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This paper shows some properties of dual split quaternion numbers and expressions of power series in dual split quaternions and
provides differential operators in dual split quaternions and a dual split regular function on Ω ⊂ C2 × C2 that has a dual split
Cauchy-Riemann system in dual split quaternions.

1. Introduction

Hamilton introduced quaternions, extending complex num-
bers to higher spatial dimensions in differential geometry (see
[1]). A set of quaternions can be represented as

H = {𝑧 = 𝑥
0
+ 𝑥
1
𝑖 + 𝑥
2
𝑗 + 𝑥
3
𝑘 : 𝑥
𝑚

∈ R, 𝑚 = 0, 1, 2, 3} ,

(1)

where 𝑖
2
= 𝑗
2
= 𝑘
2
= −1, 𝑖𝑗𝑘 = −1, and R denotes the set of

real numbers. Cockle [2] introduced a set of split quaternions
as

S = {𝑧 = 𝑥
0
+ 𝑥
1
𝑒
1
+ 𝑥
2
𝑒
2
+ 𝑥
3
𝑒
3
: 𝑥
𝑚

∈ R, 𝑚 = 0, 1, 2, 3} ,

(2)

where 𝑒
2

1
= −1, 𝑒

2

2
= 𝑒
2

3
= 1, and 𝑒

1
𝑒
2
𝑒
3

= 1. A
set of split quaternions is noncommutative and contains
zero divisors, nilpotent elements, and nontrivial idempotents
(see [3, 4]). Previous studies have examined the geometric
and physical applications of split quaternions, which are
required in solving split quaternionic equations (see [5, 6]).
Inoguchi [7] reformulated the Gauss-Codazzi equations in
forms consistent with the theory of integrable systems in the
Minkowski 3-space for split quaternion numbers.

A dual quaternion can be represented in a form reflect-
ing an ordinary quaternion and a dual symbol. Because

dual-quaternion algebra is constructed from real eight-
dimensional vector spaces and an ordered pair of quater-
nions, dual quaternions are used in computer vision appli-
cations. Kenwright [8] provided the characteristics of dual
quaternions, and Pennestr̀ı and Stefanelli [9] examined some
properties by using dual quaternions. Son [10, 11] offered
an extension problem for solutions of partial differential
equations and generalized solutions for the Riesz system. By
using properties of Hamilton operators, Kula and Yayli [4]
defined dual split quaternions and gave some properties of
the screw motion in the Minkowski 3-space, showing thatH
has a rotation with unit split quaternions in H and a scalar
product that allows it to be identifiedwith the semi-Euclidean
space for split quaternion numbers.

It was shown (see [12, 13]) that any complex-valued har-
monic function 𝑓

1
in a pseudoconvex domain 𝐷 of C2 × C2,

C being the set of complex numbers, has a conjugate function
𝑓
2
in 𝐷 such that the quaternion-valued function 𝑓

1
+ 𝑓
2
𝑗 is

hyperholomorphic in𝐷 and gave a regeneration theorem in a
quaternion analysis in view of complex and Clifford analysis.
In addition, we [14, 15] provided a new expression of the
quaternionic basis and a regular function on reduced quater-
nions by associating hypercomplex numbers 𝑒

1
and 𝑒

2
. We

[16] investigated the existence of hyperconjugate harmonic
functions of an octonion number system, and we [17, 18]
obtained some regular functions with values in dual quater-
nions and researched an extension problem for properties
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of regular functionswith values in dual quaternions and some
applications for such problems.

This paper provides a regular function and some prop-
erties of differential operators in dual split quaternions. In
addition,we research some equivalent conditions forCauchy-
Riemann systems and expressions of power series in dual split
quaternions from the definition of dual split regular on an
open set Ω ⊂ C2 × C2.

2. Preliminaries

A dual number 𝐴 has the form 𝑎 + 𝜀𝑏, where 𝑎 and 𝑏 are real
numbers and 𝜀 is a dual symbol subject to the rules

𝜀 ̸= 0, 0𝜀 = 𝜀0 = 0, 1𝜀 = 𝜀1 = 𝜀, 𝜀
2
= 0, (3)

and a split quaternion 𝑞 ∈ S is an expression of the form

𝑞 = 𝑥
0
+ 𝑥
1
𝑒
1
+ 𝑥
2
𝑒
2
+ 𝑥
3
𝑒
3
, (4)

where 𝑥
𝑚

∈ R (𝑚 = 0, 1, 2, 3) and 𝑒
𝑟
(𝑟 = 1, 2, 3) are split

quaternionic units satisfying noncommutativemultiplication
rules (for split quaternions, see [1]):

𝑒
2

1
= −1, 𝑒

2

2
= 𝑒
2

3
= 1,

𝑒
1
𝑒
2
= −𝑒
2
𝑒
1
= 𝑒
3
, 𝑒

2
𝑒
3
= −𝑒
3
𝑒
2
= −𝑒
1
,

𝑒
3
𝑒
1
= −𝑒
1
𝑒
3
= 𝑒
2
.

(5)

Similarly, a dual split quaternion 𝑧 can be written as

D (S) = {𝑧 | 𝑧 = 𝑝
0
+ 𝜀𝑝
1
, 𝑝
𝑟
∈ S, 𝑟 = 0, 1} , (6)

which has elements of the following form:

𝑧 = {(𝑥
0
+ 𝑥
1
𝑒
1
) + (𝑥

2
+ 𝑥
3
𝑒
1
) 𝑒
2
}

+ 𝜀 {(𝑦
0
+ 𝑦
1
𝑒
1
) + (𝑦

2
+ 𝑦
3
𝑒
1
) 𝑒
2
}

= (𝑧
0
+ 𝑧
1
𝑒
2
) + 𝜀 (𝑧

2
+ 𝑧
3
𝑒
2
)

= 𝑝
0
+ 𝜀𝑝
1
,

(7)

where 𝑝
0
= 𝑧
0
+ 𝑧
1
𝑒
2
and 𝑝

1
= 𝑧
2
+ 𝑧
3
𝑒
2
are split quaternion

components, 𝑧
0
= 𝑥
0
+ 𝑥
1
𝑒
1
, 𝑧
1
= 𝑥
2
+ 𝑥
3
𝑒
1
, 𝑧
2
= 𝑦
0
+ 𝑦
1
𝑒
1
,

and 𝑧
3
= 𝑦
2
+ 𝑦
3
𝑒
1
are usual complex numbers, and 𝑥

𝑚
, 𝑦
𝑚

∈

R (𝑚 = 0, 1, 2, 3). The multiplication of split quaternionic
units with a dual symbol is commutative 𝜀𝑒

