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We consider the global existence of solutions to the 2D incompressible generalized liquid crystal flow. It is proved that the local
solution exists globally with 𝛽 = 0, 𝛼 ≥ 2.

1. Introduction

In this paper, we consider the following 2D liquid crystal flow:

𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 + ∇𝑝 + Λ2𝛼𝑢 = −∇𝑑 ⋅ Δ𝑑, (1)

𝑑
𝑡
+ 𝑢 ⋅ ∇𝑑 + Λ2𝛽𝑑 = −𝑓 (𝑑) , (2)

div 𝑢 = 0, (3)

(𝑢, 𝑑)|
𝑡=0

= (𝑢
0
, 𝑑
0
) , (4)

where 𝛼 ≥ 0, 𝛽 ≥ 0 are real parameters and 𝑢 is the velocity, 𝑑
is a vectorial function modeling the orientation of the crystal
molecules, and 𝑝 is the scalar pressure. Here 𝑓(𝑑) := (|𝑑|2 −

1)𝑑 and Λ = (−Δ)1/2 is defined in terms of Fourier transform
by

Λ̂𝑓 (𝜉) =
𝜉
 𝑓 (𝜉) . (5)

When 𝛼 = 𝛽 = 1, it has been shown that (1)–(4)
has unique global weak and smooth solutions [1–3]. In [4],
global regularity for this systemwithmixed partial viscosity is
proved. Some regularity criteria are established for the system
with zero dissipation in [5].

The aim of this paper is to establish the following global
regularity for the 2D liquid crystal model with fractional
diffusion.

Theorem 1. Assume (𝑢
0
, 𝑑
0
) ∈ 𝐻3(R2) × 𝐻4(R2). Let (𝑢, 𝑑)

be the local strong solution to the problem (1)–(4). If 𝛼 and 𝛽

satisfy 𝛽 = 0, 𝛼 ≥ 2, then the 2D liquid crystal model has a
unique global classical solution (𝑢, 𝑑) satisfying

𝑢 ∈ 𝐿∞ (0, 𝑇;𝐻3 (R2)) , 𝑢 ∈ 𝐿2 (0, 𝑇;𝐻3+𝛼 (R2)) ,

𝑑 ∈ 𝐿∞ (0, 𝑇;𝐻4 (R2)) .

(6)
Remark 2. This work is partially motivated by the recent
progress on the 2D incompressible MHD system with frac-
tional diffusion; we refer to [6–10] and references therein. In
[7], Tran et al. obtained the global regularity of 2D GMHD
equations for the following three cases: (1) 𝛼 ≥ 1, 𝛽 ≥ 1;
(2) 0 ≤ 𝛼 < 1/2, 2𝛼 + 𝛽 > 2; (3) 𝛼 ≥ 2, 𝛽 = 0. Combining
them with the result in [10], we know that if 𝛼 + 𝛽 ≥ 2,
2D incompressible MHD system with fractional diffusion
possesses a global smooth solution. Fan et al. [8] proved the
global existence of smooth solutionswith𝛼 > 0,𝛽 = 1. Global
regularity for the case 𝛼 = 0, 𝛽 > 1 was established by Jiu and
Zhao [9] which improves the result in [6]. Very recently, the
authors improved the case 𝛼 = 0, 𝛽 > 1 for the 2D liquid
crystal model in [11].

2. Proof of Theorem 1

It is sufficient to proveTheorem 1 with 𝛼 = 2, 𝛽 = 0.
We will prove Theorem 1 if we can demonstrate the

boundedness of ‖𝑢‖2
𝐻
3 +‖𝑑‖2

𝐻
4 . In order to reach our purpose,

we will show this by contradiction: assume

lim
𝑡→𝑇

sup ‖𝑢‖
2

𝐻
3 + ‖𝑑‖

2

𝐻
4 = ∞ (7)
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for some finite time 𝑇 > 0. Our thought is that when 𝑇
0
is

close enough to𝑇, ‖𝑢‖2
𝐻
3 +‖𝑑‖2

𝐻
4 remains uniformly bounded

for 𝑇
0

< 𝑡 < 𝑇 under such assumption, thus reaching a
contradiction.

