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We introduced an implicit and an explicit iteration method based on the hybrid steepest descent method for finding a common
element of the set of solutions of a constrained convex minimization problem and the set of solutions of a split variational inclusion
problem.

1. Introduction

Fixed-point optimization methods are very popular meth-
ods for solving the nonlinear problems such as variational
inequality problems, optimization problems, inverse prob-
lems, and equilibrium problems.The convex feasibility prob-
lem (CFP) is used for modeling inverse problems which arise
from phase retrieval problems and the intensity-modulated
radiation therapy. Moreover, the well-known special case of
CEP is a split feasibility problem (SFP).

Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces with inner

product ⟨, ⟩ and norm ‖ ⋅ ‖. Let 𝐶 and 𝑄 be nonempty closed
convex subsets of𝐻

1
and𝐻

2
, respectively. Now, we recall that

the split feasibility problem (SFP) is to find a point𝑥∗ with the
following property:

𝑥
∗
∈ 𝐶, 𝐴𝑥

∗
∈ 𝑄, (1)

where 𝐴 ∈ 𝐵(𝐻
1
, 𝐻
2
) and 𝐵(𝐻

1
, 𝐻
2
) denotes the family of all

bounded linear operators𝐻
1
to𝐻
2
. In 1994, the SFP was first

introduced by Censor and Elfving [1], in finite-dimensional
Hilbert spaces, for modeling inverse problems which arise
from phase retrievals and inmedical image reconstruction. A
number of image reconstruction problems can be formulated
as the SFP; see, for example, [2] and the references therein.
Recently, it is found that the SFP can also be applied to study
intensity modulated radiation therapy; see, for example, [3]
and the references therein.

A special case of the SFP is following a convex constrained
linear inverse problem [4] of finding an element 𝑥∗ such that

𝑥
∗
∈ 𝐶, 𝐴𝑥

∗
= 𝑏. (2)

Recall that a mapping 𝑆 of 𝐶 is said to be a nonexpansive
mapping such that

𝑆𝑥 − 𝑆𝑦
 ≤

𝑥 − 𝑦
 (3)

for all 𝑥, 𝑦 ∈ 𝐶. Further, we consider the following fixed point
problem (FPP) for a nonexpansive mapping 𝑆 : 𝐻

1
→ 𝐻

1
.

Find 𝑥 ∈ 𝐻
1
such that

𝑆𝑥 = 𝑥. (4)

The solution set of FPP (4) is denoted by 𝐹(𝑆). It is well
known that if 𝐹(𝑆) ̸= 0, 𝐹(𝑆) is closed and convex. Amapping
𝑇 : 𝐻

1
→ 𝐻

1
is said to be an averaged mapping if it can

be written as the average of an identity 𝐼 and a nonexpansive
mapping 𝑆; that is,

𝑇 = (1 − 𝛼) 𝐼 + 𝛼𝑆, (5)

where 𝛼 is a number in (0, 1). More precisely, we say that 𝑇 is
𝛼-averaged. It is known that the projection is (1/2)-averaged.
Consider the following constrained convex minimization
problem:

minimize {𝑓 (𝑥) : 𝑥 ∈ 𝐶} , (6)
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where 𝐶 is a closed and convex subset of a Hilbert space
𝐻
1
and 𝑓 : 𝐶 → R is a real valued convex function.

If 𝑓 is Fréchet differentiable, then the gradient-projection
algorithm (GPA) generates a sequence {𝑥

𝑛
}
∞

𝑛=0
according to

the following recursive formula:

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝛾∇𝑓 (𝑥

𝑛
)) , ∀𝑛 ≥ 0, (7)

or more generally,

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝛾
𝑛
∇𝑓 (𝑥
𝑛
)) , ∀𝑛 ≥ 0, (8)

where, in both (7) and (8), the initial guess 𝑥
0
is taken from

𝐶 arbitrarily and the parameters, 𝛾 or 𝛾
𝑛
, are positive real

numbers satisfying certain conditions. The convergence of
the algorithms (7) and (8) depends on the behavior of the
gradient ∇𝑓. It is known that if ∇𝑓 is 𝛼-strongly monotone
and 𝐿-Lipschitzian with constants 𝛼, 𝐿 ≥ 0, such that

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝛼
𝑥 − 𝑦



2

, 𝑥, 𝑦 ∈ 𝐶,

∇𝑓 (𝑥) − ∇𝑓 (𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 , 𝑥, 𝑦 ∈ 𝐶,

(9)

then, for 0 < 𝛾 < 2𝛼/𝐿
2, the operator

𝑇 := 𝑃
𝐶
(𝐼 − 𝛾∇𝑓) (10)

is a contraction; hence, the sequence {𝑥
𝑛
}
∞

𝑛=0
defined by the

GPA (7) converges in norm to the unique solution of (6).
More generally, if the sequence {𝛾

𝑛
}
∞

𝑛=0
is chosen to satisfy the

property

0 < lim inf
𝑛→∞

𝛾
𝑛
≤ lim sup
𝑛→∞

𝛾
𝑛
<

2𝛼

𝐿2
, (11)

then the sequence {𝑥
𝑛
}
∞

𝑛=0
defined by the GPA (8) converges

in norm to the unique minimizer of (6).
However, if the gradient∇𝑓 fails to be stronglymonotone,

the operator 𝑇 defined in (10) may fail to be contractive; con-
sequently, the sequence {𝑥

𝑛
}
∞

𝑛=0
generated by the algorithm

(7) may fail to converge strongly [5]. If ∇𝑓 is Lipschitzian,
then the algorithms (7) and (8) can still converge in the weak
topology under certain conditions [6, 7].

In 2011, Xu [5] gave an alternative operator-oriented
approach to algorithm (8), namely, an averaged mapping
approach. He gave his averaged mapping approach to the
GPA (8) and the relaxed GPA. Moreover, he constructed
an example which shows that the algorithm (7) does not
converge in norm in an infinite-dimensional space and also
presented twomodifications of GPAwhich are shown to have
strong convergence.

Given a mapping 𝐴 : 𝐶 → 𝐻
1
, the classical variational

inequality problem (VIP) is to find 𝑥
∗
∈ 𝐶 such that

⟨𝐴𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (12)

The solution set of VIP (12) is denoted by VI(𝐶, 𝐴). It is well
known that 𝑥∗ ∈ VI(𝐶, 𝐴) if and only if 𝑥∗ = 𝑃

𝐶
(𝑥
∗
− 𝜆𝐴𝑥

∗
)

for some 𝜆 > 0. The variational inequality was first discussed
by Lions [8] andnow iswell known.Thevariational inequality
theory has been studied quite extensively and has emerged

as an important tool in the study of a wide class of obstacle,
unilateral, free, moving, and equilibrium problems arising in
several branches of pure and applied sciences in a unified and
general framework.

Yamada [9] introduced the hybrid steepest descent method
as follows:

𝑥
𝑛+1

= 𝑆𝑥
𝑛
− 𝛼
𝑛
𝜇𝐵𝑆𝑥
𝑛
, (13)

where 𝑥
1

= 𝑥 ∈ 𝐻
1
, {𝛼
𝑛
} ⊂ (0, 1), 𝐵 : 𝐻

1
→ 𝐻

1
is a

strongly monotone and Lipschitz continuous mapping, and
𝜇 is a positive real number. He considered the variational
inequality problem over the set of common fixed points of
a finite family of nonexpansive mappings and proved strong
convergence of the sequence generated by the method. Later,
Tian [10] considered the following iterative method for a
nonexpansive mapping 𝑇 : 𝐻

1
→ 𝐻
1
with 𝐹(𝑇) ̸= 0:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
, 𝑛 ≥ 1, (14)

where 𝐹 is a 𝑘-Lipschitzian and 𝜂-strongly monotone oper-
ator. He proved that the sequence {𝑥

𝑛
} generated by (14)

converges to a fixed point 𝑞 ∈ 𝐹(𝑇), which is the unique
solution of the variational inequality

⟨(𝛾𝑓 − 𝜇𝐹) 𝑞, 𝑝 − 𝑞⟩ ≤ 0, 𝑝 ∈ 𝐹 (𝑇) . (15)

Recently, Moudafi [11] introduced the following split
monotone variational inclusion problem (SMVIP). Find 𝑥

∗
∈

𝐻
1
such that

0 ∈ 𝑓
1
(𝑥
∗
) + 𝐵
1
(𝑥
∗
) , (16)

and such that

𝑦
∗
= 𝐴𝑥
∗
∈ 𝐻
2

solves 0 ∈ 𝑓
2
(𝑦
∗
) + 𝐵
2
(𝑦
∗
) , (17)

where 𝐵
1
: 𝐻
1

→ 2
𝐻
1 and 𝐵

2
: 𝐻
2

→ 2
𝐻
2 are multivalued

maximal monotone mappings.
Moudafi [11] introduced an iterative method for solving

SMVIP (16)-(17), which can be seen an important general-
ization of an iterative method given by Censor et al. [12] for
split variational inequality problem. AsMoudafi noted in [11],
SMVIP (16)-(17) includes a special case, the split common
fixed point problem, split variational inequality problem, split
zero problem, and split feasibility problem [1, 3, 11, 12] which
have already been studied and used in practice as a model
in intensity-modulated radiation therapy treatment planning;
see [1, 3]. This formalism is also at the core of modeling of
many inverse problems arising for phase retrieval and other
real-world problems, for instance, in sensor networks, in
computerized tomography, and in data compression; see, for
example, [2, 13].