𝑟
= 𝑒
𝑟
𝜀 (𝑟 =

1, 2, 3). However, by properties of split quaternionic unit,

𝑧
𝑘
𝑒
𝑟
= 𝑒
𝑟
𝑧
𝑘

(𝑘 = 0, 1, 2, 3, 𝑟 = 0, 1) ,

𝑧
𝑘
𝑒
𝑟
= 𝑒
𝑟
𝑧
𝑘

(𝑘 = 0, 1, 2, 3, 𝑟 = 2, 3) ,

𝑒
𝑟
𝑝
𝑘

̸= 𝑝
𝑘
𝑒
𝑟
, 𝑒
𝑟
𝑝
𝑘
= 𝑝
(𝑘𝑟)

𝑒
𝑟

(𝑟 = 1, 2, 3, 𝑘 = 0, 1) ,

(8)

where

𝑝
(01)

= 𝑧
0
− 𝑧
1
𝑒
2
= 𝑥
0
+ 𝑥
1
𝑒
1
− 𝑥
2
𝑒
2
− 𝑥
3
𝑒
3
,

𝑝
(02)

= 𝑧
0
+ 𝑧
1
𝑒
2
= 𝑥
0
− 𝑥
1
𝑒
1
+ 𝑥
2
𝑒
2
− 𝑥
3
𝑒
3
,

𝑝
(03)

= 𝑧
0
− 𝑧
1
𝑒
2
= 𝑥
0
− 𝑥
1
𝑒
1
− 𝑥
2
𝑒
2
+ 𝑥
3
𝑒
3
,

𝑝
(11)

= 𝑧
2
− 𝑧
3
𝑒
2
= 𝑦
0
+ 𝑦
1
𝑒
1
− 𝑦
2
𝑒
2
− 𝑦
3
𝑒
3
,

𝑝
(12)

= 𝑧
2
+ 𝑧
3
𝑒
2
= 𝑦
0
− 𝑦
1
𝑒
1
+ 𝑦
2
𝑒
2
− 𝑦
3
𝑒
3
,

𝑝
(13)

= 𝑧
2
− 𝑧
3
𝑒
2
= 𝑦
0
− 𝑦
1
𝑒
1
− 𝑦
2
𝑒
2
+ 𝑦
3
𝑒
3
,

(9)

with 𝑧
0

= 𝑥
0
− 𝑥
1
𝑒
1
, 𝑧
1
= 𝑥
2
− 𝑥
3
𝑒
1
, 𝑧
2

= 𝑦
0
− 𝑦
1
𝑒
1
, and

𝑧
3
= 𝑦
2
− 𝑦
3
𝑒
1
. For instance,

𝑒
2
𝑝
0
= 𝑒
2
(𝑥
0
+ 𝑥
1
𝑒
1
+ 𝑥
2
𝑒
2
+ 𝑥
3
𝑒
3
)

= (𝑥
0
− 𝑥
1
𝑒
1
+ 𝑥
2
𝑒
2
− 𝑥
3
𝑒
3
) 𝑒
2
= 𝑝
(02)

𝑒
2
,

𝑒
1
𝑝
1
= 𝑒
1
(𝑦
0
+ 𝑦
1
𝑒
1
+ 𝑦
2
𝑒
2
+ 𝑦
3
𝑒
3
)

= (𝑦
0
+ 𝑦
1
𝑒
1
− 𝑦
2
𝑒
2
− 𝑦
3
𝑒
3
) 𝑒
1
= 𝑝
(11)

𝑒
1
.

(10)

Because of the properties of the eight-unit equality, the addi-
tion and subtraction of dual split quaternions are governed
by the rules of ordinary algebra. Here the symbol 𝑝

(𝑘𝑟)
is used

by just enumerating 𝑟 and 𝑘, not 𝑟 times 𝑘. For example,
𝑝
(22)

̸= 𝑝
4
and 𝑝

22
= 𝑝
4
.

For any two elements 𝑧 = 𝑝
0
+ 𝜀𝑝
1
and 𝑤 = 𝑞

0
+ 𝜀𝑞
1

of D(S), where 𝑞
0
= ∑
3

𝑟=0
𝑠
𝑟
𝑒
𝑟
and 𝑞

1
= ∑
3

𝑟=0
𝑡
𝑟
𝑒
𝑟
are split

quaternion components and 𝑠
𝑟
, 𝑡
𝑟
∈ R (𝑟 = 0, 1, 2, 3), their

noncommutative product is given by

𝑧𝑤 = (𝑝
0
+ 𝜀𝑝
1
) (𝑞
0
+ 𝜀𝑞
1
) = 𝑝
0
𝑞
0
+ 𝜀 (𝑝

0
𝑞
1
+ 𝑝
1
𝑞
0
) .

(11)

The conjugation 𝑧
∗ of 𝑧 and the corresponding modulus 𝑧𝑧∗

inD(S) are defined by

𝑧
∗
= 𝑝
∗

0
+ 𝜀𝑝
∗

1
,

𝑧𝑧
∗
= 𝑧
∗
𝑧 = 𝑝
0
𝑝
∗

0
+ 𝜀 (𝑝

0
𝑝
∗

1
+ 𝑝
1
𝑝
∗

0
)

= (𝑧
0
𝑧
0
− 𝑧
1
𝑧
1
) + 2𝜀 (𝑧

0
𝑧
2
− 𝑧
1
𝑧
3
)

=

1

∑

𝑟=0

{(𝑥
2

𝑟
− 𝑥
2

𝑟+2
) + 𝜀 (𝑥

𝑟
𝑦
𝑟
− 𝑥
𝑟+2

𝑦
𝑟+2

)} ,

(12)

where 𝑝∗
0
= 𝑧
0
− 𝑧
1
𝑒
2
and 𝑝

∗

1
= 𝑧
2
− 𝑧
3
𝑒
2
.

Lemma 1. For all 𝑧 ∈ D(S) and 𝑛 ∈ N := {1, 2, 3, . . .}, we
have

𝑧
𝑛
= 𝑝
𝑛

0
+ 𝜀

𝑛

∑

𝑘=1

𝑝
𝑛−𝑘

0
𝑝
1
𝑝
𝑘−1

0
. (13)
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Proof. If 𝑛 = 1, then (13) is trivial. Now suppose that this
holds for some 𝑛 ∈ N. Then, as desired,

𝑧
𝑛+1

= 𝑧𝑧
𝑛
= 𝑧(𝑝

𝑛

0
+ 𝜀

𝑛

∑

𝑘=1

𝑝
𝑛−𝑘

0
𝑝
1
𝑝
𝑘−1

0
)

= 𝑝
𝑛+1

0
+ 𝜀

𝑛

∑

𝑘=1

𝑝
𝑛−𝑘+1

0
𝑝
1
𝑝
𝑘−1

0
+ 𝜀𝑝
1
𝑝
𝑛

0

= 𝑝
𝑛+1

0
+ 𝜀

𝑛+1

∑

𝑘=1

𝑝
𝑛+1−𝑘

0
𝑝
1
𝑝
𝑘−1

0
.