First, we do 𝐿2 estimate for 𝑑. Multiplying (2) by 𝑑 and
using (3), after integration by parts, we see that

1

2

𝑑

𝑑𝑡
‖𝑑‖
2

𝐿
2 + ‖𝑑‖

4

𝐿
4 = ‖𝑑‖

2

𝐿
2 . (8)

By using the Gronwall inequality, we have

‖𝑑‖
𝐿
2 + ∫
𝑇

0

‖𝑑‖
4

𝐿
4𝑑𝜏 ≤ 𝐶. (9)

Then, we will show the 𝐿2 estimate for 𝑢 and ∇𝑑. Multiplying
(1) and (2) by 𝑢 and −Δ𝑑, respectively, we find that

1

2

𝑑

𝑑𝑡
(‖𝑢‖
2

𝐿
2 + ‖∇𝑑‖

2

𝐿
2) +

Λ
2𝑢


2

𝐿
2

= −∫
R2

∇𝑓 (𝑑) ∇𝑑 𝑑𝑥

≤ −3∫
R2

|𝑑|
2
|∇𝑑|
2𝑑𝑥 + ‖∇𝑑‖

2

𝐿
2 .

(10)

Thanks to Gronwall’s inequality and (9), we have

‖𝑢‖
2

𝐿
2 + ‖∇𝑑‖

2

𝐿
2 + ∫
𝑇

0

Λ
2𝑢


2

𝐿
2
𝑑𝜏 ≤ 𝐶, (11)

which means ∇𝑢 ∈ 𝐿2(0, 𝑇;BMO).
The 𝐻1 estimate for 𝑢 and 𝐻2 estimate for 𝑑 will be

shown as follows. Multiplying (1) by Δ𝑢, applying Δ to (2),
multiplying by Δ𝑑, and then summing them up, we obtain

1

2

𝑑

𝑑𝑡
(‖∇𝑢‖

2

𝐿
2 + ‖Δ𝑑‖

2

𝐿
2) + ‖Δ∇𝑢‖

2

𝐿
2

≤ ∫
R2

∇𝑑 ⋅ Δ𝑑 ⋅ Δ𝑢 − Δ (𝑢 ⋅ ∇𝑑) ⋅ Δ𝑑

− Δ𝑓 (𝑑) ⋅ Δ𝑑 𝑑𝑥

≤ 𝐶‖Δ𝑑‖
2

𝐿
2‖∇𝑢‖

𝐿
∞

+ ∫
R2

−3|𝑑|
2
|Δ𝑑|
2 − 𝑑|∇𝑑|

2Δ𝑑 + |Δ𝑑|
2𝑑𝑥

≤ 𝐶‖Δ𝑑‖
2

𝐿
2‖∇𝑢‖

𝐿
∞ − 2‖𝑑Δ𝑑‖

2

𝐿
2 + 𝐶‖∇𝑑‖

4

𝐿
4 + ‖Δ𝑑‖

2

𝐿
2

≤ 𝐶‖Δ𝑑‖
2

𝐿
2 (‖∇𝑢‖

𝐿
∞ + 1) − 2‖𝑑Δ𝑑‖

2

𝐿
2

≤ 𝐶‖Δ𝑑‖
2

𝐿
2 (‖∇𝑢‖

𝐿
∞ + 1) .

(12)

Let us introduce the following commutator and bilinear
estimates established in [12, 13]:

Λ
𝑠(𝑓𝑔) − 𝑓Λ𝑠𝑔

𝐿𝑝

≤ 𝐶 (
∇𝑓

𝐿𝑝1
Λ
𝑠−1𝑔

𝐿𝑞1 +
𝑔

𝐿𝑝1
Λ
𝑠𝑓

𝐿𝑞1 ) ,

Λ
𝑠(𝑓𝑔)

𝐿𝑝

≤ 𝐶 (
𝑓

𝐿𝑝1
Λ
𝑠𝑔

𝐿𝑞1 +
Λ
𝑠𝑓

𝐿𝑝2
𝑔

𝐿𝑞2 ) ,

(13)

with 𝑠 > 0 and 1/𝑝 = 1/𝑝
1
+ 1/𝑞
1
= 1/𝑝

2
+ 1/𝑞
2
.

