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We mainly study a general risk model and investigate the precommitted strategy and the time-consistent strategy under mean-
variance criterion, respectively. A lagrange method is proposed to derive the precommitted investment strategy. Meanwhile from
the game theoretical perspective, we find the time-consistent investment strategy by solving the extendedHamilton-Jacobi-Bellman
equations. By comparing the precommitted strategy with the time-consistent strategy, we find that the company under the time-
consistent strategy has to give up the better current utility in order to keep a consistent satisfaction over the whole time horizon.
Furthermore, we theoretically and numerically provide the effect of the parameters on these two optimal strategies and the
corresponding value functions.

1. Introduction

There exist two important riskmodels: the Cramér-Lundberg
model (the C-L risk model) and the dual risk model. The C-
L risk model describes the surplus process of an insurance
company.The insurer has two opposing cash flows: incoming
cash premiums and outgoing claims. It can get the premium
at a rate 𝑐

1
> 0 from the insured and pay for claims which

arrive according to a Poisson process with intensity 𝜆 and
claims 𝑍

1,𝑗
(𝑗 = 1, 2, 3, . . .) are independent and identically

distributed (i.i.d) nonnegative random variables with mean
𝜇
1
. The surplus of an insurer which starts with initial surplus

𝑥 is described as follows:

𝑅
1
(𝑡) = 𝑥 + 𝑐

1
𝑡 −

𝑁
𝑡

∑

𝑗=1

𝑍
1,𝑗

for 𝑡 ≥ 0. (1)

Correspondingly, the dual risk model is called dual as
opposed to the C-L riskmodel with applications to insurance.

The dual risk model describes a surplus process of another
company engaging in research and development. This com-
pany also has two opposing cash flows. The positive incomes
or profits arrive according to a Poisson process with intensity
𝜆 and profits 𝑍

2,𝑗
(𝑗 = 1, 2, 3, . . .) are i.i.d nonnegative

random variables with mean 𝜇
2
. 𝑐
2
is the rate of expenses of

the company. Thus the surplus of the company is subject to
the following equation:

𝑅
2
(𝑡) = 𝑥 +

𝑁(𝑡)

∑

𝑗=1

𝑍
2,𝑗
− 𝑐

2
𝑡. (2)

There are many possible interpretations for the dual model.
The surplus can be viewed as the amount of capital of
a company (e.g., petroleum or pharmaceutical companies)
engaging in research and developmentwhere costs are certain
and gains are random at random instants.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 358623, 15 pages
http://dx.doi.org/10.1155/2014/358623

http://dx.doi.org/10.1155/2014/358623


2 Abstract and Applied Analysis

By incorporating the C-L risk model and the dual risk
model, a general risk model can be given by the following
equation:

𝑅 (𝑡) = 𝑥 +

𝑁(𝑡)

∑

𝑗=1

𝑍
𝑗
+ 𝑐𝑡 + 𝜎

0
𝑊

0
(𝑡) , (3)

where 𝑐 ∈ R, {𝑁(𝑡)}
𝑡≥0

is a Poisson process with intensity 𝜆,
and 𝑍

𝑗
(𝑗 = 1, 2, 3, . . .) are independent and identical double

distributed with the probability density function 𝑓
𝑧
(𝑧) = 𝑝 ×

𝑓
1
(𝑧)𝐼

𝑧>0
+ (1 − 𝑝) × 𝑓

2
(𝑧)𝐼

𝑧<0
. The C-L risk model and the

dual risk model are all the special examples. This model can
also be described as the surplus of a company engaging in
research and development where success or failure can cause
a greater profit or a bigger loss, respectively.

The literature for mean-variance (MV) analysis of the
general risk model has not appeared. Mean-variance analysis
for optimal asset allocation is an important result of finan-
cial economics. Markowitz [1] proposed the mean-variance
approach and it is viewed as the foundation of modern
finance theory. Since then, a large number of papers have
been published on this topic.The single period case was dealt
with by many scholars. The MV optimal portfolio problem
in a multiperiod framework and continuous time version is
time-inconsistent which means that the Bellman Optimality
Principle does not hold.

Nowadays two basic ways are used to deal with time-
inconsistency in optimal control problems in the literature.
One way is to study the precommitted problem where
“optimal” is interpreted as “optimal from the point of view
of time zero” and the decision makers themselves follow the
policies chosen at the initial time in the future. Zhou and Li
[2] and Li and Ng [3] made excellent works in dealing with
time-inconsistency by employing an embedding technique.
Another way is to take the time-inconsistency more seriously
and study the problem within a game theoretical framework.
One possible interpretation of the time-inconsistency is that
our preferences change in a temporally inconsistent way
as time goes by, and we can view the MV problem as a
game, where the players are the future incarnations of our
own preferences. Nash equilibrium points can be found
in the game theoretical approach to address general time-
inconsistency. See more references in Björk andMurgoci [4],
Ekeland and Lazrak [5], and Kryger and Steffensen [6].