(14)

By the principle of mathematical induction, (13) holds for all
𝑛 ∈ N.

Let Ω be an open subset of C2 × C2. Then the function
𝑓 : Ω → D(S) can be expressed as

𝑓 (𝑧) = 𝑓 (𝑝
0
, 𝑝
1
) = 𝑓
0
(𝑝
0
, 𝑝
1
) + 𝜀𝑓
1
(𝑝
0
, 𝑝
1
) , (15)

where the component functions 𝑓
𝑟
: Ω → S (𝑟 = 0, 1) are

split quaternionic-valued functions. The component func-
tions 𝑓

𝑟
(𝑟 = 0, 1) are

𝑓
0
(𝑝
0
, 𝑝
1
) = 𝑓
0
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
)

= 𝑔
0
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
) + 𝑔
1
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
) 𝑒
2
,

𝑓
1
(𝑝
0
, 𝑝
1
) = 𝑓
1
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
)

= 𝑔
2
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
) + 𝑔
3
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
) 𝑒
2
,

(16)

where 𝑔
𝑘

= 𝑢
2𝑘

+ 𝑢
2𝑘+1

𝑒
1
(𝑘 = 0, 1) and 𝑔

𝑘
= V
2𝑘−4

+

V
2𝑘−3

𝑒
1
(𝑘 = 2, 3) are complex-valued functions, and 𝑢

𝑟
and

V
𝑟
(𝑟 = 0, 1, 2, 3) are real-valued functions.
Now, we let differential operators 𝐷

1
and 𝐷

2
be defined

onD(S) as

𝐷
1
:= 𝐷
(11)

+ 𝜀𝐷
(12)

, 𝐷
2
:= 𝐷
(21)

+ 𝜀𝐷
(22)

. (17)

Then the conjugate operators𝐷∗
1
and𝐷

∗

2
are

𝐷
∗

1
= 𝐷
∗

(11)
+ 𝜀𝐷
∗

(12)
, 𝐷

∗

2
= 𝐷
∗

(21)
+ 𝜀𝐷
∗

(22)
, (18)

where

𝐷
(11)

=
𝜕

𝜕𝑧
0

+
𝜕

𝜕𝑧
1

𝑒
2
=

1

2
(

𝜕

𝜕𝑥
0

−
𝜕

𝜕𝑥
1

𝑒
1
+

𝜕

𝜕𝑥
2

𝑒
2
+

𝜕

𝜕𝑥
3

𝑒
3
) ,

𝐷
(12)

=
𝜕

𝜕𝑧
2

+
𝜕

𝜕𝑧
3

𝑒
2
=

1

2
(

𝜕

𝜕𝑦
0

−
𝜕

𝜕𝑦
1

𝑒
1
+

𝜕

𝜕𝑦
2

𝑒
2
+

𝜕

𝜕𝑦
3

𝑒
3
) ,

𝐷
(21)

=
𝜕

𝜕𝑧
0

+
1

2

𝜕

𝜕𝑧
1

𝑒
2

=
1

2
(

𝜕

𝜕𝑥
0

−
𝜕

𝜕𝑥
1

𝑒
1
+

1

2

𝜕

𝜕𝑥
2

𝑒
2
−

1

2

𝜕

𝜕𝑥
3

𝑒
3
) ,

𝐷
(22)

=
𝜕

𝜕𝑧
2

+
1

2

𝜕

𝜕𝑧
3

𝑒
2

=
1

2
(

𝜕

𝜕𝑦
0

−
𝜕

𝜕𝑦
1

𝑒
1
+

1

2

𝜕

𝜕𝑦
2

𝑒
2
−

1

2

𝜕

𝜕𝑦
3

𝑒
3
) ,

(19)

𝐷
∗

(11)
=

𝜕

𝜕𝑧
0

−
𝜕

𝜕𝑧
1

𝑒
2
=

1

2
(

𝜕

𝜕𝑥
0

+
𝜕

𝜕𝑥
1

𝑒
1
−

𝜕

𝜕𝑥
2

𝑒
2
−

𝜕

𝜕𝑥
3

𝑒
3
) ,

𝐷
∗

(12)
=

𝜕

𝜕𝑧
2

−
𝜕

𝜕𝑧
3

𝑒
2
=

1

2
(

𝜕

𝜕𝑦
0

+
𝜕

𝜕𝑦
1

𝑒
1
−

𝜕

𝜕𝑦
2

𝑒
2
−

𝜕

𝜕𝑦
3

𝑒
3
) ,

𝐷
∗

(21)
=

𝜕

𝜕𝑧
0

−
1

2

𝜕

𝜕𝑧
1

𝑒
2

=
1

2
(

𝜕

𝜕𝑥
0

+
𝜕

𝜕𝑥
1

𝑒
1
−

1

2

𝜕

𝜕𝑥
2

𝑒
2
+

1

2

𝜕

𝜕𝑥
3

𝑒
3
) ,

𝐷
∗

(22)
=

𝜕

𝜕𝑧
2

−
1

2

𝜕

𝜕𝑧
3

𝑒
2

=
1

2
(

𝜕

𝜕𝑦
0

+
𝜕

𝜕𝑦
1

𝑒
1
−

1

2

𝜕

𝜕𝑦
2

𝑒
2
+

1

2

𝜕

𝜕𝑦
3

𝑒
3
)

(20)

act on D(S). These operators are called corresponding
Cauchy-Riemann operators in D(S), where 𝜕/𝜕𝑧

𝑟
and

𝜕/𝜕𝑧
𝑟
(𝑟 = 0, 1, 2, 3) are usual differential operators used in

the complex analysis.