If 𝑓
1

≡ 0 and 𝑓
2

≡ 0 then SMVIP (16)-(17) reduces to
the following split variational inclusion problem (SVIP). Find
𝑥
∗
∈ 𝐻
1
such that

0 ∈ 𝐵
1
(𝑥
∗
) , (18)

and such that

𝑦
∗
= 𝐴𝑥
∗
∈ 𝐻
2

solves 0 ∈ 𝐵
2
(𝑦
∗
) . (19)
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When looked separately, (18) is the variational inclusion
problem and we denoted its solution set by SOLVIP (𝐵

1
).

The SVIP (18)-(19) constitutes a pair of variational inclusion
problemswhich have to be solved so that the image 𝑦∗ = 𝐴𝑥

∗

under a given bounded linear operator 𝐴 of the solution 𝑥
∗

of SVIP (18) in 𝐻
1
is the solution of another SVIP (19) in

another space 𝐻
2
; we denote the solution set of SVIP (19) by

SOLVIP(𝐵
2
). The solution set of SVIP (18)-(19) is denoted by

Γ = {𝑥
∗
∈ 𝐻
1
: 𝑥
∗
∈ SOLVIP(𝐵

1
) and 𝐴𝑥

∗
∈ SOLVIP(𝐵

2
)}.

Very recently, Byrne et al. [14] studied theweak and strong
convergence of the following iterative method for SVIP (18)-
(19): for given 𝑥

0
∈ 𝐻
1
, compute the iterative sequence {𝑥

𝑛
}

generated by the following iterative scheme:

𝑥
𝑛+1

= 𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝛾𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) , (20)

for 𝜆 > 0. In 2013, Kazmi and Rizvi [15] studied the strong
convergence of the following iterative method:

𝑢
𝑛
= 𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝛾𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) ;

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆𝑢
𝑛
,

(21)

where 𝜆 > 0 and 𝛾 ∈ (0, 1/𝐿), 𝐿 is the spectral radius of
the operator 𝐴

∗
𝐴, and 𝐴

∗ is the adjoint of 𝐴. He proved the
sequence {𝑥

𝑛
} generated by (21) strongly convergence to fixed

point of nonexpansive mapping 𝑆 and the solution set Γ of
SVIP (18)-(19).

In this paper, motivated by the work of Xu [5], Yamada
[9], Tian [10], Byrne et al. [14], and Kazmi and Rizvi [15],
we proved the strong convergence theorems for finding a
common element of the set of solutions of a constrained
convex minimization problem and the set of solutions of a
split variational inclusion problem (18)-(19).

2. Preliminaries

Throughout this paper, we always write ⇀ for weak conver-
gence and → for strong convergence. We need some facts
and tools in a real Hilbert space 𝐻

1
, which are listed below.

For any 𝑥 ∈ 𝐻
1
, there exists a unique nearest point in 𝐶

denoted by 𝑃
𝐶
(𝑥) such that

𝑥 − 𝑃
𝐶
(𝑥)

 ≤
𝑥 − 𝑦

 , ∀𝑦 ∈ 𝐶. (22)

The mapping 𝑃
𝐶
is called the metric projection of 𝐻

1
onto 𝐶.

We know that 𝑃
𝐶
is a nonexpansive mapping from 𝐻

1
onto

𝐶. It is also known that 𝑃
𝐶
(𝑥) ∈ 𝐶 and satisfied

⟨𝑥 − 𝑦, 𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦⟩ ≥

𝑃𝐶𝑥 − 𝑃
𝐶
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐻
1
. (23)

Moreover, 𝑃
𝐶
𝑥 is characterized by the fact that 𝑃

𝐶
𝑥 ∈ 𝐶

and

⟨𝑥 − 𝑃
𝐶
(𝑥) , 𝑦 − 𝑃

𝐶
(𝑥)⟩ ≤ 0,

𝑥 − 𝑦


2

≥
𝑥 − 𝑃

𝐶
(𝑥)



2

+
𝑦 − 𝑃

𝐶
(𝑥)



2

,

∀𝑥 ∈ 𝐻
1
, 𝑦 ∈ 𝐶.

(24)

It is known that every nonexpansive operator 𝑇 : 𝐻
1

→

𝐻
1
satisfies, for all (𝑥, 𝑦) ∈ 𝐻

1
× 𝐻
1
, the inequality

⟨(𝑥 − 𝑇 (𝑥)) − (𝑦 − 𝑇 (𝑦)) , 𝑇 (𝑦) − 𝑇 (𝑥)⟩

≤
1

2

(𝑇(𝑥) − 𝑥) − (𝑇(𝑦) − 𝑦)


2
(25)

and therefore, we get, for all (𝑥, 𝑦) ∈ 𝐻
1
× 𝐹(𝑇),

⟨𝑥 − 𝑇 (𝑥) , 𝑦 − 𝑇 (𝑥)⟩ ≤
1

2
‖𝑇(𝑥) − 𝑥‖

2 (26)

(see, e.g., Theorem 3 in [16] andTheorem 1 in [17]).

Lemma 1. Let 𝐻
1
be a real Hilbert space. There hold the

following identities:

(i) ‖𝑥 − 𝑦‖
2
= ‖𝑥‖

2
− ‖𝑦‖
2
− 2⟨𝑥 − 𝑦, 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻

1
;

(ii) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖
2
= 𝑡‖𝑥‖

2
+(1−𝑡)‖𝑦‖

2
−𝑡(1−𝑡)‖𝑥 − 𝑦‖

2,
∀𝑡 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝐻

1
.

Lemma 2 (see [7]). Assume that {𝛼
𝑛
} is a sequence of

nonnegative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛿
𝑛
, (27)

where {𝛾
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence such

that

(i) ∑
∞

𝑛=1
𝛾
𝑛
= ∞;

(ii) lim sup
𝑛→∞

(𝛿
𝑛
/𝛾
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝛿
𝑛
| < ∞.

Then, lim
𝑛→∞

𝛼
𝑛
= 0.

Lemma 3 (see [18]). Let 𝐵 : 𝐻
1

→ 𝐻
1
be an 𝐿-Lipschitzian

and 𝜂-strongly monotone operator on a Hilbert space 𝐻
1
with

𝐿 > 0, 𝜂 > 0, 0 < 𝜇 < 2𝜂/𝐿
2, and 0 < 𝑡 < 1. Then 𝑆 = (𝐼 −

𝑡𝜇𝐵) : 𝐻
1

→ 𝐻
1
is a contraction with contractive coefficients

1 − 𝑡𝜏 and 𝜏 = (1/2)𝜇(2𝜂 − 𝜇𝐿
2
).

Lemma 4. A nonlinear mapping 𝐵 whose domain is 𝐷(𝐵) ⊆

𝐻
1
and range is 𝑅(𝐵) ⊆ 𝐻

1
is said to be

(i) monotone, if

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝐵) ; (28)

(ii) 𝛽-strongly monotone if there exists a constant 𝛽 > 0

such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽
𝑥 − 𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝐵) ; (29)

(iii) 𝜐-inverse strongly monotone (or, 𝜐-ism), if there exists
a constant 𝜐 > 0 such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝜐
𝐵𝑥 − 𝐵𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝐵) ; (30)

(iv) firmly nonexpansive, if

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥
𝐵𝑥 − 𝐵𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝐵) . (31)
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A multivalued mapping 𝑀 : 𝐻
1

→ 2
𝐻
1 is called

monotone if, for all 𝑥, 𝑦 ∈ 𝐻
1
, 𝑢 ∈ 𝑀𝑥 and V ∈ 𝑀𝑦 such

that

⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0. (32)

A monotone mapping 𝑀 : 𝐻
1

→ 2
𝐻
1 is maximal if

Graph(𝑀) is not properly contained in the graph of any other
monotone mapping.