Now, we do the 𝐻2 estimate for 𝑢 and 𝐻3 estimate for 𝑑.
Applying Λ2 to (1), multiplying by Λ2𝑢, and dealing with (2)
in the same way by Λ3 and Λ3𝑑, after summing them up, we
have

1

2

𝑑

𝑑𝑡
(
Λ
2𝑢


2

𝐿
2
+
Λ
3𝑑


2

𝐿
2
) +

Λ
4𝑢


2

𝐿
2

= ∫
R2

−Λ2 (𝑢 ⋅ ∇𝑢)Λ
2𝑢 − Λ2 (∇𝑑 ⋅ Δ𝑑)Λ

2𝑢

− Λ3 (𝑢 ⋅ ∇𝑑)Λ
3𝑑 − Λ3𝑓 (𝑑)Λ

3𝑑 𝑑𝑥

=: 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
.

(14)

Using Hölder’s inequality, Gagliardo-Nirenberg inequality,
Young’s inequality, and (13), we have the following estimates:

𝐼1
 =


∫
R2

(Λ2 (𝑢 ⋅ ∇𝑢) − 𝑢 ⋅ ∇Λ2𝑢)Λ2𝑢 𝑑𝑥


≤ 𝐶‖∇𝑢‖
𝐿
∞

Λ
2𝑢


2

𝐿
2
,

𝐼2
 ≤ 𝐶

Λ
4𝑢

𝐿2‖∇𝑑‖
𝐿
4

Λ
2𝑑

𝐿4

≤ 𝐶
Λ
4𝑢

𝐿2‖∇𝑑‖
𝐿
2

Λ
3𝑑

𝐿2

≤
1

4

Λ
4𝑢


2

𝐿
2
+
Λ
3𝑑


2

𝐿
2
,

𝐼3
 ≤ 𝐶


∫
R2

Λ3 (𝑢 ⋅ ∇𝑑)Λ
3𝑑 − 𝑢 ⋅ ∇Λ3𝑑Λ3𝑑 𝑑𝑥



≤ 𝐶∫
R2

Λ
3𝑢

 |Λ𝑑|
Λ
3𝑑

 +
Λ
2𝑢


Λ
2𝑑


Λ
3𝑑



+ |Λ𝑢|
Λ
3𝑑


2

𝑑𝑥

=: 𝐼𝐼
1
+ 𝐼𝐼
2
+ 𝐼𝐼
3
.

(15)

Now we estimate 𝐼𝐼
1
, 𝐼𝐼
2
, and 𝐼𝐼

3
one by one:

𝐼𝐼
1
≤ 𝐶

Λ
3𝑢

𝐿4‖Λ𝑑‖
𝐿
4

Λ
3𝑑

𝐿2

≤ 𝐶
Λ
2𝑢


1/4

𝐿
2

Λ
4𝑢


3/4

𝐿
2
‖Λ𝑑‖
3/4

𝐿
2

Λ
3𝑑


5/4

𝐿
2

≤
1

8

Λ
4𝑢


2

𝐿
2
+ 𝐶

Λ
2𝑢


2/5

𝐿
2

Λ
3𝑑


2

𝐿
2
,

𝐼𝐼
2
≤ 𝐶

Λ
2𝑢

𝐿4
Λ
2𝑑

𝐿4
Λ
3𝑑

𝐿2

≤ 𝐶
Λ
2𝑢


3/4

𝐿
2

Λ
4𝑢


1/4

𝐿
2
‖Λ𝑑‖
1/4

𝐿
2

Λ
3𝑑


7/4

𝐿
2

≤
1

8

Λ
4𝑢


2

𝐿
2
+
Λ
2𝑢


6/7

𝐿
2

Λ
3𝑑


2

𝐿
2
,

𝐼𝐼
3
≤ 𝐶‖∇𝑢‖

𝐿
∞

Λ
3𝑑


2

𝐿
2
,
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𝐼
4
=

Λ
3𝑑


2

𝐿
2
− ∫

R2
Λ3 (|𝑑|

2𝑑)Λ3𝑑

≤
Λ
3𝑑


2

𝐿
2
− 3

𝑑Λ
3𝑑


2

𝐿
2

+ 𝐶∫
R2

Λ
2𝑑

 |Λ𝑑| |𝑑|
Λ
3𝑑

 + 𝐶∫
R2

|Λ𝑑|
3 Λ
3𝑑



=:
Λ
3𝑑


2

𝐿
2
− 3

𝑑Λ
3𝑑


2

𝐿
2
+ 𝐾
1
+ 𝐾
2
.

(16)

𝐾
1
and𝐾

2
can be estimated as follows:

𝐾
1
≤ 𝐶‖Λ𝑑‖

𝐿
4

Λ
2𝑑

𝐿4
𝑑Λ
3𝑑

𝐿2

≤ 𝐶‖Λ𝑑‖
1/4

𝐿
2

Λ
3𝑑


3/4

𝐿
2
‖Λ𝑑‖
3/4

𝐿
2

Λ
3𝑑


1/4

𝐿
2

𝑑Λ
3𝑑

𝐿2

≤ 𝐶
Λ
3𝑑


2

𝐿
2
+ 3

𝑑Λ
3𝑑


2

𝐿
2
,

𝐾
2
≤ 𝐶‖Λ𝑑‖

3

𝐿
6

Λ
3𝑑

𝐿2

≤ 𝐶(‖Λ𝑑‖
2/3

𝐿
2

Λ
3𝑑


1/3

𝐿
2
)
3Λ
3𝑑

𝐿2 ≤ 𝐶
Λ
3𝑑


2

𝐿
2
.

(17)

Combining𝐾
1
and𝐾

2
, we have

𝐼
4
≤ 𝐶

Λ
3𝑑


2

𝐿
2
. (18)

Summing all the above estimates to (14), we obtain
𝑑

𝑑𝑡
(
Λ
2𝑢


2

𝐿
2
+
Λ
3𝑑


2

𝐿
2
) +

Λ
4𝑢


2

𝐿
2

≤ 𝐶 (‖∇𝑢‖
𝐿
∞ +

Λ
2𝑢

𝐿2) (
Λ
2𝑢


2

𝐿
2
+
Λ
3𝑑


2

𝐿
2
) .

(19)

Now, we will show the𝐻3 estimate for 𝑢 and𝐻4 estimate for
𝑑. Applying Λ3 to (1), multiplying by Λ3𝑢, and dealing with
(2) in the same way by Λ4 and Λ4𝑑, after summing them up,
we have

1

2

𝑑

𝑑𝑡
(
Λ
3𝑢


2

𝐿
2
+
Λ
4𝑑


2

𝐿
2
) +

Λ
5𝑢


2

𝐿
2

= ∫
R2

−Λ3 (𝑢 ⋅ ∇𝑢)Λ
3𝑢 − Λ3 (∇𝑑 ⋅ Δ𝑑)Λ

3𝑢

− Λ4 (𝑢 ⋅ ∇𝑑)Λ
4𝑑 − Λ4𝑓 (𝑑)Λ

4𝑑 𝑑𝑥

=: 𝐽
1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
.