Recently many scholars have paid more attention to
mean-variance analysis for the risk model. Bäuerle [7]
investigated a reinsurance problem and measured deviations
from a certain predefined benchmark 𝑏. Bai and Zhang
[8] studied optimal reinsurance-investment (no-shorting)
strategy for the mean-variance problem under the following
two risk models: a classical risk model and a diffusion risk
model. Some other scholars also discussed the reinsurance-
investment problem from game theoretical framework. Li et
al. [9] and Zeng et al [10] investigated the time-consistent
investment and reinsurance strategy when the prices of risky
assets followed Heston’s SV process and a jump diffusion
process, respectively.

In this paper, we are concerned with the optimal invest-
ment problem for the general risk model under mean-
variance criterion. Our study contributes to the literature
in three ways. Firstly, we study the general risk model
under mean-variance criterion and the precommitted strat-
egy and the time-consistent strategy are derived. Secondly,
we propose a simple technique (lagrange technique) to deal
with the precommitted investment problem. Our method is
different from the lagrange technique proposed by Zhou and
Li [2]. They showed that this nonstandard problem (MV)
can be embedded into a class of auxiliary stochastic linear-
quadratic (LQ) problems. The optimal strategy was derived
by solving the LQ problem and they calculated the efficient
frontier in a closed form for the original portfolio selection.
Correspondingly, the precommitted strategy and the efficient
frontier are derived together in the process of solving problem
(MV) by the lagrange technique we proposed. Thirdly, we
investigate the effect of the parameters on the investment
strategies and the corresponding value functions from the
theoretical and numerical analysis. The comparisons of the
value functions and the efficient frontiers show that the
companyunder the time-consistent strategy has to give up the
better current utility in order to keep a consistent satisfaction
over the whole time horizon.

The rest of this paper is organized as follows. Section 2
describes themodel and formulates the problemundermean-
variance criterion. In the next two sections, we investigate the
precommitted investment strategy and the time-consistent
strategy for problem (MV), respectively. In Section 5, numer-
ical analysis is presented for our results.

2. Problem Formulation

In this section, we start with a filtered complete probability
space (Ω,F, {F

𝑡
}
0≤𝑡≤𝑇

,P), where 𝑇 represents the time
horizon and F

𝑡
stands for the information available at time

𝑡. Here recall the general risk model; namely, the surplus
process of a company is given by

𝑅 (𝑡) = 𝑥 +

𝑁(𝑡)

∑

𝑗=1

𝑍
𝑗
+ 𝑐𝑡 + 𝜎

0
𝑊

0
(𝑡) , (4)

where {𝑁(𝑡)}
𝑡≥0

is a Poisson process with intensity 𝜆,𝑍
𝑗
is the

size of the 𝑗th income or profit which is double distributed
with the probability density function 𝑓

𝑧
(𝑧) = 𝑝 × 𝑓

1
(𝑧)𝐼

𝑧>0
+

(1 − 𝑝) × 𝑓
2
(𝑧)𝐼

𝑧<0
and the first and second moment 𝜇

𝑧

and 𝜎2
𝑧
, and𝑊

0
(𝑡) represents the uncertainty of the income.

Furthermore assume the expected increase of the surplus per
unit time satisfies the positive loading condition, 𝜆𝜇

𝑧
+ 𝑐 > 0.

The financial market consists of a risk-free asset and 𝑛
risky assets. The company is allowed to invest its surplus into
this financial market. The total amount of money invested
into 𝑖th risky asset at time 𝑡 is described as 𝑙

𝑖
(𝑡). The price

of the risk-free asset 𝑆
0
is subject to the following stochastic

differential equation:

𝑑𝑆
0
(𝑡) = 𝑟

0
(𝑡) 𝑆

0
(𝑡) 𝑑𝑡, 𝑆

0
(0) = 𝑠

0 (5)
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and the price of the 𝑖th risky asset 𝑆
𝑖
satisfies the following

stochastic differential equation:

𝑑𝑆
𝑖
(𝑡) = 𝑆

𝑖
(𝑡)(𝑟

𝑖
(𝑡) 𝑑𝑡 +

𝑑

∑

𝑗=1

𝜎
𝑖𝑗
(𝑡) 𝑑𝑊

𝑗
(𝑡)) ,

𝑆
𝑖
(0) = 𝑠

𝑖
,

(6)

where 𝑟
0
(𝑡) is a risk-free rate, 𝑟𝑖(𝑡) > 𝑟

0
(𝑡) is the appreciation

rate of the 𝑖th risky asset and the functions including 𝑟
0
(𝑡)and

𝑟
𝑖
(𝑡), and𝜎

𝑖𝑗
(𝑡) are all positive continuous bounded functions.