Remark 2. From the definition of differential operators on
D(S),

𝐷
𝑟
𝑓 = (𝐷

(𝑟1)
+ 𝜀𝐷
(𝑟2)

) (𝑓
0
+ 𝜀𝑓
1
)

= 𝐷
(𝑟1)

𝑓
0
+ 𝜀 (𝐷

(𝑟1)
𝑓
1
+ 𝐷
(𝑟2)

𝑓
0
) ,

𝐷
∗

𝑟
𝑓 = (𝐷

∗

(𝑟1)
+ 𝜀𝐷
∗

(𝑟2)
) (𝑓
0
+ 𝜀𝑓
1
)

= 𝐷
∗

(𝑟1)
𝑓
0
+ 𝜀 (𝐷

∗

(𝑟1)
𝑓
1
+ 𝐷
∗

(𝑟2)
𝑓
0
) ,

(21)

where 𝑟 = 1, 2.

Definition 3. LetΩ be an open set inC2 ×C2. A function 𝑓 =

𝑓
0
+ 𝜀𝑓
1
is called an 𝐿

𝑟
(resp., 𝑅

𝑟
)-regular function (𝑟 = 1, 2)

onΩ if the following two conditions are satisfied:

(i) 𝑓
𝑘
(𝑘 = 0, 1) are continuously differential functions

onΩ, and

(ii) 𝐷∗
𝑟
𝑓(𝑧) = 0 (resp., 𝑓(𝑧)𝐷∗

𝑟
= 0) onΩ (𝑟 = 1, 2).

In particular, the equation 𝐷
∗

1
𝑓(𝑧) = 0 of Definition 3 is

equivalent to

𝐷
∗

(11)
𝑓
0
= 0, 𝐷

∗

(12)
𝑓
0
+ 𝐷
∗

(11)
𝑓
1
= 0. (22)
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In addition,

𝜕𝑔
0

𝜕𝑧
0

−
𝜕𝑔
1

𝜕𝑧
1

= 0,
𝜕𝑔
1

𝜕𝑧
0

−
𝜕𝑔
0

𝜕𝑧
1

= 0,

𝜕𝑔
2

𝜕𝑧
0

+
𝜕𝑔
0

𝜕𝑧
2

−
𝜕𝑔
3

𝜕𝑧
1

−
𝜕𝑔
1

𝜕𝑧
3

= 0,

𝜕𝑔
3

𝜕𝑧
0

+
𝜕𝑔
1

𝜕𝑧
2

−
𝜕𝑔
2

𝜕𝑧
1

−
𝜕𝑔
0

𝜕𝑧
3

= 0.

(23)

Concretely, the following system is obtained:

𝜕𝑢
0

𝜕𝑥
0

−
𝜕𝑢
1

𝜕𝑥
1

−
𝜕𝑢
2

𝜕𝑥
2

−
𝜕𝑢
3

𝜕𝑥
3

= 0,

𝜕𝑢
1

𝜕𝑥
0

+
𝜕𝑢
0

𝜕𝑥
1

−
𝜕𝑢
2

𝜕𝑥
3

+
𝜕𝑢
3

𝜕𝑥
2

= 0,

𝜕𝑢
2

𝜕𝑥
0

−
𝜕𝑢
3

𝜕𝑥
1

−
𝜕𝑢
0

𝜕𝑥
2

−
𝜕𝑢
1

𝜕𝑥
3

= 0,

𝜕𝑢
3

𝜕𝑥
0

+
𝜕𝑢
2

𝜕𝑥
1

−
𝜕𝑢
0

𝜕𝑥
3

+
𝜕𝑢
1

𝜕𝑥
2

= 0,

𝜕𝑢
0

𝜕𝑦
0

−
𝜕𝑢
1

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
2

−
𝜕𝑢
3

𝜕𝑦
3

+
𝜕V
0

𝜕𝑥
0

−
𝜕V
1

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
2

−
𝜕V
3

𝜕𝑥
3

= 0,

𝜕𝑢
1

𝜕𝑦
0

+
𝜕𝑢
0

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
3

+
𝜕𝑢
3

𝜕𝑦
2

+
𝜕V
1

𝜕𝑥
0

+
𝜕V
0

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
3

+
𝜕V
3

𝜕𝑥
2

= 0,

𝜕𝑢
2

𝜕𝑦
0

−
𝜕𝑢
3

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
2

−
𝜕𝑢
1

𝜕𝑦
3

+
𝜕V
2

𝜕𝑥
0

−
𝜕V
3

𝜕𝑥
1

−
𝜕V
0

𝜕𝑥
2

−
𝜕V
1

𝜕𝑥
3

= 0,

𝜕𝑢
3

𝜕𝑦
0

+
𝜕𝑢
2

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
3

+
𝜕𝑢
1

𝜕𝑦
2

+
𝜕V
3

𝜕𝑥
0

+
𝜕V
2

𝜕𝑥
1

−
𝜕V
0

𝜕𝑥
3

+
𝜕V
1

𝜕𝑥
2

= 0.

(24)

The above systems (23) and (24) are corresponding Cauchy-
Riemann systems inD(S). Similarly, the equation𝐷

∗

2
𝑓(𝑧) =

0 of Definition 3 is equivalent to

𝐷
∗

(21)
𝑓
0
= 0, 𝐷

∗

(22)
𝑓
0
+ 𝐷
∗

(21)
𝑓
1
= 0. (25)

Then,

𝜕𝑔
0

𝜕𝑧
0

−
1

2

𝜕𝑔
1

𝜕𝑧
1

= 0,
𝜕𝑔
1

𝜕𝑧
0

−
1

2

𝜕𝑔
0

𝜕𝑧
1

= 0,

𝜕𝑔
2

𝜕𝑧
0

+
𝜕𝑔
0

𝜕𝑧
2

−
1

2

𝜕𝑔
3

𝜕𝑧
1

−
1

2

𝜕𝑔
1

𝜕𝑧
3

= 0,

𝜕𝑔
3

𝜕𝑧
0

+
𝜕𝑔
1

𝜕𝑧
2

−
1

2

𝜕𝑔
2

𝜕𝑧
1

−
1

2

𝜕𝑔
0

𝜕𝑧
3

= 0.