It is known that a monotone mapping 𝑀 is maximal if
and only if, for (𝑥, 𝑢) ∈ 𝐻

1
× 𝐻
1
, ⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0, for every

(𝑦, V) ∈ Graph(𝑀) implies that 𝑢 ∈ 𝑀𝑥.
Let 𝑀 : 𝐻

1
→ 2
𝐻
1 be a multivalued maximal monotone

mapping. Then, the resolvent mapping 𝐽
𝑀

𝜆
: 𝐻
1

→ 𝐻
1

associated with 𝑀 is defined by

𝐽
𝑀

𝜆
(𝑥) := (𝐼 + 𝜆𝑀)

−1
(𝑥) , ∀𝑥 ∈ 𝐻

1
, (33)

for some 𝜆 > 0, where 𝐼 stands for identity operator on 𝐻
1
.

We note that for all 𝜆 > 0 the resolvent operator 𝐽
𝑀

𝜆
is

single-valued, nonexpansive, and firmly nonexpansive.

Lemma 5 (see [15]). SVIP (18)-(19) is equivalent to find 𝑥
∗

∈

𝐻
1
such that 𝑦∗ = 𝐴𝑥

∗
∈ 𝐻
2
,

𝑥
∗
= 𝐽
𝐵
1

𝜆
(𝑥
∗
) , 𝑦

∗
= 𝐽
𝐵
2

𝜆
(𝑦
∗
) , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 > 0. (34)

Lemma 6 (see [19]). Let 𝑉 : 𝐶 → 𝐻
1
be an 𝑙-Lipschitz

mapping with coefficient 𝑙 ≥ 0 and 𝐵 : 𝐶 → 𝐻
1
a strong

positive bounded linear operator with 𝛾 > 0. Then for 0 < 𝛾 <

(𝜇𝛾/𝑙),

⟨𝑥 − 𝑦, (𝜇𝐵 − 𝛾𝑉) 𝑥 − (𝜇𝐵 − 𝛾𝑉) 𝑦⟩

≥ (𝜇𝛾 − 𝛾𝑙)
𝑥 − 𝑦



2

, 𝑥, 𝑦 ∈ 𝐻
1
.

(35)

This is, 𝜇𝐵 − 𝛾𝑉 is strongly monotone with coefficient 𝜇𝛾 − 𝛾𝑙.

Proposition 7 (see [20]). We have the following assertions.
(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇

is (1/2)-ism.
(ii) If 𝑇 is ]-ism and 𝛾 > 0, then 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼 − 𝑇 is

]-ism, for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is
𝛼-averaged if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

Proposition 8 (see [20, 21]). We have the following assertions.
(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉, for some 𝛼 ∈ (0, 1), 𝑆 is averaged

and 𝑉 is nonexpansive, and then 𝑇 is averaged.
(ii) 𝑇 is firmly nonexpansive if and only if the complement

𝐼 − 𝑇 is firmly nonexpansive.
(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉, for some 𝛼 ∈ (0, 1), 𝑆 is firmly

nonexpansive and 𝑉 is nonexpansive, and then 𝑇 is
averaged.

(iv) The composite of finite many averaged mappings is
averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1
is

averaged, then so is the composite 𝑇
1
∘ 𝑇
2
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2

∈ (0, 1), then the composite 𝑇
1
𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

Lemma 9 (see [18]). Let 𝐻
1
be a Hilbert space, 𝐶 a nonempty

closed convex subset of 𝐻
1
, and 𝑇 : 𝐶 → 𝐶 a nonexpansive

mapping with 𝐹(𝑇) ̸= 0. If {𝑥
𝑛
} is a sequence in 𝐶 weakly

converging to 𝑥 and if {(𝐼 − 𝑇)𝑥
𝑛
} converges strongly to 𝑦, then

(𝐼 − 𝑇)𝑥 = 𝑦.

3. Main Results

Throughout the rest of this paper, we always assume that 𝑉
is an 𝑙-Lipschitzian mapping with coefficient 𝑙 ≥ 0, and 𝐷 is
a strongly positive bounded linear operator with coefficient
𝜍. Then we obtain that 𝐷 is ‖𝐷‖-Lipschitzian and 𝜍-strongly
monotone. Let 𝑓 : 𝐶 → R be a real-valued convex function
and assume that ∇𝑓 is an 𝐿-Lipschitzian mapping with 𝐿 ≥ 0.

Note that ∇𝑓 is 𝐿-Lipschitzian; it implies that ∇𝑓 is
(1/𝐿)-ism, which then implies that 𝛾∇𝑓 is (1/𝛾𝐿)-ism. So by
Proposition 7, its complement 𝐼 − 𝛾∇𝑓 is (𝛾𝐿/2)-averaged.
Since 𝑃

𝐶
is (1/2)-averaged, we obtain from Proposition 8 that

the composition 𝑃
𝐶
(𝐼 − 𝛾∇𝑓) is ((2 + 𝛾𝐿)/4)-averaged for

0 < 𝛾 < 2/𝐿. Hence we have that, for each 𝑛, 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓)

is ((2 + 𝛾
𝑛
𝐿)/4)-averaged. Therefore, we can write

𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) =

2 − 𝛾
𝑛
𝐿

4
+

2 + 𝛾
𝑛
𝐿

4
𝑆
𝑛
, (36)

where 𝑆
𝑛
is nonexpansive.

Suppose that minimization problem (6) is consistent and
let 𝑈 denote its solution set. Assume that 0 < 𝜇 < 2𝜍/‖𝐷‖

2

and 0 < 𝜍 < (𝜇(𝜍 − 𝜇‖𝐷‖
2
/2)/𝑙) = 𝜏/𝑙.

Define a mapping 𝑊
𝑛
= 𝑆
𝑛
𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴). Since

both 𝐽
𝐵
1

𝜆
and 𝐽
𝐵
2

𝜆
are firmly nonexpansive, they are averaged

mappings. For 𝜉 ∈ (0, 1/𝐿), the mapping (𝐼 + 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
−

𝐼)𝐴) is averaged. It follows from Proposition 8(iv) that the
mapping 𝐽

𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) is averaged and hence that

is nonexpansive mapping. It is easy to see that 𝑊
𝑛
is also

nonexpansive mapping.
Consider the following mapping 𝐺

𝑛
on 𝐻
1
defined by

𝐺
𝑛
𝑥 = 𝛼

𝑛
𝜍𝑉 (𝐽
𝐵
1

𝜆
(𝑥 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥))

+ (𝐼 − 𝛼
𝑛
𝜇𝐷)𝑊

𝑛
𝑥, ∀𝑥 ∈ 𝐻

1
, 𝑛 ∈ N,

(37)

where 𝛼
𝑛
∈ (0, 1). From Lemma 3, we have

𝐺𝑛𝑥 − 𝐺
𝑛
𝑦


=

𝛼
𝑛
𝑉(𝐽
𝐵
1

𝜆
(𝑥 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥)) + (𝐼 − 𝛼

𝑛
𝜇𝐷)𝑊

𝑛
𝑥

− [𝛼
𝑛
𝑉(𝐽
𝐵
1

𝜆
(𝑦 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑦))

+ (𝐼 − 𝛼
𝑛
𝜇𝐷)𝑊

𝑛
𝑦]
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≤ 𝛼
𝑛
𝜍

𝑉 (𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) 𝑥)

−𝑉 (𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) 𝑦)



+ (1 − 𝛼
𝑛
𝜏)

𝑊𝑛𝑥 − 𝑊
𝑛
𝑦


≤ 𝛼
𝑛
𝜍
𝑉𝑥 − 𝑉𝑦

 + (1 − 𝛼
𝑛
𝜏)

𝑊𝑛𝑥 − 𝑊
𝑛
𝑦


≤ 𝛼
𝑛
𝜍𝑙

𝑥 − 𝑦
 + (1 − 𝛼

𝑛
𝜏)

𝑥 − 𝑦


= (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑥 − 𝑦
 .

(38)

Since 0 < 1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙) < 1, it follows that 𝐺

𝑛
is a

contraction. Therefore, by the Banach contraction principle,
𝐺
𝑛
has a unique fixed point 𝑥𝑍

𝑛
∈ 𝐻
1
such that

𝑥
𝑍

𝑛
= 𝛼
𝑛
𝜍𝑉 (𝐽
𝐵
1

𝜆
(𝑥
𝑍

𝑛
+ 𝜉 (𝐽

𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑍

𝑛
))

+ (𝐼 − 𝛼
𝑛
𝜇𝐷)𝑊

𝑛
𝑥
𝑍

𝑛
.

(39)

For simplicity, we will write 𝑥
𝑛
for 𝑥𝑍
𝑛
, provided no confusion

occurs. Next, we prove that the sequence {𝑥
𝑛
} converges

strongly to a point 𝑥
∗

∈ Ω := 𝑈 ∩ Γ which solves the
variational inequality

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (40)

Equivalently, 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐷 + 𝜍𝑉)𝑥

∗.