(20)

Using Hölder’s inequality, Gagliardo-Nirenberg inequality,
Young’s inequality, and (13), we have the following estimates:
𝐽1

 ≤ 𝐶‖∇𝑢‖
𝐿
∞

Λ
3𝑢


2

𝐿
2
,

𝐽2
 ≤ 𝐶∫

R2
|Λ (∇𝑑Δ𝑑)|

Λ
5𝑢

 𝑑𝑥 ≤ ‖Λ(∇𝑑 ⋅ Δ𝑑)‖
𝐿
2

Λ
5𝑢

𝐿2

≤ 𝐶
Λ
5𝑢

𝐿2 (‖Δ𝑑‖
2

𝐿
4 + ‖Λ𝑑‖

𝐿
4

Λ
3𝑑

𝐿4)

≤ 𝐶
Λ
5𝑢

𝐿2 (‖Λ𝑑‖
𝐿
2

Λ
4𝑑

𝐿2 + ‖Λ𝑑‖
5/6

𝐿
2

Λ
4𝑑


1/6

𝐿
2

× ‖Λ𝑑‖
1/6

𝐿
2

Λ
4𝑑


5/6

𝐿
2
)

≤ 𝐶
Λ
4𝑑


2

𝐿
2
+

1

4

Λ
5𝑢


2

𝐿
2
,

𝐽3
 = 𝐶


∫
R2

(Λ4 (𝑢 ⋅ ∇𝑑) − 𝑢 ⋅ ∇Λ4𝑑)Λ4𝑑 𝑑𝑥


≤ 𝐶∫
R2

Λ
4𝑢

 |∇𝑑|
Λ
4𝑑

 +
Λ
3𝑢


Λ
2𝑑


Λ
4𝑑



+
Λ
2𝑢


Λ
3𝑑


Λ
4𝑑

 + |Λ𝑢|
Λ
4𝑑


2

𝑑𝑥

=: 𝐽
31

+ 𝐽
32

+ 𝐽
33

+ 𝐽
34
.

(21)

Now we estimate 𝐽
31
, 𝐽
32
, 𝐽
33
, and 𝐽

34
one by one:

𝐽31
 ≤ 𝐶

Λ
4𝑢

𝐿4‖Λ𝑑‖
𝐿
4

Λ
4𝑑

𝐿2

≤ 𝐶
Λ
2𝑢


1/6

𝐿
2

Λ
5𝑢


5/6

𝐿
2
‖Λ𝑑‖
5/6

𝐿
2

Λ
4𝑑


7/6

𝐿
2

≤
1

8

Λ
5𝑢


2

𝐿
2
+ 𝐶

Λ
2𝑢


3/7

𝐿
2

Λ
4𝑑


2

𝐿
2
,

𝐽32
 ≤ 𝐶

Λ
3𝑢

𝐿4
Λ
2𝑑

𝐿4
Λ
4𝑑

𝐿2

≤ 𝐶
Λ
2𝑢


1/2

𝐿
2

Λ
5𝑢


1/2

𝐿
2
‖Λ𝑑‖
1/2

𝐿
2

Λ
4𝑑


3/2

𝐿
2

≤
1

8

Λ
5𝑢


2

𝐿
2
+ 𝐶

Λ
2𝑢


2/3

𝐿
2

Λ
4𝑑


2

𝐿
2
,

𝐽33
 ≤ 𝐶

Λ
2𝑢

𝐿4
Λ
3𝑑

𝐿4
Λ
4𝑑

𝐿2

≤ 𝐶
Λ
3𝑢


5/6

𝐿
2
‖𝑢‖
1/6

𝐿
2 ‖Λ𝑑‖

1/6

𝐿
2

Λ
4𝑑


11/6

𝐿
2

≤ 𝐶
Λ
3𝑢


5/6

𝐿
2

Λ
4𝑑


11/6

𝐿
2

,

𝐽34
 ≤ 𝐶‖∇𝑢‖

𝐿
∞

Λ
4𝑑


2

𝐿
2
.