𝑊(𝑡) = (𝑊
1
(𝑡),𝑊

2
(𝑡), . . . ,𝑊

𝑑
(𝑡))

𝑇 is a 𝑑-dimensional stan-
dard Brownian motion which is independent of∑𝑁(𝑡)

𝑗=1
𝑍
𝑗
and

𝑊
0
(𝑡). Here the superscript “𝑇” denotes the transpose of a

matrix or a vector and 𝑑 ≥ 𝑛. Let 𝑋𝑙
(𝑡) denote the resulting

surplus process after incorporating strategy 𝑙 into (4). The
dynamics of𝑋𝑙

(𝑡) can be described as follows:

𝑑𝑋
𝑙
(𝑡) = (𝑟

0
(𝑡) 𝑋

𝑙
(𝑡) + 𝑟

𝑇
(𝑡) 𝑙 (𝑡) + 𝑐) 𝑑𝑡

+ 𝑙
𝑇
(𝑡) 𝜎 (𝑡) 𝑑𝑊 (𝑡) + 𝑑

𝑁(𝑡)

∑

𝑗=1

𝑍
𝑗
+ 𝜎

0
𝑊

0
(𝑡) ,

(7)

where 𝑟(𝑡) = (𝑟1(𝑡) − 𝑟
0
(𝑡), 𝑟

2
(𝑡) − 𝑟

0
(𝑡), . . . , 𝑟

𝑛
(𝑡) − 𝑟

0
(𝑡))

𝑇 and
𝜎(𝑡) = (𝜎

𝑖𝑗
)
𝑛×𝑑

. Furthermore, denote Σ(𝑡) = 𝜎(𝑡)𝜎𝑇(𝑡) and
assume that Σ(𝑡) is reversible for all 𝑡 ∈ [0, 𝑇].

For 𝑄 = [0, 𝑇] × R, denote 𝐶1,2(𝑄) = {𝜙(𝑡, 𝑥) | 𝜙(𝑡, ⋅) is
once continuously differentiable on [0, T], and 𝜙(⋅, 𝑥) is twice
continuously differentiable on R}.

For 𝜙(𝑡, 𝑥) ∈ 𝐶1,2(𝑄), the infinitesimal operator of the
surplus process𝑋𝑙

(𝑡) is given by the following equation:

A𝜙 (𝑡, 𝑥) = 𝜙
𝑡
(𝑡, 𝑥) + 𝜙

𝑥
(𝑡, 𝑥) (𝑟

0
(𝑡) 𝑥 + 𝑐 + 𝑟

𝑇
(𝑡) 𝑙 (𝑡))

+

1

2

𝜙
𝑥𝑥
(𝑡, 𝑥) (𝑙

𝑇
(𝑡) Σ (𝑡) 𝑙 (𝑡) + 𝜎

2

0
)

+ 𝜆 [𝐸𝜙 (𝑡, 𝑥 + 𝑍) − 𝜙 (𝑡, 𝑥)] .

(8)

Next, we give the definition of admissible strategy on the
general risk process𝑋𝑙

(𝑡).

Definition 1 (admissible strategy). A strategy 𝑙 ={𝑙(𝑡)}
𝑡∈[0,𝑇]

is
said to be admissible if it satisfies the following conditions:

(1) 𝑙 : [0,∞] × Ω → R is anF-adapted process;

(2) 𝑙 satisfies the integrability condition, 𝐸∫𝑡
0
𝑙
𝑇
(𝑡)Σ(𝑡)

𝑙(𝑡)𝑑𝑠 < ∞ almost surely, for all 𝑡 ∈ [0, 𝑇];
(3) SDE (7) has a unique solution corresponding to 𝑙.

In addition, let𝑈 denote the set of all admissible strategies
with respect to initial condition (𝑡, 𝑥) ∈ [0, 𝑇] × R. The
objective is to find the optimal investment strategy among
all the admissible strategies in order to make the expected
terminal wealth maximized and the variance of the terminal
wealth minimized. The alternative objective is to find a
strategy which maximizes the expected terminal wealth

minus the variance of the terminal wealth by the biobjective
optimization theory. So the objective is changed to find the
maximization of the following function:

(MV)
{

{

{

𝐸
0,𝑥
(𝑋

𝑙
(𝑇)) −

𝛾

2

Var
0,𝑥
(𝑋

𝑙
(𝑇)) → max

𝑙 ∈ 𝑈,

(9)

where 𝛾 is a prespecified risk aversion coefficient, Var
0,𝑥
[⋅] =

Var[⋅ | 𝑋𝑙
(0) = 𝑥]. Because this mean-variance crite-

rion lacks the iterated-expectation property, this problem is
time-inconsistent in the sense that the Bellman Optimality
Principle does not hold. This problem can be reduced to a
resolvable problem by virtue of some techniques including
the lagrange technique and the game theoretical technique. In
the following two sections, optimal investment strategies and
the value functions can be explicitly derived in the general
risk model for problem (MV), respectively.