3.1. An Implicit Iteration Method

Theorem 10. Let𝐻
1
and𝐻

2
be two real Hilbert spaces and let

𝐴 : 𝐻
1

→ 𝐻
1
be a bounded linear operator, 𝑓 : 𝐶 → R a

real-value convex function, and ∇𝑓 an 𝐿-Lipschitzian mapping
with 𝐿 ≥ 0. Assume that Ω := 𝑈 ∩ Γ ̸= 0. Let 𝑉 : 𝐶 → 𝐶 be
an 𝑙-Lipschitzain mapping with 𝑙 ≥ 0 and let 𝐷 be a strongly
positive bounded linear operator with coefficients 𝜍 ≥ 0, 0 <

𝜇 < (2𝜍/‖𝐷‖
2
), and 0 < 𝜍 < (𝜇(𝜍 − (𝜇‖𝐷‖

2
/2))/𝑙) = 𝜏/𝑙. Given

𝑥
0
∈ 𝐻
1
arbitrarily, let {𝑥

𝑛
} and {𝑢

𝑛
} be a sequence generated

by the following algorithm:

𝑢
𝑛
= 𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) ;

𝑥
𝑛
= 𝛼
𝑛
𝜍𝑉𝑢
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
,

(41)

where 𝜉 ∈ (0, 1/𝐿), 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) = 𝛽

𝑛
𝐼 + (1 − 𝛽

𝑛
)𝑆
𝑛
, 𝑆
𝑛
is

nonexpansive, 𝛽
𝑛

= (2 − 𝛾
𝑛
𝐿)/4, 𝛾

𝑛
∈ (0, 2/𝐿), and 𝐴

∗ is the
adjoint of 𝐴 and {𝛼

𝑛
}, {𝛽
𝑛
} satisfying the following conditions:

(i) {𝛼
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝛼
𝑛

= 0 and ∑
∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| <

∞;
(ii) {𝛽

𝑛
} ⊂ (0, 1/2), lim

𝑛→∞
𝛽
𝑛
= 0(𝛾
𝑛

→ 2/𝐿).

Then, the sequence {𝑥
𝑛
} converges strongly to a point 𝑥∗ ∈ Ω,

which solves the variational inequality (40).

Proof. Consider the following.

Step 1. Show first that {𝑥
𝑛
} is bounded.

Since lim
𝑛→∞

𝛼
𝑛
= 0, we can assume that 𝛼

𝑛
∈ (0, ‖𝐷‖

−1
).

By Lemma 3, we have ‖𝐼 − 𝛼
𝑛
𝜇𝐷‖ ≤ 1 − 𝛼

𝑛
𝜏.

Let 𝑝 ∈ Ω; we have 𝑝 = 𝐽
𝐵
1

𝜆
𝑝, 𝐴𝑝 = 𝐽

𝐵
2

𝜆
(𝐴𝑝). We estimate

𝑢𝑛 − 𝑝


2

=

𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) − 𝑝



2

=

𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) − 𝐽
𝐵
1

𝜆
𝑝


2

≤

𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
− 𝑝



2

≤
𝑥𝑛 − 𝑝



2

+ 𝜉
2

𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

+ 2𝜉⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩.

(42)

Thus, we have
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2

+ 𝜉
2
⟨(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
, 𝐴𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩

+ 2𝜉 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩ .

(43)

Now, we have

𝜉
2
⟨(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
, 𝐴𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩

≤ 𝐿𝜉
2
⟨(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
, (𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩

= 𝐿𝜉
2

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

.

(44)

Setting Λ := 2𝜉⟨𝑥
𝑛
− 𝑝,𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩ and using (26), we

have

Λ = 2𝜉⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩

= 2𝜉⟨𝐴 (𝑥
𝑛
− 𝑝) , (𝐽

𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩

= 2𝜉 ⟨𝐴 (𝑥
𝑛
− 𝑝) + (𝐽

𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛

− (𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
, (𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩

= 2𝜉 {⟨𝐽
𝐵
2

𝜆
𝐴𝑥
𝑛
− 𝐴𝑝, (𝐽

𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩ −


(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

}

≤ 2𝜉 {
1

2


(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

−

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

}

≤ −𝜉

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

.

(45)

Using (43), (44), and (45), we obtain

𝑢𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

+ 𝜉 (𝐿𝜉 − 1)

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

. (46)

Since 𝜉 ∈ (0, 1/𝐿), we obtain
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2

. (47)
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Thus, by (41) and Lemma 3, we derive that
𝑥𝑛 − 𝑝



=
𝛼𝑛𝜍𝑉𝑢

𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− 𝑝



=
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑝

+𝛼
𝑛
𝜍𝑉𝑢
𝑛
− 𝛼
𝑛
𝜍𝑉𝑝 + 𝛼

𝑛
𝜍𝑉𝑝 − 𝛼

𝑛
𝜇𝐷𝑝



≤ (1 − 𝛼
𝑛
𝜏)

𝑢𝑛 − 𝑝
 + 𝛼
𝑛
𝜍𝑙

𝑢𝑛 − 𝑝


+ 𝛼
𝑛

(𝜍𝑉 − 𝜇𝐷)𝑝


≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

(𝜍𝑉 − 𝜇𝐷) 𝑝


≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛
(𝜏 − 𝜍𝑙)

(𝜍𝑉 − 𝜇𝐷)𝑝


𝜏 − 𝜍𝑙
.

(48)

It follows that ‖𝑥
𝑛
− 𝑝‖ ≤ ‖(𝜍𝑉 − 𝜇𝐷)𝑝‖/(𝜏 − 𝜍𝑙).

Hence {𝑥
𝑛
} is bounded and so is {𝑢

𝑛
}. It follows from the

Lipschitz of𝐷,∇𝑓,𝑉 that {𝐷𝑥
𝑛
}, {𝐷𝑢

𝑛
}, {∇𝑓𝑢

𝑛
}, and {𝑉𝑢

𝑛
} are

also bounded. From the nonexpansivity of 𝑆
𝑛
, it follows that

{𝑆
𝑛
𝑢
𝑛
} is also bounded.

Step 2. Show that

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛

 = 0. (49)

Next, from (46) and (47), we will show that

𝑥𝑛 − 𝑝


2

=
𝛼𝑛𝜍𝑉𝑢

𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷)𝑆
𝑛
𝑢
𝑛
− 𝑝



2

=
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑝

+𝛼
𝑛
𝜍𝑉𝑢
𝑛
− 𝛼
𝑛
𝜇𝐷𝑝



2

≤ (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑝



2

+ 2𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝, 𝑥

𝑛
− 𝑝⟩

= (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑝



2

+ 2𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝜍𝑉𝑝 + 𝜍𝑉𝑝 − 𝜇𝐷𝑝, 𝑥

𝑛
− 𝑝⟩

(50)

= (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑝



2

+ 2𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝜍𝑉𝑝, 𝑥

𝑛
− 𝑝⟩

+ 2𝛼
𝑛
⟨𝜍𝑉𝑝 − 𝜇𝐷𝑝, 𝑥

𝑛
− 𝑝⟩

≤ (1 − 𝛼
𝑛
𝜏)
2

(
𝑥𝑛 − 𝑝



2

+ 𝜉 (𝐿𝜉 − 1)

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

)

+ 2𝛼
𝑛
𝜍𝑙
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝑥𝑛 − 𝑝


= (1 − 𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

− (1 − 𝛼
𝑛
𝜏)
2

𝜉 (1 − 𝐿𝜉)

×

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

+ 2𝛼
𝑛
𝜍𝑙
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝑥𝑛 − 𝑝
 .

(51)

Therefore

(1 − 𝛼
𝑛
𝜏)
2

𝜉 (1 − 𝐿𝜉)

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

≤ (𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
𝜍𝑙
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝑥𝑛 − 𝑝
 .

(52)

Since (1 − 𝛼
𝑛
𝜏)
2
𝜉(1 − 𝐿𝜉) > 0 and 𝛼

𝑛
→ 0, we get

lim
𝑛→∞


(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛


= 0. (53)

Next, we estimate

𝑢𝑛 − 𝑝


2

=

𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) − 𝑝



2

=

𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) − 𝐽
𝐵
1

𝜆
𝑝


2

≤ ⟨𝑢
𝑛
− 𝑝, 𝑥

𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
− 𝑝⟩

=
1

2
{
𝑢𝑛 − 𝑝



2

+

𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
− 𝑝



2

−

(𝑢
𝑛
− 𝑝) − [𝑥

𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
− 𝑝]



2

}

=
1

2
{
𝑢𝑛 − 𝑝



2

+
𝑥𝑛 − 𝑝



2

+ 𝜉 (𝐿𝜉 − 1)

(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
− 𝑝



2

−

𝑢
𝑛
− 𝑥
𝑛
− 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

}

≤
1

2
{
𝑢𝑛 − 𝑝



2

+
𝑥𝑛 − 𝑝



2

− [
𝑢𝑛 − 𝑥

𝑛



2

+ 𝜉
2

𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



2

−2𝜉 ⟨𝑢
𝑛
− 𝑥
𝑛
, 𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
⟩ ]}

≤
1

2
{
𝑢𝑛 − 𝑝



2

+
𝑥𝑛 − 𝑝



2

−
𝑢𝑛 − 𝑥

𝑛



2

+2𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛


} .