(22)

The estimate for 𝐽
4
is as follows:

𝐽4
 =

Λ
4𝑑


2

𝐿
2
− ∫

R2
Λ4 (|𝑑|

2𝑑)Λ4𝑑

≤
Λ
4𝑑


2

𝐿
2
− 3∫

R2
|𝑑|
2Λ
4𝑑


2

+ 𝐶∫
R2

|𝑑| |Λ𝑑|
Λ
3𝑑


Λ
4𝑑



+ 𝐶∫
R2

|𝑑|
Λ
2𝑑


2 Λ
4𝑑



+ 𝐶∫
R2

|Λ𝑑|
2 Λ
2𝑑


Λ
4𝑑



=:
Λ
4𝑑


2

𝐿
2
− 3

𝑑Λ
4𝑑


2

𝐿
2
+ 𝐽
41

+ 𝐽
42

+ 𝐽
43
.

(23)

We calculate 𝐽
41
, 𝐽
42
, and 𝐽

43
:

𝐽41
 ≤ 𝐶

Λ
3𝑑

𝐿4‖Λ𝑑‖
𝐿
4

𝑑Λ
4𝑑

𝐿2

≤ 𝐶‖Λ𝑑‖
1/6

𝐿
2

Λ
4𝑑


5/6

𝐿
2
‖Λ𝑑‖
5/6

𝐿
2

Λ
4𝑑


1/6

𝐿
2

𝑑Λ
4𝑑

𝐿2

≤ 𝐶
Λ
4𝑑


2

𝐿
2
+

3

2

𝑑Λ
4𝑑


2

𝐿
2
,
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𝐽42
 ≤ 𝐶

Λ
2𝑑


2

𝐿
4

𝑑Λ
4𝑑

𝐿2

≤ 𝐶‖Λ𝑑‖
𝐿
2

Λ
4𝑑

𝐿2
𝑑Λ
4𝑑

𝐿2

≤ 𝐶
Λ
4𝑑


2

𝐿
2
+

3

2

𝑑Λ
4𝑑


2

𝐿
2
,

𝐽43
 ≤ 𝐶

Λ
2𝑑

𝐿4‖Λ𝑑‖
2

𝐿
8

Λ
4𝑑

𝐿2

≤ 𝐶‖Λ𝑑‖
1/2

𝐿
2

Λ
4𝑑


1/2

𝐿
2
‖Λ𝑑‖
3/2

𝐿
2

Λ
4𝑑


1/2

𝐿
2

Λ
4𝑑

𝐿2

≤ 𝐶
Λ
4𝑑


2

𝐿
2
.

(24)

Combining 𝐽
41
, 𝐽
42
, and 𝐽

43
, we get

𝐽
4
≤ 𝐶

Λ
4𝑑


2

𝐿
2
. (25)

Combining the above estimates to (20), we get

𝑑

𝑑𝑡
(
Λ
3𝑢


2

𝐿
2
+
Λ
4𝑑


2

𝐿
2
) +

Λ
5𝑢


2

𝐿
2

≤ 𝐶 (1 + ‖∇𝑢‖
𝐿
∞ +

Λ
2𝑢

𝐿2)
Λ
4𝑑


2

𝐿
2

+ 𝐶 (1 +
Λ
3𝑢

𝐿2)
Λ
4𝑑


11/6

𝐿
2

.

(26)

Now we estimate the term ∫
𝑡

𝑇0

‖Λ3𝑢‖
𝐿
2 by applying the

Gronwall inequality to (12):

∫
𝑡

𝑇0

Λ
3𝑢


2

𝐿
2
(⋅, 𝜏) 𝑑𝜏 ≤ ‖∇𝑢‖

2

𝐿
2 + ‖Δ𝑑‖

2

𝐿
2

+ ∫
𝑡

𝑇0

‖Δ∇𝑢‖
2

𝐿
2 (⋅, 𝜏) 𝑑𝜏

≤ (
∇𝑢
0


2

𝐿
2 +

Δ𝑑
0


2

𝐿
2)

× exp(𝐶∫
𝑡

𝑇0

1 + ‖∇𝑢‖
𝐿
∞ (⋅, 𝜏) 𝑑𝜏) .