(26)

Concretely, the following system is obtained:

𝜕𝑢
0

𝜕𝑥
0

−
𝜕𝑢
1

𝜕𝑥
1

−
1

2

𝜕𝑢
2

𝜕𝑥
2

+
1

2

𝜕𝑢
3

𝜕𝑥
3

= 0,

𝜕𝑢
1

𝜕𝑥
0

+
𝜕𝑢
0

𝜕𝑥
1

+
1

2

𝜕𝑢
2

𝜕𝑥
3

+
1

2

𝜕𝑢
3

𝜕𝑥
2

= 0,

𝜕𝑢
2

𝜕𝑥
0

−
𝜕𝑢
3

𝜕𝑥
1

−
1

2

𝜕𝑢
0

𝜕𝑥
2

+
1

2

𝜕𝑢
1

𝜕𝑥
3

= 0,

𝜕𝑢
3

𝜕𝑥
0

+
𝜕𝑢
2

𝜕𝑥
1

+
1

2

𝜕𝑢
0

𝜕𝑥
3

+
1

2

𝜕𝑢
1

𝜕𝑥
2

= 0,

𝜕𝑢
0

𝜕𝑦
0

−
𝜕𝑢
1

𝜕𝑦
1

−
1

2

𝜕𝑢
2

𝜕𝑦
2

+
1

2

𝜕𝑢
3

𝜕𝑦
3

+
𝜕V
0

𝜕𝑥
0

−
𝜕V
1

𝜕𝑥
1

−
1

2

𝜕V
2

𝜕𝑥
2

+
1

2

𝜕V
3

𝜕𝑥
3

= 0,

𝜕𝑢
1

𝜕𝑦
0

+
𝜕𝑢
0

𝜕𝑦
1

+
1

2

𝜕𝑢
2

𝜕𝑦
3

+
1

2

𝜕𝑢
3

𝜕𝑦
2

+
𝜕V
1

𝜕𝑥
0

+
𝜕V
0

𝜕𝑥
1

+
1

2

𝜕V
2

𝜕𝑥
3

+
1

2

𝜕V
3

𝜕𝑥
2

= 0,

𝜕𝑢
2

𝜕𝑦
0

−
𝜕𝑢
3

𝜕𝑦
1

−
1

2

𝜕𝑢
0

𝜕𝑦
2

+
1

2

𝜕𝑢
1

𝜕𝑦
3

+
𝜕V
2

𝜕𝑥
0

−
𝜕V
3

𝜕𝑥
1

−
1

2

𝜕V
0

𝜕𝑥
2

+
1

2

𝜕V
1

𝜕𝑥
3

= 0,

𝜕𝑢
3

𝜕𝑦
0

+
𝜕𝑢
2

𝜕𝑦
1

+
1

2

𝜕𝑢
0

𝜕𝑦
3

+
1

2

𝜕𝑢
1

𝜕𝑦
2

+
𝜕V
3

𝜕𝑥
0

+
𝜕V
2

𝜕𝑥
1

+
1

2

𝜕V
0

𝜕𝑥
3

+
1

2

𝜕V
1

𝜕𝑥
2

= 0.

(27)

The above systems (26) and (27) are corresponding Cauchy-
Riemann systems inD(S).

On the other hand, the equation 𝑓(𝑧)𝐷
∗

1
= 0 of

Definition 3 is equivalent to

𝑓
0
𝐷
∗

(11)
= 0, 𝑓

0
𝐷
∗

(12)
= −𝑓
1
𝐷
∗

(11)
. (28)
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Then,

𝑔
0

𝜕

𝜕𝑧
0

= 𝑔
1

𝜕

𝜕𝑧
1

, 𝑔
1

𝜕

𝜕𝑧
0

= 𝑔
0

𝜕

𝜕𝑧
1

,

𝑔
0

𝜕

𝜕𝑧
2

− 𝑔
1

𝜕

𝜕𝑧
3

= − 𝑔
2

𝜕

𝜕𝑧
0

+ 𝑔
3

𝜕

𝜕𝑧
1

,

𝑔
1

𝜕

𝜕𝑧
2

− 𝑔
0

𝜕

𝜕𝑧
3

= − 𝑔
3

𝜕

𝜕𝑧
0

+ 𝑔
2

𝜕

𝜕𝑧
1

,

(29)

where

𝑔
𝑘

𝜕

𝜕𝑧
𝑚

=
𝜕𝑔
𝑘

𝜕𝑧
𝑚

, 𝑔
𝑘

𝜕

𝜕𝑧
𝑚

=
𝜕𝑔
𝑘

𝜕𝑧
𝑚

(𝑘,𝑚 = 0, 1, 2, 3) .

(30)

Concretely, the following system is obtained:

𝜕𝑢
0

𝜕𝑥
0

−
𝜕𝑢
1

𝜕𝑥
1

=
𝜕𝑢
2

𝜕𝑥
2

+
𝜕𝑢
3

𝜕𝑥
3

,
𝜕𝑢
1

𝜕𝑥
0

+
𝜕𝑢
0

𝜕𝑥
1

= −
𝜕𝑢
2

𝜕𝑥
3

+
𝜕𝑢
3

𝜕𝑥
2

,

𝜕𝑢
2

𝜕𝑥
0

+
𝜕𝑢
3

𝜕𝑥
1

=
𝜕𝑢
0

𝜕𝑥
2

−
𝜕𝑢
1

𝜕𝑥
3

,
𝜕𝑢
3

𝜕𝑥
0

−
𝜕𝑢
2

𝜕𝑥
1

=
𝜕𝑢
0

𝜕𝑥
3

+
𝜕𝑢
1

𝜕𝑥
2

,

𝜕𝑢
0

𝜕𝑦
0

−
𝜕𝑢
1

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
2

−
𝜕𝑢
3

𝜕𝑦
3

= −
𝜕V
0

𝜕𝑥
0

+
𝜕V
1

𝜕𝑥
1

+
𝜕V
2

𝜕𝑥
2

+
𝜕V
3

𝜕𝑥
3

,

𝜕𝑢
1

𝜕𝑦
0

+
𝜕𝑢
0

𝜕𝑦
1

+
𝜕𝑢
2

𝜕𝑦
3

−
𝜕𝑢
3

𝜕𝑦
2

= −
𝜕V
1

𝜕𝑥
0

−
𝜕V
0

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
3

+
𝜕V
3

𝜕𝑥
2

,

𝜕𝑢
2

𝜕𝑦
0

+
𝜕𝑢
3

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
2

+
𝜕𝑢
1

𝜕𝑦
3

= −
𝜕V
2

𝜕𝑥
0

−
𝜕V
3

𝜕𝑥
1

+
𝜕V
0

𝜕𝑥
2

−
𝜕V
1

𝜕𝑥
3

,

𝜕𝑢
3

𝜕𝑦
0

−
𝜕𝑢
2

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
3

−
𝜕𝑢
1

𝜕𝑦
2

= −
𝜕V
3

𝜕𝑥
0

+
𝜕V
2

𝜕𝑥
1

+
𝜕V
0

𝜕𝑥
3

+
𝜕V
1

𝜕𝑥
2

.