(54)

So, we obtain

𝑢𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

−
𝑢𝑛 − 𝑥

𝑛



2

+ 2𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛


.

(55)
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Observe that, from (50) and (55), we get
𝑥𝑛 − 𝑝



2

≤ (1 − 𝛼
𝑛
𝜏)
2

× (
𝑥𝑛 − 𝑝



2

−
𝑢𝑛 − 𝑥

𝑛



2

+2𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛


)

+ 2𝛼
𝑛
𝜍𝑙
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝑥𝑛 − 𝑝


= (1 − 𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

− (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑥

𝑛



2

+ 2(1 − 𝛼
𝑛
𝜏)
2

𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



+ 2𝛼
𝑛
𝜍𝑙
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝑥𝑛 − 𝑝
 .

(56)

Therefore
(1 − 𝛼

𝑛
𝜏)
2𝑢𝑛 − 𝑥

𝑛



2

≤ (𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

+ 2(1 − 𝛼
𝑛
𝜏)
2

𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



+ 2𝛼
𝑛
𝜍𝑙
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝑥𝑛 − 𝑝
 .

(57)

Since (1 −𝛼
𝑛
𝜏)
2
> 0, 𝛼

𝑛
→ 0, and as seen in (53), we get that

(49) holds.

Step 3. Show that

lim
𝑛→∞

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

 = 0. (58)

Observe that
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛



=
𝑥𝑛 − 𝑆

𝑛
𝑢
𝑛
+ 𝑆
𝑛
𝑢
𝑛
− 𝑆
𝑛
𝑥
𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝑢
𝑛

 +
𝑆𝑛𝑢𝑛 − 𝑆

𝑛
𝑥
𝑛



≤ 𝛼
𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑆

𝑛
𝑢
𝑛

 +
𝑢𝑛 − 𝑥

𝑛

 .

(59)

Since 𝛼
𝑛

→ 0 and as seen in (49), we get that (58) holds.
Thus,

𝑢𝑛 − 𝑆
𝑛
𝑢
𝑛



=
𝑢𝑛 − 𝑥

𝑛
+ 𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛
+ 𝑆
𝑛
𝑥
𝑛
− 𝑆
𝑛
𝑢
𝑛



≤
𝑢𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 +
𝑆𝑛𝑥𝑛 − 𝑆

𝑛
𝑢
𝑛



≤ 2
𝑢𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 .

(60)

From (49) and (58), we get lim
𝑛→∞

‖𝑢
𝑛
− 𝑆
𝑛
𝑢
𝑛
‖ = 0.

Note that
𝑃𝐶 (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛
− 𝑢
𝑛



=
𝛽𝑛𝑢𝑛 + (1 − 𝛽

𝑛
) 𝑆
𝑛
𝑢
𝑛
− 𝑢
𝑛



=
(1 − 𝛽

𝑛
) 𝑆
𝑛
𝑢
𝑛
− (1 − 𝛽

𝑛
) 𝑢
𝑛



= (1 − 𝛽
𝑛
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 ≤
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 ,

(61)

where 𝛽
𝑛

∈ (0, 1/2). Since 𝛾
𝑛

∈ (0, 2/𝐿) and as seen in (61),
we get

𝑃𝐶 (𝐼 − 𝛾
𝑛
∇𝑓) 𝑢
𝑛
− 𝑢
𝑛



=


𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓)𝑢

𝑛
− 𝑢
𝑛



≤


𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓)𝑢

𝑛
− 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛



+
𝑃𝐶 (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛
− 𝑢
𝑛



≤


(𝐼 −

2

𝐿
∇𝑓)𝑢

𝑛
− (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛



+
𝑃𝐶 (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛
− 𝑢
𝑛



≤ (
2

𝐿
− 𝛾
𝑛
)
∇𝑓 (𝑢

𝑛
)
 +

𝑆𝑛𝑢𝑛 − 𝑢
𝑛

 .

(62)

Since the boundedness of {∇𝑓(𝑢
𝑛
)}, 𝛽
𝑛

→ 0, and ‖𝑆
𝑛
𝑢
𝑛
−

𝑢
𝑛
‖ → 0, we conclude that

lim
𝑛→∞


𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓)𝑢

𝑛
− 𝑢
𝑛


= 0. (63)

So we conclude that

lim
𝑛→∞

𝑃𝐶 (𝐼 − 𝛾
𝑛
∇𝑓) 𝑢
𝑛
− 𝑢
𝑛

 = 0. (64)

Since {𝑢
𝑛
} is bounded, there exists a subsequence {𝑢

𝑛
𝑗

}

which converges weakly to 𝑥
∗.

Step 4. Show that 𝑥∗ ∈ Ω.
Since 𝐶 is closed and convex, 𝐶 is weakly closed so we

have 𝑥
∗
∈ Ω. By Lemma 9 and (63), we have 𝑥

∗
∈ 𝑈.

Next, show that 𝑥∗ ∈ Γ.
Consider that 𝑢

𝑛
𝑘

= 𝐽
𝐵
1

𝜆
(𝑥
𝑛
𝑘

+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
𝑘

) can be
rewritten as

(𝑥
𝑛
𝑘

− 𝑢
𝑛
𝑘

) + 𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
𝑘

𝜆
∈ 𝐵
1
𝑢
𝑛
𝑘

. (65)

Taking limit 𝑘 → ∞ in (65) and by taking into account (49)
and (53) and the fact that the graph of a maximal monotone
operator is weakly strongly closed, we obtain 0 ∈ 𝐵

1
(𝑥
∗
); that

is, 𝑥∗ ∈ SOLVIP(𝐵
1
). Furthermore, since {𝑥

𝑛
} and {𝑢

𝑛
} have

the same asymptotical behavior, {𝐴𝑥
𝑛
𝑘

} weakly converges to
𝐴𝑥
∗. Again, by (53) and the fact that the resolvent 𝐽

𝐵
2

𝜆
is

nonexpansive and Lemma 9, we obtain that 𝐴𝑥
∗
∈ 𝐵
2
(𝐴𝑥
∗
);

that is, 𝐴𝑥
∗
∈ SOLVIP(𝐵

2
). Thus, 𝑥∗ ∈ Ω.

Step 5. Show that 𝑥
𝑛

→ 𝑥
∗, where 𝑥

∗
= 𝑃
Ω
(𝐼 − 𝜇𝐷 + 𝜍𝑉)𝑥

∗,

𝑥
𝑛
− 𝑥
∗
= 𝛼
𝑛
(𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑥

∗
) + (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛

− (𝐼 − 𝜇𝛼
𝑛
𝐷)𝑥
∗
.

(66)
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Hence, we obtain

𝑥𝑛 − 𝑥
∗

2

= 𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝜇𝛼
𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷)𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

≤ 𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩ + (1 − 𝛼

𝑛
𝜏)

𝑥𝑛 − 𝑥
∗

2

.

(67)

It follows that

𝑥𝑛 − 𝑥
∗

2

≤
1

𝜏
⟨𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

=
1

𝜏
⟨𝜍𝑉𝑢
𝑛
− 𝜍𝑉𝑥

∗
+ 𝜍𝑉𝑥

∗
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

=
1

𝜏
(𝜍 ⟨𝑉𝑢

𝑛
− 𝑉𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨𝜍𝑉𝑥
∗
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩)

≤
1

𝜏
(𝜍𝑙

𝑥𝑛 − 𝑥
∗

2

+ ⟨𝜍𝑉𝑥
∗
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩) .

(68)

This implies that

𝑥𝑛 − 𝑥
∗

2

≤
⟨𝜍𝑉𝑥
∗
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

𝜏 − 𝜍𝑙
. (69)

In particular,


𝑥
𝑛
𝑗

− 𝑥
∗

≤

⟨𝜍𝑉𝑥
∗
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛
𝑗

− 𝑥
∗
⟩

𝜏 − 𝜍𝑙
.

