 and #2). Note that the routing
probability #1 refers to the up tier of the node, while #2 refers
to the low tier. Refer to Figure 3 for the position of each node
in the network.

3.1. The Buffer Allocation Problem (BAP). We reproduce in
Table 1 the results from Smith and Cruz [8] for this network
structure with Λ = 5 and the routing probabilities equal to
0.5 (Table 29 in their paper). The optimization method used
was Powell with multiple restarts to avoid local optima. Note
that Smith and Cruz [8] considered an𝑀/𝐺/1/𝐾 setting and
therefore the number of servers in all nodes is set to 1 while
optimizing on the buffer allocation. Based on Table 1, we see
that the first node (most congested) is receiving more buffers
to cope with the relatively high arrival rate.

3.2. The Server Allocation Problem (CAP). Let us now fix the
number of buffers beforehand and then optimize on the num-
ber of servers used. More specifically, we set all buffers equal
to 1 and look at the resulting server allocation. The results
are given in Table 2, also obtained from Powell algorithm
with multiple restarts to avoid local optima. Interestingly, we
observe the same behavior as for the buffer allocation; that is,
the first node is receiving more resources than the remaining
nodes. On the other hand, the number of servers added is
relatively low compared to the buffers added (e.g., 5 versus
8, for 𝑠2 = 0.5). This is because a server is also acting as a
buffer, but a server addsmore value, measured in throughput,
as servers actually provide service.

3.3. The Joint Buffer-Server Allocation Problem (BCAP).
Before going to the results for the example network, we
analyze the difference between buffers and servers. We saw
that the BAP and CAP give different results in terms of
number of servers versus number of buffers used. Let us
assume that we have a single zero-buffer node with one server
(i.e., 𝐾 = 1, 𝐵 = 0, and 𝑐 = 1), submitted to an external
arrival rate Λ = 5.0, service rate 𝜇 = 10 and a squared
coefficient of variation of the service time distribution 𝑠2 =
{0.5, 1.0, 1.5}. Figure 4 gives the percentage increase of adding
either a server (adding one to nine servers compared to the
base case) or a buffer (adding one to eleven buffers compared
to the base case) to the zero buffer base situation.

It is clear that in this case, the first added buffer or first
added server gives the largest contribution to the throughput
value, which is limited by the external arrival rate Λ. Note
that the addition of the first extra server gives an increase
in throughput of about 58% to 78%, depending upon the
squared coefficient of variation of the service time distribu-
tion 𝑠2, while the first added buffer only gives a 36% to 39%
increase. Important tomention is that, in order to achieve the
same increase in throughput by only using buffers, we need
four to six extra buffer spaces, depending on the 𝑠2, rather
than only one server space.

The results for the joint buffer-server allocation problem
are presented in Table 3, in which the 𝑐/𝐵 price ratio gives an
indication of the relative costs of servers compared to buffers,
obtained from Powell. A price ratio of 8 : 1, for example,
means that servers are 8 times more expensive than buffers.
The results from Table 3 show a higher throughput than
for the pure BAP, Table 1, for every setting. As expected,
we found that the optimal server allocation in the BCAP
is different from the server settings in the pure BAP. This,
however, depends strongly upon the price ratio of buffers
versus servers. We found that 𝑀/𝐺/1/𝐾 is not an optimal
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Table 2: Results for the server allocation problem.

𝑠
2 c B ∑

𝑖
𝑐
𝑖

∑
𝑖
𝐵
𝑖

𝜃(c,B) 𝑍
𝛼

0.5 (5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 34 16 4.9997 35.29
1.0 (5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 36 16 4.9996 35.33
1.5 (5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 34 16 4.9996 35.37

Table 3: Results for the joint buffer-server allocation problem.

Λ 𝑠
2

𝑐/𝐵 c K ∑
𝑖
𝑐
𝑖

∑
𝑖
𝐾
𝑖

∑
𝑖
𝐵
𝑖

𝜃(c,B) 𝑍
𝛼

5.0 0.5 1 : 8 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 5.76
1 : 4 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 10.0
1 : 2 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 16.4
1 : 1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9998 22.2
2 : 1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 32 44 12 4.9989 26.5
4 : 1 (3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3) (3 5 5 5 5 3 3 3 3 3 3 3 3 5 5 3) 20 60 40 4.9974 26.6
8 : 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 6 6 6 6 4 4 4 4 4 4 4 4 6 6 11) 16 90 74 4.9994 23.0

1.0 1 : 8 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9994 5.94
1 : 4 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 9.09
1 : 2 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 15.0
1 : 1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 22.3
2 : 1 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3) 34 40 6 4.9984 26.2
4 : 1 (2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 3) (6 3 3 3 3 4 4 4 4 4 4 4 4 3 3 4) 25 60 35 4.9989 28.1
8 : 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (13 6 6 6 6 4 4 4 4 4 4 4 4 6 6 13) 16 94 78 4.9987 24.1

1.5 1 : 8 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 5.24
1 : 4 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 9.15
1 : 2 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 15.0
1 : 1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 22.4
2 : 1 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3) 34 40 6 4.9979 26.8
4 : 1 (2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 3) (6 3 3 3 3 4 4 4 4 4 4 4 4 3 3 4) 25 60 35 4.9983 28.7
8 : 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (15 7 7 7 7 4 4 4 4 4 4 4 4 7 7 15) 16 104 88 4.9986 25.4

configuration for this particular queueing network structure,
except when buffers are becoming relatively too expensive.
For these cases, we found that single-servers are optimal
indeed (see rows where 𝑐/𝐵 ratio is 8 : 1).