(31)

Similarly, the equation 𝑓(𝑧)𝐷
∗

2
= 0 of Definition 3 is

equivalent to

𝑓
0
𝐷
∗

(21)
= 0, 𝑓

0
𝐷
∗

(22)
= −𝑓
1
𝐷
∗

(21)
. (32)

Then,

𝑔
0

𝜕

𝜕𝑧
0

=
1

2
𝑔
1

𝜕

𝜕𝑧
1

, 𝑔
1

𝜕

𝜕𝑧
0

=
1

2
𝑔
0

𝜕

𝜕𝑧
1

,

𝑔
0

𝜕

𝜕𝑧
2

−
1

2
𝑔
1

𝜕

𝜕𝑧
3

= − 𝑔
2

𝜕

𝜕𝑧
0

+
1

2
𝑔
3

𝜕

𝜕𝑧
1

,

𝑔
1

𝜕

𝜕𝑧
2

−
1

2
𝑔
0

𝜕

𝜕𝑧
3

= − 𝑔
3

𝜕

𝜕𝑧
0

+
1

2
𝑔
2

𝜕

𝜕𝑧
1

,

(33)

where

𝑔
𝑘

𝜕

𝜕𝑧
𝑚

=
𝜕𝑔
𝑘

𝜕𝑧
𝑚

, 𝑔
𝑘

𝜕

𝜕𝑧
𝑚

=
𝜕𝑔
𝑘

𝜕𝑧
𝑚

(𝑘,𝑚 = 0, 1, 2, 3) .

(34)

Concretely, the system is obtained as follows:

𝜕𝑢
0

𝜕𝑥
0

−
𝜕𝑢
1

𝜕𝑥
1

−
1

2

𝜕𝑢
2

𝜕𝑥
2

+
1

2

𝜕𝑢
3

𝜕𝑥
3

= 0,

𝜕𝑢
1

𝜕𝑥
0

+
𝜕𝑢
0

𝜕𝑥
1

−
1

2

𝜕𝑢
2

𝜕𝑥
3

−
1

2

𝜕𝑢
3

𝜕𝑥
2

= 0,

𝜕𝑢
2

𝜕𝑥
0

+
𝜕𝑢
3

𝜕𝑥
1

−
1

2

𝜕𝑢
0

𝜕𝑥
2

−
1

2

𝜕𝑢
1

𝜕𝑥
3

= 0,

𝜕𝑢
3

𝜕𝑥
0

−
𝜕𝑢
2

𝜕𝑥
1

+
1

2

𝜕𝑢
0

𝜕𝑥
3

−
1

2

𝜕𝑢
1

𝜕𝑥
2

= 0,

𝜕𝑢
0

𝜕𝑦
0

−
𝜕𝑢
1

𝜕𝑦
1

−
1

2

𝜕𝑢
2

𝜕𝑦
2

+
1

2

𝜕𝑢
3

𝜕𝑦
3

+
𝜕V
0

𝜕𝑥
0

−
𝜕V
1

𝜕𝑥
1

−
1

2

𝜕V
2

𝜕𝑥
2

+
1

2

𝜕V
3

𝜕𝑥
3

= 0,

𝜕𝑢
1

𝜕𝑦
0

+
𝜕𝑢
0

𝜕𝑦
1

−
1

2

𝜕𝑢
2

𝜕𝑦
3

−
1

2

𝜕𝑢
3

𝜕𝑦
2

+
𝜕V
1

𝜕𝑥
0

+
𝜕V
0

𝜕𝑥
1

−
1

2

𝜕V
2

𝜕𝑥
3

−
1

2

𝜕V
3

𝜕𝑥
2

= 0,

𝜕𝑢
2

𝜕𝑦
0

+
𝜕𝑢
3

𝜕𝑦
1

−
1

2

𝜕𝑢
0

𝜕𝑦
2

+
1

2

𝜕𝑢
1

𝜕𝑦
3

+
𝜕V
2

𝜕𝑥
0

+
𝜕V
3

𝜕𝑥
1

−
1

2

𝜕V
0

𝜕𝑥
2

+
1

2

𝜕V
1

𝜕𝑥
3

= 0,

𝜕𝑢
3

𝜕𝑦
0

−
𝜕𝑢
2

𝜕𝑦
1

−
1

2

𝜕𝑢
0

𝜕𝑦
3

−
1

2

𝜕𝑢
1

𝜕𝑦
2

+
𝜕V
3

𝜕𝑥
0

−
𝜕V
2

𝜕𝑥
1

−
1

2

𝜕V
0

𝜕𝑥
3

−
1

2

𝜕V
1

𝜕𝑥
2

= 0.

(35)

From the systems (24), (27), (31), and (35), the equations
𝐷
∗

𝑟
𝑓(𝑧) = 0 and 𝑓(𝑧)𝐷

∗

𝑟
= 0 (𝑟 = 1, 2) are different.

Therefore, the equations 𝐷∗
𝑟
𝑓(𝑧) = 0 and 𝑓(𝑧)𝐷

∗

𝑟
= 0 (𝑟 =

1, 2) should be distinguished as 𝐿
𝑟
-regular functions (𝑟 =

1, 2) and 𝑅
𝑟
-regular functions (𝑟 = 1, 2) on Ω, respectively.

Now the properties of the 𝐿
𝑟
-regular function (𝑟 = 1, 2) with

values inD(S) are considered.

3. Properties of 𝐿
𝑟
-Regular Functions (𝑟 = 1, 2)

with Values in D(S)

We consider properties of a 𝐿
𝑟
-regular functions (𝑟 = 1, 2)

with values inD(S).

Theorem 4. Let Ω be an open set in C2 × C2 and let 𝑓 =

𝑓
0
+ 𝜀𝑓
1
= (𝑔
0
+𝑔
1
𝑒
2
)+ 𝜀(𝑔

2
+𝑔
3
𝑒
2
) be an 𝐿

1
-regular function

defined on Ω. Then

𝐷
1
𝑓 = {2(

𝜕

𝜕𝑧
1

+ 𝜀
𝜕

𝜕𝑧
3

) 𝑒
2
− (

𝜕

𝜕𝑥
1

+ 𝜀
𝜕

𝜕𝑦
1

) 𝑒
1
}𝑓. (36)
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Proof. By the system (23), we have

𝐷
1
𝑓 = 𝐷

(11)
𝑓
0
+ 𝜀 (𝐷

(12)
𝑓
0
+ 𝐷
(11)

𝑓
1
)

= (
𝜕𝑔
0

𝜕𝑧
0

+
𝜕𝑔
1

𝜕𝑧
1

) + (
𝜕𝑔
1

𝜕𝑧
0

+
𝜕𝑔
0

𝜕𝑧
1

) 𝑒
2

+ 𝜀(
𝜕𝑔
0

𝜕𝑧
2

+
𝜕𝑔
1

𝜕𝑧
3

+
𝜕𝑔
2

𝜕𝑧
0

+
𝜕𝑔
3

𝜕𝑧
1

)