(70)

Since 𝑥
𝑛
𝑗

⇀ 𝑥
∗, it follows from (70) that 𝑥

𝑛
𝑗

→ 𝑥
∗ as 𝑗 →

∞.
Next, we show that 𝑥

∗ solves the variational inequality
(40). By the algorithm (41), we have

𝑥
𝑛
= 𝛼
𝑛
𝜍𝑉𝑢
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
. (71)

Therefore, we have

𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) 𝑥

𝑛

= 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) 𝑆

𝑛
𝑢
𝑛

+ 𝛼
𝑛
𝜍𝑉𝑢
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− 𝑥
𝑛

= 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝜍 (𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
)

+ 𝑆
𝑛
𝑢
𝑛
− 𝑥
𝑛

= 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝜍 (𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
)

+ 𝑆
𝑛
𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) − 𝑥
𝑛

= 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝜍 (𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
)

− [𝑥
𝑛
− 𝑆
𝑛
𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) 𝑥

𝑛
]

= 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝜍 (𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
)

− (𝑥
𝑛
− 𝑊
𝑛
𝑥
𝑛
)

= 𝛼
𝑛
(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝜍 (𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
)

− (𝐼 − 𝑊
𝑛
) 𝑥
𝑛
;

(72)

that is,
(𝜇𝐷 − 𝜍𝑉) 𝑥

𝑛
= (𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛

+ 𝜍 (𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
) −

1

𝛼
𝑛

(𝐼 − 𝑊
𝑛
) 𝑥
𝑛
.

(73)

Due to the nonexpansivity of 𝑊
𝑛
, we have that 𝐼 − 𝑊

𝑛
is

monotone; that is, ⟨𝑥−𝑦, (𝐼−𝑊
𝑛
)𝑥−(𝐼−𝑊

𝑛
)𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈

𝐻
1
. Consider

⟨(𝜇𝐷 − 𝜍𝑉) 𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩

= −
1

𝛼
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
𝑛
− (𝐼 − 𝑊

𝑛
) 𝑝, 𝑥
𝑛
− 𝑝⟩

+ ⟨(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊
𝑛
) 𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩

+ 𝜍 ⟨𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛
, 𝑥
𝑛
− 𝑝⟩

≤ ⟨(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊
𝑛
) 𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩

+ 𝜍
𝑉𝑢
𝑛
− 𝑉𝑆
𝑛
𝑢
𝑛



𝑥𝑛 − 𝑝


≤ ⟨(𝜇𝐷 − 𝜍𝑉) (𝐼 − 𝑊
𝑛
) 𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩

+ 𝜍𝑙
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



𝑥𝑛 − 𝑝
 .

(74)

Now, by replacing 𝑛 in (74) with 𝑛
𝑗
and taking 𝑗 → ∞, we

get

⟨(𝜇𝐷 − 𝜍𝑉) 𝑥
∗
, 𝑥
∗
− 𝑝⟩

= lim
𝑗→∞

⟨(𝜇𝐷 − 𝜍𝑉) 𝑥
𝑛
𝑗

, 𝑥
𝑛
𝑗

− 𝑝⟩

≤ lim
𝑗→∞

⟨(𝜇𝐷 − 𝜍𝑉) (𝑥
𝑛
𝑗

− 𝑆
𝑛
𝑗

𝑢
𝑛
𝑗

) , 𝑥
𝑛
𝑗

− 𝑝⟩ = 0.

(75)

That is, 𝑥∗ ∈ Ω is a solution of the variational inequality (40).
Further, by the uniqueness of the solution of the varia-

tional inequality (40), we conclude that𝑥
𝑛

→ 𝑥
∗ as 𝑛 → ∞.

We rewrite (40) as
⟨(𝐼 − 𝜇𝐷 + 𝜍𝑉) 𝑥

∗
− 𝑥
∗
, 𝑥
∗
− 𝑝⟩ ≥ 0, ∀𝑝 ∈ Ω. (76)

This is equivalent to the fixed point equation
𝑃
Ω
(𝐼 − 𝜇𝐷 + 𝜍𝑉) 𝑥

∗
= 𝑥
∗
. (77)
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3.2. An Explicit Iteration Method

Theorem 11. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces and let

𝐴 : 𝐻
1

→ 𝐻
1
be a bounded linear operator, 𝑓 : 𝐶 → R a

real-value convex function, and ∇𝑓 an 𝐿-Lipschitzian mapping
with 𝐿 ≥ 0. Assume that Ω := 𝑈 ∩ Γ ̸= 0. Let 𝑉 : 𝐶 → 𝐶 be
an 𝑙-Lipschitzain mapping with 𝑙 ≥ 0 and let 𝐷 be a strongly
positive bounded linear operator with coefficients 𝜍 ≥ 0, 0 <

𝜇 < 2𝜍/‖𝐷‖
2, and 0 < 𝜍 < 𝜇(𝜍 − (𝜇‖𝐷‖

2
/2))/𝑙 = 𝜏/𝑙. Given

𝑥
0
∈ 𝐻
1
arbitrarily, let {𝑥

𝑛
} and {𝑢

𝑛
} be a sequence generated

by the following algorithm:

𝑢
𝑛
= 𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) ;

𝑥
𝑛+1

= 𝛼
𝑛
𝜍𝑉𝑢
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
,

(78)

where 𝜉 ∈ (0, 1/𝐿), 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) = 𝛽

𝑛
𝐼 + (1 − 𝛽

𝑛
)𝑆
𝑛
, 𝑆
𝑛
is

nonexpansive, 𝛽
𝑛

= (2 − 𝛾
𝑛
𝐿)/4, 𝛾

𝑛
∈ (0, 2/𝐿), and 𝐴

∗ is the
adjoint of 𝐴 and {𝛼

𝑛
}, {𝛽
𝑛
} satisfying the following conditions:

(i) {𝛼
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝛼
𝑛

= 0 and ∑
∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| <

∞;
(ii) {𝛽

𝑛
} ⊂ (0, 1/2), lim

𝑛→∞
𝛽
𝑛
= 0 and∑

∞

𝑛=1
|𝛽
𝑛+1

−𝛽
𝑛
| <

∞.

Then, the sequence {𝑥
𝑛
} converges strongly to a point 𝑥∗ ∈ Ω,

which solves the variational inequality (40).

Proof. The proof is divided into several steps.

Step 1. Show first that {𝑥
𝑛
} is bounded.

Let 𝑝 ∈ Ω; we have 𝑝 = 𝐽
𝐵
1

𝜆
𝑝 and 𝐴𝑝 = 𝐽

𝐵
2

𝜆
(𝐴𝑝). We have

𝑢𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

. (79)

Next, we derive that
𝑥𝑛+1 − 𝑝



=
𝛼𝑛𝜍𝑉𝑢

𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− 𝑝



=
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑝

+𝛼
𝑛
𝜍𝑉𝑢
𝑛
− 𝛼
𝑛
𝜍𝑉𝑝 + 𝛼

𝑛
𝜍𝑉𝑝 − 𝛼

𝑛
𝜇𝐷𝑝



≤ (1 − 𝛼
𝑛
𝜏)

𝑢𝑛 − 𝑝
 + 𝛼
𝑛
𝜍𝑙

𝑢𝑛 − 𝑝


+ 𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐷𝑝


≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝜍𝑉𝑝 − 𝜇𝐵𝑝


= (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛
(𝜏 − 𝜍𝑙)

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝜏 − 𝜍𝑙

≤ max{
𝑥𝑛 − 𝑝

 ,

𝜍𝑉𝑝 − 𝜇𝐷𝑝


𝜏 − 𝜍𝑙
} .

(80)

By induction, we obtain ‖𝑥
𝑛
− 𝑝‖ ≤ max{‖𝑥

1
− 𝑝‖, ‖𝜍𝑉𝑝 −

𝜇𝐷𝑝‖/(𝜏 − 𝜍𝑙)}, 𝑛 ≥ 1. Hence, {𝑥
𝑛
} is bounded and so is

{𝑢
𝑛
}. It follows from the Lipschitz continuity of 𝐷,∇𝑓, and

𝑉 that {𝐷𝑥
𝑛
}, {𝐷𝑢

𝑛
}, {∇𝑓(𝑢

𝑛
)}, and {𝑉𝑢

𝑛
} are also bounded.

From the nonexpansivity of 𝑆
𝑛
, it follows that {𝑆

𝑛
𝑢
𝑛
} is also

bounded.

Step 2. Show that

𝑥𝑛+1 − 𝑥
𝑛

 → 0 as 𝑛 → ∞. (81)

By (78), we have

𝑥𝑛+1 − 𝑥
𝑛



=
𝛼𝑛𝜍𝑉𝑢

𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− 𝛼
𝑛−1

𝜍𝑉𝑢
𝑛−1

+ (𝐼 − 𝜇𝛼
𝑛−1

𝐷) 𝑆
𝑛−1

𝑢
𝑛−1



≤ 𝛼
𝑛
𝜍
𝑉𝑢
𝑛
− 𝑉𝑢
𝑛−1

 +
𝛼𝑛 − 𝛼

𝑛−1

 𝜍
𝑉𝑢
𝑛−1



+
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛−1



+
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛−1

− (𝐼 − 𝜇𝛼
𝑛
𝐷) 𝑆
𝑛−1

𝑢
𝑛−1



+
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛−1

𝑢
𝑛−1

− (𝐼 − 𝜇𝛼
𝑛−1

𝐷) 𝑆
𝑛−1

𝑢
𝑛−1



≤ 𝛼
𝑛
𝜍𝑙

𝑢𝑛 − 𝑢
𝑛−1

 +
𝛼𝑛 − 𝛼

𝑛−1



× (
𝜍𝑉𝑢
𝑛−1

 +
𝜇𝐷𝑆
𝑛−1

𝑢
𝑛−1

)

+ (1 − 𝛼
𝑛
𝜏) (

𝑢𝑛 − 𝑢
𝑛−1

 +
𝑆𝑛𝑢𝑛−1 − 𝑆

𝑛−1
𝑢
𝑛−1

)

≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑢𝑛 − 𝑢
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 (
𝜍𝑉𝑢
𝑛−1

 +
𝜇𝐷𝑆
𝑛−1

𝑢
𝑛−1

)

+ (1 − 𝛼
𝑛
𝜏)

𝑆𝑛𝑢𝑛−1 − 𝑆
𝑛−1

𝑢
𝑛−1

 .