(27)

Here 𝑇
0

∈ (0, 𝑇) will be fixed later and we denote ∇𝑢
0

:=

∇𝑢(⋅, 𝑇
0
), Δ𝑑
0

:= Δ𝑑(⋅, 𝑇
0
). Set 𝐴(𝑡) := max

𝜏∈(𝑇0 ,𝑡)
(‖𝑢‖2
𝐻
3 +

‖𝑑‖2
𝐻
4)(𝜏). Now applying the logarithmic inequality [14]

‖∇𝑢‖
𝐿
∞ ≤ 𝐶 (1 + ‖∇𝑢‖BMO (1 + ln (1 + ‖𝑢‖

2

𝐻
3))) , (28)

we get

∫
𝑡

𝑇0

Λ
3𝑢


2

𝐿
2
(⋅, 𝜏) 𝑑𝜏

≤ 𝐶 (𝑇
0
) exp(𝐶∫

𝑡

𝑇0

‖∇𝑢‖
𝐿
∞ (⋅, 𝜏) 𝑑𝜏)

≤ 𝐶 (𝑇
0
) exp(𝐶∫

𝑡

𝑇0

1 + ‖∇𝑢‖BMO

× (1 + ln (1 + ‖𝑢‖
2

𝐻
3)) (⋅, 𝜏) 𝑑𝜏)

≤ 𝐶 (𝑇
0
) exp(𝐶∫

𝑡

𝑇0

‖∇𝑢‖BMO (⋅, 𝜏)

× (1 + ln (1 + 𝐴 (𝑡))) 𝑑𝜏)

≤ 𝐶 (𝑇
0
) exp(𝐶∫

𝑡

𝑇0

‖∇𝑢‖BMO (⋅, 𝜏) 𝑑𝜏

× (1 + ln (1 + 𝐴 (𝑡))) ) .

(29)

Since ‖∇𝑢‖BMO ∈ 𝐿1(𝑇
0
, 𝑇), we can take 𝑇

0
close enough to

𝑇, so that

𝐶∫
𝑡

𝑇0

‖∇𝑢‖BMO (⋅, 𝜏) 𝑑𝜏 ≤ 2𝛿 (30)

for some small positive number 𝛿 to be fixed later. With such
choice of 𝑇

0
we have

∫
𝑡

𝑇0

Λ
3𝑢 (⋅, 𝜏)


2

𝐿
2
𝜏 ≤ 𝐶 (𝑇

0
) (1 + 𝐴 (𝑡))

2𝛿. (31)

Hölder’s inequality gives

∫
𝑡

𝑇0

Λ
3𝑢(⋅, 𝜏)

𝐿2𝜏 ≤ 𝐶 (𝑇
0
) (1 + 𝐴 (𝑡))

𝛿. (32)

Fix 𝑇
0
satisfying

𝐶∫
𝑡

𝑇0

‖∇𝑢(⋅, 𝜏)‖BMO𝜏 ≤ 2𝛿, ln (1 + 𝐴 (𝑇
0
)) > 1. (33)

Combining the above estimates together, we get

𝑑

𝑑𝑡
(‖𝑢‖
2

𝐻
3 + ‖𝑑‖

2

𝐻
4)

≤ 𝐶 (1 +
Λ
3𝑢

𝐿2)𝐴(𝑡)
11/12

+ (‖∇𝑢‖
𝐿
∞ +

∇
2𝑢

𝐿2 + 1)𝐴 (𝑡)

≤ 𝐶 [1 + ‖∇𝑢‖BMO (1 + ln (1 + 𝐴 (𝑡)))

+
∇
2𝑢

𝐿2] 𝐴 (𝑡) + 𝐶 (1 +
Λ
3𝑢

𝐿2)𝐴(𝑡)
11/12

≤ 𝐶 (𝑇
0
) [ (‖∇𝑢‖BMO +

∇
2𝑢

𝐿2 + 1)𝐴 (𝑡)

× ln (1 + 𝐴 (𝑡)) + (1 +
Λ
3𝑢

𝐿2)𝐴(𝑡)
11/12] .