+ 𝜀(
𝜕𝑔
1

𝜕𝑧
2

+
𝜕𝑔
0

𝜕𝑧
3

+
𝜕𝑔
3

𝜕𝑧
0

+
𝜕𝑔
2

𝜕𝑧
1

) 𝑒
2

= (
𝜕𝑔
0

𝜕𝑧
0

+
𝜕𝑢
1

𝜕𝑥
1

−
𝜕𝑢
0

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
1

𝜕𝑧
1

)

+ (
𝜕𝑔
1

𝜕𝑧
0

+
𝜕𝑢
3

𝜕𝑥
1

−
𝜕𝑢
2

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
0

𝜕𝑧
1

) 𝑒
2

+ 𝜀(
𝜕𝑔
0

𝜕𝑧
2

+
𝜕𝑢
1

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
1

𝑒
1
+

𝜕𝑔
1

𝜕𝑧
3

+
𝜕𝑔
2

𝜕𝑧
0

+
𝜕V
1

𝜕𝑥
1

−
𝜕V
0

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
3

𝜕𝑧
1

)

+ 𝜀(
𝜕𝑔
1

𝜕𝑧
2

+
𝜕𝑢
3

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
1

𝑒
1
+

𝜕𝑔
0

𝜕𝑧
3

+
𝜕𝑔
3

𝜕𝑧
0

+
𝜕V
3

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
2

𝜕𝑧
1

) 𝑒
2

= (
𝜕𝑢
1

𝜕𝑥
1

−
𝜕𝑢
0

𝜕𝑥
1

𝑒
1
+ 2

𝜕𝑔
1

𝜕𝑧
1

)

+ (
𝜕𝑢
3

𝜕𝑥
1

−
𝜕𝑢
2

𝜕𝑥
1

𝑒
1
+ 2

𝜕𝑔
0

𝜕𝑧
1

) 𝑒
2

+ 𝜀(
𝜕𝑢
1

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
1

𝑒
1
+ 2

𝜕𝑔
1

𝜕𝑧
3

+
𝜕V
1

𝜕𝑥
1

−
𝜕V
0

𝜕𝑥
1

𝑒
1
+ 2

𝜕𝑔
3

𝜕𝑧
1

)

+ 𝜀(
𝜕𝑢
3

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
1

𝑒
1
+ 2

𝜕𝑔
0

𝜕𝑧
3

+
𝜕V
3

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
1

𝑒
1
+ 2

𝜕𝑔
2

𝜕𝑧
1

) 𝑒
2

= {2(
𝜕

𝜕𝑧
1

+ 𝜀
𝜕

𝜕𝑧
3

) 𝑒
2
− (

𝜕

𝜕𝑥
1

+ 𝜀
𝜕

𝜕𝑦
1

) 𝑒
1
}𝑓.

(37)

Therefore, we obtain

𝐷
1
𝑓 = {2(

𝜕

𝜕𝑧
1

+ 𝜀
𝜕

𝜕𝑧
3

) 𝑒
2
− (

𝜕

𝜕𝑥
1

+ 𝜀
𝜕

𝜕𝑦
1

) 𝑒
1
}𝑓. (38)

Theorem5. LetΩ be an open set inC2×C2 and𝑓 = 𝑓
0
+𝜀𝑓
1
=

(𝑔
0
+𝑔
1
𝑒
2
) + 𝜀(𝑔

2
+𝑔
3
𝑒
2
) be an 𝐿

2
-regular function defined on

Ω. Then

𝐷
2
𝑓 = {(

𝜕

𝜕𝑧
1

+ 𝜀
𝜕

𝜕𝑧
3

) 𝑒
2
− (

𝜕

𝜕𝑥
1

+ 𝜀
𝜕

𝜕𝑦
1

) 𝑒
1
}𝑓. (39)

Proof. By the system (26), we have

𝐷
2
𝑓 = 𝐷

(21)
𝑓
0
+ 𝜀 (𝐷

(22)
𝑓
0
+ 𝐷
(21)

𝑓
1
)

= (
𝜕𝑔
0

𝜕𝑧
0

+
1

2

𝜕𝑔
1

𝜕𝑧
1

) + (
𝜕𝑔
1

𝜕𝑧
0

+
1

2

𝜕𝑔
0

𝜕𝑧
1

) 𝑒
2

+ 𝜀(
𝜕𝑔
0

𝜕𝑧
2

+
1

2

𝜕𝑔
1

𝜕𝑧
3

+
𝜕𝑔
2

𝜕𝑧
0

+
1

2

𝜕𝑔
3

𝜕𝑧
1

)

+ 𝜀(
𝜕𝑔
1

𝜕𝑧
2

+
1

2

𝜕𝑔
0

𝜕𝑧
3

+
𝜕𝑔
3

𝜕𝑧
0

+
1

2

𝜕𝑔
2

𝜕𝑧
1

) 𝑒
2

= (
𝜕𝑔
0

𝜕𝑧
0

+
𝜕𝑢
1

𝜕𝑥
1

−
𝜕𝑢
0

𝜕𝑥
1

𝑒
1
+

1

2

𝜕𝑔
1

𝜕𝑧
1

)

+ (
𝜕𝑔
1

𝜕𝑧
0

+
𝜕𝑢
3

𝜕𝑥
1

−
𝜕𝑢
2

𝜕𝑥
1

𝑒
1
+

1

2

𝜕𝑔
0

𝜕𝑧
1

) 𝑒
2

+ 𝜀(
𝜕𝑔
0

𝜕𝑧
2

+
𝜕𝑢
1

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
1

𝑒
1
+

1

2

𝜕𝑔
1

𝜕𝑧
3

+
𝜕𝑔
2

𝜕𝑧
0

+
𝜕V
1

𝜕𝑥
1

−
𝜕V
0

𝜕𝑥
1

𝑒
1
+

1

2

𝜕𝑔
3

𝜕𝑧
1

)

+ 𝜀(
𝜕𝑔
1

𝜕𝑧
2

+
𝜕𝑢
3

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
1

𝑒
1
+

1

2

𝜕𝑔
0

𝜕𝑧
3

+
𝜕𝑔
3

𝜕𝑧
0

+
𝜕V
3

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
1

𝑒
1
+

1

2

𝜕𝑔
2

𝜕𝑧
1

) 𝑒
2

= (
𝜕𝑢
1

𝜕𝑥
1

−
𝜕𝑢
0

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
1

𝜕𝑧
1

)