(82)

Next, we estimate ‖𝑆
𝑛
𝑢
𝑛−1

− 𝑆
𝑛−1

𝑢
𝑛−1

‖. Observe that

𝑆𝑛𝑢𝑛−1 − 𝑆
𝑛−1

𝑢
𝑛−1



=



𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) − 𝛽

𝑛
𝐼

1 − 𝛽
𝑛

𝑢
𝑛−1

−
𝑃
𝐶
(𝐼 − 𝛾

𝑛−1
∇𝑓) − 𝛽

𝑛−1
𝐼

1 − 𝛽
𝑛−1

𝑢
𝑛−1



=



4𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) − (2 − 𝜆

𝑛
𝐿) 𝐼

2 + 𝛾
𝑛
𝐿

𝑢
𝑛−1

−
4𝑃
𝐶
(𝐼 − 𝛾

𝑛−1
∇𝑓) − (2 − 𝛾

𝑛−1
𝐿) 𝐼

2 + 𝛾
𝑛−1

𝐿
𝑢
𝑛−1



≤



4𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓)

2 + 𝜆
𝑛
𝐿

𝑢
𝑛−1

−
4𝑃
𝐶
(𝐼 − 𝛾

𝑛−1
∇𝑓)

2 + 𝛾
𝑛−1

𝐿
𝑢
𝑛−1



+



2 − 𝛾
𝑛−1

𝐿

2 + 𝛾
𝑛−1

𝐿
𝑢
𝑛−1

−
2 − 𝛾
𝑛
𝐿

2 + 𝛾
𝑛
𝐿
𝑢
𝑛−1
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=

(4 (2 + 𝛾

𝑛−1
𝐿) 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛−1

−4 (2 + 𝛾
𝑛
𝐿) 𝑃
𝐶
(𝐼 − 𝛾

𝑛−1
∇𝑓) 𝑢
𝑛−1

)

×((2 + 𝛾
𝑛
𝐿) (2 + 𝜆

𝑛−1
𝐿))
−1

+
4𝐿

𝛾𝑛 − 𝛾
𝑛−1



(2 + 𝛾
𝑛
𝐿) (2 + 𝛾

𝑛−1
𝐿)

𝑢𝑛−1


≤



4𝐿 (𝛾
𝑛−1

− 𝛾
𝑛
) 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛−1

(2 + 𝛾
𝑛
𝐿) (2 + 𝛾

𝑛−1
𝐿)

+ (4 (2 + 𝛾
𝑛
𝐿) (𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛−1

−𝑃
𝐶
(𝐼 − 𝛾

𝑛−1
∇𝑓) 𝑢
𝑛−1

))

×((2 + 𝜆
𝑛
𝐿) (2 + 𝛾

𝑛−1
𝐿))
−1



+
4𝐿

𝛾𝑛 − 𝛾
𝑛−1



(2 + 𝛾
𝑛
𝐿) (2 + 𝛾

𝑛−1
𝐿)

𝑢𝑛−1


≤
4𝐿

𝛾𝑛 − 𝛾
𝑛−1



𝑃𝐶 (𝐼 − 𝛾
𝑛
∇𝑓) 𝑢
𝑛−1



(2 + 𝛾
𝑛
𝐿) (2 + 𝛾

𝑛−1
𝐿)

+
4
𝑃𝐶 (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛−1

− 𝑃
𝐶
(𝐼 − 𝛾

𝑛−1
∇𝑓) 𝑢
𝑛−1



2 + 𝛾
𝑛−1

𝐿

+
4𝐿

𝛾𝑛 − 𝛾
𝑛−1



(2 + 𝛾
𝑛
𝐿) (2 + 𝛾

𝑛−1
𝐿)

𝑢𝑛−1


≤
𝛾𝑛 − 𝛾

𝑛−1



× (𝐿
𝑃𝐶 (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛−1

 + 2
∇𝑓 (𝑢

𝑛−1
)
 + 𝐿

𝑢𝑛−1
)

=
4

𝐿

𝛽𝑛 − 𝛽
𝑛−1



× (𝐿
𝑃𝐶 (𝐼 − 𝛾

𝑛
∇𝑓) 𝑢
𝑛−1

 + 2
∇𝑓 (𝑢

𝑛−1
)
 + 𝐿

𝑢𝑛−1
)

≤ 𝑀
1

𝛽𝑛 − 𝛽
𝑛−1

 ,

(83)

where 𝑀
1
= sup

𝑛
{4‖𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓)𝑢
𝑛−1

‖ + (8/𝐿)‖∇𝑓(𝑢
𝑛−1

)‖ +

4‖𝑢
𝑛−1

‖}.
Substitute (83) into (82); we get

𝑥𝑛+1 − 𝑥
𝑛



≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑢𝑛 − 𝑢
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 (
𝜍𝑉𝑢
𝑛−1

 +
𝜇𝐷𝑆
𝑛−1

𝑢
𝑛−1

)

+ 𝑀
1

𝛽𝑛 − 𝛽
𝑛−1



≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑢𝑛 − 𝑢
𝑛−1



+ (
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

)

× (
𝜍𝑉𝑢
𝑛−1

 +
𝜇𝐷𝑆
𝑛−1

𝑢
𝑛−1

 + 𝑀
1
)

≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑢𝑛 − 𝑢
𝑛−1



+ 𝑀
2
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

) ,

(84)

for some approximate positive constant 𝑀
2
such that

𝑀
2
= sup
𝑛

{
𝜍𝑉𝑢
𝑛−1

 +
𝜇𝐷𝑆
𝑛−1

𝑢
𝑛−1

 + 𝑀
1
} . (85)

Since, for 𝜉 ∈ (0, 1/𝐿), the mapping 𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) is

averaged and hence nonexpansive, we obtain

𝑢𝑛 − 𝑢
𝑛−1



≤

𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
)

−𝐽
𝐵
1

𝜆
(𝑥
𝑛−1

+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛−1
)


≤

𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) 𝑥

𝑛

−𝐽
𝐵
1

𝜆
(𝐼 + 𝜉𝐴

∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴) 𝑥

𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 .

(86)

Substitute (86) into (84); we get

𝑥𝑛+1 − 𝑥
𝑛

 ≤ (1 − 𝛼
𝑛
(𝜏 − 𝜍𝑙))

𝑥𝑛 − 𝑥
𝑛−1



+ 𝑀
2
(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

) .

(87)

By Lemma 2, it follows from conditions (i) to (ii) that (81)
holds. Further, from (86), this implies that

𝑢𝑛+1 − 𝑢
𝑛

 → 0 as 𝑛 → ∞. (88)

Step 3. Show that

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

 → 0 as 𝑛 → ∞. (89)

From (55) and (78), we have

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛𝜍𝑉𝑢

𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷)𝑆
𝑛
𝑢
𝑛
− 𝑝



2

=
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑝

+𝛼
𝑛
𝜍𝑉𝑢
𝑛
− 𝛼
𝑛
𝜇𝐷𝑝



2

≤ (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑝



2

+ 2 (1 − 𝛼
𝑛
𝜏) 𝛼
𝑛

𝑢𝑛 − 𝑝


𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



+ 𝛼
2

𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



2
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≤ (1 − 𝛼
𝑛
𝜏)
2

(
𝑥𝑛 − 𝑝



2

−
𝑢𝑛 − 𝑥

𝑛



2

+2𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛


)

+ 2 (1 − 𝛼
𝑛
𝜏) 𝛼
𝑛

𝑢𝑛 − 𝑝


𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



+ 𝛼
2

𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



2

= (1 − 𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

− (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑥

𝑛



2

+ 2(1 − 𝛼
𝑛
𝜏)
2

𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



+ 2 (1 − 𝛼
𝑛
𝜏) 𝛼
𝑛

𝑢𝑛 − 𝑝


𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



+ 𝛼
2

𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



2

.