(34)
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Integrating the above inequality, we have

𝐴 (𝑡) ≤ 𝐶 (𝑇
0
) 𝐴
0
+ 𝐶 (𝑇

0
) ∫
𝑡

𝑇0

1 +
Λ
3𝑢

𝐿2 (⋅, 𝜏) 𝑑𝜏𝐴(𝑡)
11/12

+ 𝐶 (𝑇
0
) ∫
𝑡

𝑇0

(1 + ‖∇𝑢‖BMO +
Λ
2𝑢

𝐿2)𝐴 (𝑡)

× ln (1 + 𝐴 (𝑡)) 𝑑𝜏,

(35)

where 𝐴
0
:= ‖𝑢‖2

𝐻
3(𝑇0) + ‖𝑑‖2

𝐻
4(𝑇0).

Taking 𝛿 = 1/24, we have

∫
𝑡

𝑇0

1 +
Λ
3𝑢

𝐿2𝑑𝜏 ≤ 𝐶 (𝑇
0
) (1 + 𝐴 (𝑡))

1/24. (36)

Thus (35) tells us that

𝐴 (𝑡) ≤ 𝐶 (𝑇
0
) 𝐴
0
+ 𝐶 (𝑇

0
) (𝐴 (𝑡) + 1)

1/24𝐴(𝑡)
11/12

+ 𝐶 (𝑇
0
) ∫
𝑡

𝑇0

(1 + ‖∇𝑢‖BMO +
Λ
2𝑢

𝐿2)𝐴 (𝑡)

× ln (1 + 𝐴 (𝑡)) 𝑑𝜏.

(37)

This in turn gives

1 + 𝐴 (𝑡) ≤ 𝐶 (𝑇
0
) (1 + 𝐴

0
) + 𝐶 (𝑇

0
) (𝐴 (𝑡) + 1)

23/24

+ 𝐶 (𝑇
0
) ∫
𝑡

𝑇0

(1 + ‖∇𝑢‖BMO +
Λ
2𝑢

𝐿2)

× (𝐴 (𝑡) + 1) ln (1 + 𝐴 (𝑡)) 𝑑𝜏.

(38)

We set 𝐵(𝑡) := (1+𝐴(𝑡))1/24, 𝐵
0
:= (1+𝐴

0
)1/24 and divide the

above inequality by (1 +𝐴(𝑡))23/24; using the monotonicity of
𝐴(𝑡) we reach

𝐵 (𝑡) ≤ 𝐶 (𝑇
0
) [𝐵
0
+ 1 + ∫

𝑡

𝑇0

(1 + ‖∇𝑢‖BMO +
∇
2𝑢

𝐿2)

×𝐵 (𝑡) ln𝐵 (𝑡) 𝑑𝜏] .

(39)

The standard Gronwall’s inequality now gives

𝐵 (𝑡) ≤ [𝐶 (𝑇
0
) (1 + 𝐵

0
)]

exp[𝐶(𝑇0) ∫
𝑡

𝑇0

1+‖∇𝑢‖BMO+‖Λ
2
𝑢‖
𝐿
2𝑑𝜏]

, (40)

which leads to

𝐴 (𝑡) ≤ [𝐶(𝑇
0
)(1 + 𝐵

0
)]
24 exp[𝐶(𝑇0) ∫

𝑡

𝑇0

1+‖∇𝑢‖BMO+‖Λ
2
𝑢‖
𝐿
2𝑑𝜏]

.

(41)

As ∫𝑡
𝑇0

‖∇𝑢‖BMO + ‖Λ2𝑢‖
𝐿
2𝑑𝜏 remains bounded as 𝑡 ↗ 𝑇, the

above inequality contradicts that 𝐴(𝑡) ↗ ∞ as 𝑡 ↗ 𝑇, so we
complete our proof of Theorem 1.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. Coutand and S. Shkoller, “Well-posedness of the full
Ericksen-Leslie model of nematic liquid crystals,” Comptes
Rendus de l’Académie des Sciences I. Mathématique, vol. 333, no.
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