+ (
𝜕𝑢
3

𝜕𝑥
1

−
𝜕𝑢
2

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
0

𝜕𝑧
1

) 𝑒
2

+ 𝜀(
𝜕𝑢
1

𝜕𝑦
1

−
𝜕𝑢
0

𝜕𝑦
1

𝑒
1
+

𝜕𝑔
1

𝜕𝑧
3

+
𝜕V
1

𝜕𝑥
1

−
𝜕V
0

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
3

𝜕𝑧
1

)

+ 𝜀(
𝜕𝑢
3

𝜕𝑦
1

−
𝜕𝑢
2

𝜕𝑦
1

𝑒
1
+

𝜕𝑔
0

𝜕𝑧
3

+
𝜕V
3

𝜕𝑥
1

−
𝜕V
2

𝜕𝑥
1

𝑒
1
+

𝜕𝑔
2

𝜕𝑧
1

) 𝑒
2

= {(
𝜕

𝜕𝑧
1

+ 𝜀
𝜕

𝜕𝑧
3

) 𝑒
2
− (

𝜕

𝜕𝑥
1

+ 𝜀
𝜕

𝜕𝑦
1

) 𝑒
1
}𝑓.

(40)

Therefore, we obtain the following equation:

𝐷
2
𝑓 = {(

𝜕

𝜕𝑧
1

+ 𝜀
𝜕

𝜕𝑧
3

) 𝑒
2
− (

𝜕

𝜕𝑥
1

+ 𝜀
𝜕

𝜕𝑦
1

) 𝑒
1
}𝑓. (41)
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Proposition 6. From properties of differential operators, the
following equations are obtained:

𝐷
(1𝑟)

𝑝
𝑟−1

= 2, 𝐷
(2𝑟)

𝑝
𝑟−1

= 1,

𝐷
∗

(1𝑟)
𝑝
𝑟−1

= −1, 𝐷
∗

(2𝑟)
𝑝
𝑟−1

= 0,

𝐷
∗

(1𝑟)
𝑝
∗

𝑟−1
= 2, 𝐷

∗

(2𝑟)
𝑝
∗

𝑟−1
= 1,

𝐷
(𝑟1)

𝑝
1
= 𝐷
∗

(𝑟1)
𝑝
1
= 𝐷
(𝑟1)

𝑝
∗

1
= 𝐷
∗

(𝑟1)
𝑝
∗

1

= 𝐷
(𝑟2)

𝑝
0
= 𝐷
∗

(𝑟2)
𝑝
0
= 𝐷
(𝑟2)

𝑝
∗

0

= 𝐷
∗

(𝑟2)
𝑝
∗

0
= 0 (𝑟 = 1, 2) .

(42)

Proof. By properties of the power of dual split quaternions
and derivatives on D(S), the following derivatives are
obtained:

𝐷
(11)

𝑝
0
=

1

2
(

𝜕

𝜕𝑥
0

−
𝜕

𝜕𝑥
1

𝑒
1
+

𝜕

𝜕𝑥
2

𝑒
2
+

𝜕

𝜕𝑥
3

𝑒
3
)

× (𝑥
0
+ 𝑥
1
𝑒
1
+ 𝑥
2
𝑒
2
+ 𝑥
3
𝑒
3
) = 2,

𝐷
∗

(22)
𝑝
1
=

1

2
(

𝜕

𝜕𝑦
0

+
𝜕

𝜕𝑦
1

𝑒
1
−

1

2

𝜕

𝜕𝑦
2

𝑒
2
+

1

2

𝜕

𝜕𝑦
3

𝑒
3
)

× (𝑦
0
+ 𝑦
1
𝑒
1
+ 𝑦
2
𝑒
2
+ 𝑦
3
𝑒
3
) = 0,

𝐷
(11)

𝑝
∗

0
=

1

2
(

𝜕

𝜕𝑥
0

−
𝜕

𝜕𝑥
1

𝑒
1
+

𝜕

𝜕𝑥
2

𝑒
2
+

𝜕

𝜕𝑥
3

𝑒
3
)

× (𝑥
0
− 𝑥
1
𝑒
1
− 𝑥
2
𝑒
2
− 𝑥
3
𝑒
3
) = −1.

(43)

The other equations are calculated using a similar method,
and the above equations are obtained.

Theorem 7. LetΩ be an open set in C2 ×C2 and let 𝑓(𝑧) be a
function on Ω with values inD(S). Then the power 𝑧𝑛 of 𝑧 in
D(S) is not an 𝐿

1
-regular function but an 𝐿

2
-regular function

on Ω, where 𝑛 ∈ N.

Proof. From the definition of the 𝐿
𝑟
-regular function (𝑟 =

1, 2) on Ω and Proposition 6, we may consider whether the
power 𝑧𝑛 of 𝑧 in D(S) satisfies the equation 𝐷

∗

𝑟
𝑧
𝑛
= 0 (𝑟 =

1, 2). Since𝐷∗
(11)

𝑝
0
= 2,

𝐷
∗

1
𝑧
𝑛
= (𝐷
∗

(11)
+ 𝜀𝐷
∗

(12)
)(𝑝
𝑛

0
+ 𝜀

𝑛

∑

𝑘=1

𝑝
𝑛−𝑘

0
𝑝
1
𝑝
𝑘−1

0
)

= 𝐷
∗

(11)
𝑝
𝑛

0
+ 𝜀(

𝑛

∑

𝑘=1

𝐷
∗

(11)
𝑝
𝑛−𝑘

0
𝑝
1
𝑝
𝑘−1

0
+ 𝐷
∗

(12)
𝑝
𝑛

0
) ̸= 0.

(44)

Hence, the power 𝑧𝑛 of 𝑧 is not 𝐿
1
-regular onΩ. On the other

hand, from the equations in Proposition 6, we have𝐷∗
(21)

𝑝
0
=

0,𝐷∗
(21)

𝑝
1
= 0, and𝐷

∗

(22)
𝑝
0
= 0. Then,

𝐷
∗

2
𝑧
𝑛
= 𝐷
∗

(21)
𝑝
𝑛

0
+ 𝜀(

𝑛

∑

𝑘=1

𝐷
∗

(21)
𝑝
𝑛−𝑘

0
𝑝
1
𝑝
𝑘−1

0
+ 𝐷
∗

(22)
𝑝
𝑛

0
) = 0.

(45)

Therefore, by the definition of the 𝐿
𝑟
-regular function (𝑟 =

1, 2) onΩ, a power 𝑧𝑛 of 𝑧 is 𝐿
2
-regular onΩ.
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