(90)

This implies that

(1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑥

𝑛



2

≤
𝑥𝑛 − 𝑝



2

+ (𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 2(1 − 𝛼
𝑛
𝜏)
2

𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



+ 2 (1 − 𝛼
𝑛
𝜏) 𝛼
𝑛

𝑢𝑛 − 𝑝


𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



+ 𝛼
2

𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



2

≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+ (𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑝



2

+ 2(1 − 𝛼
𝑛
𝜏)
2

𝜉
𝐴 (𝑢
𝑛
− 𝑥
𝑛
)



(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛



+ 2 (1 − 𝛼
𝑛
𝜏) 𝛼
𝑛

𝑢𝑛 − 𝑝


𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



+ 𝛼
2

𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑝



2

.

(91)

Since (1 − 𝛼
𝑛
𝜏)
2
> 0, 𝛼

𝑛
→ 0, and as seen in (53) and in (81),

we get

lim
𝑛→∞

𝑢𝑛 − 𝑥
𝑛

 = 0. (92)

Next,

𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛



=
𝑥𝑛 − 𝑥

𝑛+1
+ 𝑥
𝑛+1

− 𝑆
𝑛
𝑢
𝑛
+ 𝑆
𝑛
𝑢
𝑛
− 𝑆
𝑛
𝑥
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑆

𝑛
𝑢
𝑛



+
𝑆𝑛𝑢𝑛 − 𝑆

𝑛
𝑥
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 + 𝛼
𝑛

𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑆

𝑛
𝑢
𝑛



+
𝑢𝑛 − 𝑥

𝑛

 .

(93)

It follows from condition 𝛼
𝑛

→ 0, (81), and (92) that (89)
holds. Furthermore we have

𝑢𝑛 − 𝑆
𝑛
𝑢
𝑛



=
𝑢𝑛 − 𝑥

𝑛
+ 𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛
+ 𝑆
𝑛
𝑥
𝑛
− 𝑆
𝑛
𝑢
𝑛



≤
𝑢𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 +
𝑥𝑛 − 𝑢

𝑛



≤ 2
𝑢𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 .

(94)

It follows from (89) and (92) that ‖𝑢
𝑛
− 𝑆
𝑛
𝑢
𝑛
‖ → 0.

Step 4. Show that

lim sup
𝑛→∞

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ ≤ 0, (95)

where 𝑥
∗

= 𝑃
Ω
(𝐼 − 𝜇𝐷 + 𝜍𝑉)𝑥

∗ is a unique solution of the
variational inequality (40). Indeed, take a subsequence {𝑥

𝑛
𝑗

}

of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑗→∞

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
𝑗

− 𝑥
∗
⟩ .

(96)

Since {𝑥
𝑛
𝑗

} is bounded, there exists a subsequence {𝑥
𝑛
𝑗
𝑘

} of
{𝑥
𝑛
𝑗

}which converges weakly to 𝑞. Without loss of generality,
we can assume that 𝑥

𝑛
𝑗

⇀ 𝑞. Since 𝑥
∗
= 𝑃
Ω
(𝐼 − 𝜇𝐷 + 𝜍𝑉)𝑥

∗,
it follows that

lim sup
𝑛→∞

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑗→∞

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
𝑗

− 𝑥
∗
⟩

= ⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑞 − 𝑥

∗
⟩ ≤ 0.

(97)

This implies that (95) holds.

Step 5. Show that

𝑥
𝑛
→ 𝑥
∗
, (98)

since

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
𝑛
+ 𝑥
𝑛
− 𝑥
∗
⟩

= ⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
𝑛
⟩

+ ⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

≤
(𝜍𝑉 − 𝜇𝐷) 𝑥

∗

𝑥𝑛+1 − 𝑥
𝑛



+ ⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ .

(99)

It follows from (81) and (95) that

lim sup
𝑛→∞

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ ≤ 0. (100)
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Observe that
𝑥𝑛+1 − 𝑥

∗

2

=
𝛼𝑛𝜍𝑉𝑢

𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐷)𝑆
𝑛
𝑢
𝑛
− 𝑥
∗

2

=
(𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷)𝑥
∗

+𝛼
𝑛
(𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑥

∗
)


2

≤
(𝐼 − 𝜇𝛼

𝑛
𝐷)𝑆
𝑛
𝑢
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐷)𝑥
∗

2

+ 2𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝜇𝐷𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
𝜏)
2𝑢𝑛 − 𝑥

∗

2

+ 2𝛼
𝑛
⟨𝜍𝑉𝑢
𝑛
− 𝛾𝑉𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛼
𝑛
⟨(𝜍𝑉 − 𝜇𝐷) 𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
𝜏)
2𝑥𝑛 − 𝑥

∗

2

+ 𝛼
𝑛
𝜍𝑙 (

𝑥𝑛 − 𝑥
∗

2

+
𝑥𝑛+1 − 𝑥

∗

2

)

+ 2𝛼
𝑛
⟨(𝜍𝑉 − 𝜇𝐷) 𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ .

(101)

This implies that

𝑥𝑛+1 − 𝑥
∗

2

≤
(1 − 𝛼

𝑛
𝜏)
2

+ 𝛼
𝑛
𝜍𝑙

1 − 𝛼
𝑛
𝜍𝑙

𝑥𝑛 − 𝑥
∗

2

+
2𝛼
𝑛

1 − 𝛼
𝑛
𝜍𝑙

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 −
2𝛼
𝑛
(𝜏 − 𝜍𝑙)

1 − 𝛼
𝑛
𝜍𝑙

)
𝑥𝑛 − 𝑥

∗

2

+
2𝛼
𝑛

1 − 𝛼
𝑛
𝜍𝑙

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ +

(𝛼
𝑛
𝜏)
2

1 − 𝛼
𝑛
𝜍𝑙

𝑀
3

= (1 − 𝜑
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+
2𝛼
𝑛

1 − 𝛼
𝑛
𝜍𝑙

⟨(𝜍𝑉 − 𝜇𝐷) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ +

(𝛼
𝑛
𝜏)
2

1 − 𝛼
𝑛
𝜍𝑙

𝑀
3
,

(102)

where 𝑀
3
= sup

𝑛
‖𝑥
𝑛
− 𝑥
∗
‖
2, 𝑛 ≥ 1. It is easy to see that 𝜑

𝑛
=

2𝛼
𝑛
(𝜏 − 𝜍𝑙)/(1 − 𝛼

𝑛
𝜍𝑙). Hence by Lemma 2, the sequence {𝑥

𝑛
}

converges strongly to 𝑥
∗.

Setting 𝑉𝑢
𝑛

= 𝑢 in (78) in Theorem 11, we have the
following result.

Corollary 12. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces and

let 𝐴 : 𝐻
1

→ 𝐻
1
be a bounded linear operator, 𝑓 : 𝐶 → R a

real-value convex function, and ∇𝑓 an 𝐿-Lipschitzian mapping
with 𝐿 ≥ 0. Let 𝑢 ∈ 𝐶 be a fixed point in 𝐶. Assume that Ω :=

𝑈∩Γ ̸= 0. Let𝐷 be a strongly positive bounded linear operator

with coefficients 𝜍 ≥ 0, 0 < 𝜇 < 2𝜍/‖𝐷‖
2, and 0 < 𝜍 < (𝜇(𝜍 −

(𝜇‖𝐷‖
2
/2))/𝑙) = 𝜏/𝑙. Given 𝑢, 𝑥

0
∈ 𝐻
1
arbitrarily, let {𝑥

𝑛
} and

{𝑢
𝑛
} be a sequence generated by the following algorithm:

𝑢
𝑛
= 𝐽
𝐵
1

𝜆
(𝑥
𝑛
+ 𝜉𝐴
∗
(𝐽
𝐵
2

𝜆
− 𝐼)𝐴𝑥

𝑛
) ;

𝑥
𝑛+1

= 𝛼
𝑛
𝜍𝑢 + (𝐼 − 𝜇𝛼

𝑛
𝐷) 𝑆
𝑛
𝑢
𝑛
,

(103)

where 𝜉 ∈ (0, 1/𝐿), 𝑃
𝐶
(𝐼 − 𝛾

𝑛
∇𝑓) = 𝛽

𝑛
𝐼 + (1 − 𝛽

𝑛
)𝑆
𝑛
, 𝑆
𝑛

is nonexpansive, 𝛽
𝑛

= (2 − 𝛾
𝑛
𝐿)/4, 𝛾

𝑛
∈ (0, 2/𝐿), and 𝐴

∗

is the adjoint of 𝐴 and {𝛼
𝑛
}, {𝛽
𝑛
} satisfying conditions (i)-(ii)

in Theorem 11 Then, the sequence {𝑥
𝑛
} converges strongly to a

point 𝑥∗ ∈ Ω, which solves the variational inequality (40).
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