We observe that (near) zero-buffer configurations are
identified where appropriate; that is, where the servers are
relatively cheaper compared to buffers. Varying the squared
coefficient of variation of the service time distribution 𝑠2 does
result in some changes in the optimal server and buffer allo-
cation, which shows the importance of models dealing with
general service times. The results show that the number of
buffers seems to be large under high variability, which could
be expected since the increase in 𝑠2 means an increase in
the variability. The extra buffers are there to handle this high
variability.

3.4. Final Remarks and Insights. The above numerical results
for the buffer allocation problem, the server allocation prob-
lem, and the joint buffer-server allocation problem show that
significant gains can be achieved in manufacturing systems.
Specifically, setting the buffers and servers in an appropriate
way greatly affects the throughput for these manufacturing
systems. This is important as these systems need to be as

highly utilized as possible, given the high investments. Our
models and optimizations show that the optimal configu-
rations are not always straightforward and thus advanced
models and solution methods are needed. We have followed
a queueing network approach with finite buffers, as this
resembles reality the closest. This modeling approach is of
course much harder than, for example, infinite queueing
networks. We see based on the various experiments that
our solution methodology is powerful and suitable for the
different types of models handled in this paper. This offers
managers and manufacturing systems designers a powerful
tool to work with.

We saw that the BAP and CAP obviously give different
results. We also note that while the addition of the first extra
server gives a certain amount of increase in the throughput,
the addition of the first buffer space generally will give a
lower increase. In other words, in order to achieve the same
increase in throughput by only using buffers, we need more
extra buffer spaces rather than only a few server space.

4. Conclusions

This review provided an overview of the different model-
ing issues, the performance evaluation, and optimization
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Figure 4:Throughput increase versus added number of servers (Δ𝑐)
and buffers (Δ𝐵).

approaches of the manufacturing systems assuming a queue-
ing theory approach.We discussed the merits of the General-
ized Expansion Method as a performance evaluation tool of
the finite queueing networks. This methodology has proved
in the literature to be a valuable approach. Secondly, dif-
ferent optimization models are discussed, namely the buffer
allocation problem, the server allocation problem, the joint
buffer, server allocation problem, and some other models.
The different optimization models are shown to be hard
nonlinear integer programming problems which are able to
be approximately solved with a Powell heuristic. The paper
ended with an overview of some results for the different
models considered on a complex queueing network.

4.1. Future Research Suggestions. In this paper, we considered
the throughput as the main performance measure. Instead
of the throughput, it would be interesting to evaluate the

behavior of the models based on cycle time, work-in-process
(WIP), or other performance measures.

In a number of industrial improvement projects carried
out, we observed that the critical issue to be able to use the
above models is related to data availability. More specifically,
processing rates, arrival rates, uncertainty in the service
process, and so on need to be extracted from the available
databases. An interesting approach to obtaining the relevant
data is the effective process time (EPT) point of view (see
Hopp and Spearman [55]).The advantage of the effective pro-
cess time (EPT) approach is that various types of disturbances
on the shop-floor are aggregated into EPT distributions,
this enables effective modeling. However, it is important to
note that, disturbances which are aggregated into the EPT
distribution cannot be analyzed afterwards. Hence, shop-
floor realities or disturbances which are modeled explicitly
and excluded from aggregation in the EPT are defined
beforehand.

Topics for future research on the queueing part include
the analysis and optimization of networks with cycles, for
example, to model many important industrial systems that
have loops, such as systems with captive pallets and fixtures
or reverse streams of products due to rework, or even the
extension to GI/G/c/K queueing networks with generally
distributed and independent arrivals.

Basic Network Notation

Λ: External Poisson arrival rate to the network
𝜆
𝑗
: Poisson arrival rate to node 𝑗

𝜆̃
𝑗
: Effective arrival rate to node 𝑗

𝜇
𝑗
: Exponential mean service rate at finite

node 𝑗
𝜇
𝑗
: Effective service rate at finite node 𝑗 due to

blocking
𝑝
𝐾𝑗
: Blocking probability of finite queue 𝑗 of

size𝐾
𝑗

𝑝
󸀠

𝐾𝑗
: Feedback blocking probability in the

expansion method
ℎ
𝑗
: The artificial holding node (queue)

preceding node 𝑗 created in the GEM
𝑐
𝑗
: Number of servers at node 𝑗
𝐾
𝑗
: Total capacity at node 𝑗 including the items

in service
𝐵
𝑗
≡ 𝐾
𝑗
− 𝑐
𝑗
: Buffer capacity at node 𝑗 excluding the

items in service
𝑁: Set of nodes (queues) in the queueing

network
𝑉: Set of arcs (pairs of nodes) in the queueing

network
𝜌
𝑗
≡ 𝜆
𝑗
/(𝑐
𝑗
𝜇
𝑗
): Traffic intensity at node 𝑗

𝜃
𝑗
: Mean throughput rate at node 𝑗

𝑠
2

𝑗
: Squared coefficient of variation of the

service time distribution at node 𝑗.
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