3. Optimal Precommitted Investment
Strategy for Problem (MV)

This section will provide the precommitted investment strat-
egy for problem (MV). We firstly state the main idea of solv-
ing problem (MV).

Let 𝑑 ∈ R be fixed and consider the following problem
with a constrained expectation:

(MV
1
)

{
{
{

{
{
{

{

𝐸
0,𝑥
(𝑋

𝑙
(𝑇)) −

𝛾

2

Var
0,𝑥
(𝑋

𝑙
(𝑇)) → max

𝐸
0,𝑥
(𝑋

𝑙

𝑇
) = 𝑑

𝑙 ∈ 𝑈.

(10)

Add the terminal condition 𝐸
0,𝑥
(𝑋

𝑙

𝑇
) = 𝑑 to the objective

function and problem (MV
1
) is equal to the following prob-

lem:

(MV
2
)

{
{
{

{
{
{

{

−

𝛾

2

𝐸
0,𝑥
(𝑋

𝑙
(𝑇))

2

+ 𝑑 +

𝛾

2

𝑑
2
→ max

𝐸
0,𝑥
(𝑋

𝑙

𝑇
) = 𝑑

𝑙 ∈ 𝑈.

(11)

Denote the value function for problem (MV
2
) by𝑉(𝑥, 𝑑) and

the value function 𝑉(𝑥) for problem (MV) satisfies 𝑉(𝑥) =
sup

𝑑∈𝑅
𝑉(𝑥, 𝑑). Problem (MV

2
) can be solved by introducing

a lagrange multiplier 𝑦(𝑥, 𝑑) and for 𝑦 := 𝑦(𝑥, 𝑑) ∈ R define
a quadratic utility problem

(MV
3
)

{
{
{
{

{
{
{
{

{

𝐸
0,𝑥
[𝑦𝑋

𝑙
(𝑇) −

𝛾

2

(𝑋
𝑙
(𝑇))

2

]

+ 𝑑 +

𝛾

2

𝑑
2
− 𝑑𝑦 → max

𝑙 ∈ 𝑈.

(12)

Denote the value function for problem (MV
3
) by 𝑉(𝑥, 𝑑, 𝑦).

Theduality theory implies that the value function for problem
(MV

2
) satisfies that

𝑉 (𝑥, 𝑑) = inf
𝑦∈R
𝑉 (𝑥, 𝑑, 𝑦) . (13)
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The precommitted investment strategy for problem (MV) is
derived by the following three steps.

Step 1. We will calculate the optimal investment strategy and
the value function by solving the related Hamilton-Jacobi-
Bellman (HJB) equation for problem (MV

3
). From standard

arguments described as in Fleming and Soner [11], it is not
hard to derive the following VerificationTheorem on the HJB
equation.

Lemma 2 (verification theorem). If there exist a real function
𝑀(𝑡, 𝑥) ∈ 𝐶

1,2
(𝑄) and 𝑙∗ ∈ 𝑈, which satisfy the following HJB

equation:

sup
𝑙∈𝑈

{A
𝑙
𝑀(𝑡, 𝑥)} = 0, (14)

𝑀(𝑇, 𝑥) = −

𝛾

2

𝑥
2
+ 𝑦𝑥 +

𝛾

2

𝑑
2
+ 𝑑 − 𝑦𝑑, (15)

𝑙
∗
(𝑡) = arg sup{A𝑀(𝑡, 𝑥)} , (16)

then 𝑉(𝑥, 𝑑, 𝑦) = 𝑀(0, 𝑥) and 𝑙∗(𝑡) is the optimal investment
strategy.

Now, we will solve theHJB equation in Lemma 2. Assume
that there exists a real function 𝑀(𝑡, 𝑥) which satisfies
the boundary condition (15). By virtue of the infinitesimal
operator (8), (14) can be rewritten as

sup
𝑙∈𝑈

{𝑀
𝑡
(𝑡, 𝑥) + 𝑀

𝑥
(𝑡, 𝑥) (𝑟

0
(𝑡) 𝑥 + 𝑐 + 𝑟

𝑇
(𝑡) 𝑙 (𝑡))

+

1

2

𝑀
𝑥𝑥
(𝑡, 𝑥) (𝑙

𝑇
(𝑡) Σ (𝑡) 𝑙 (𝑡) + 𝜎

2

0
)

+ 𝜆𝐸 [𝑀 (𝑡, 𝑥 + 𝑍) −𝑀 (𝑡, 𝑥)]} = 0.

(17)

Since both the structure of (17) and the boundary conditions
of𝑀(𝑡, 𝑥) are quadratic in 𝑥, we can conjecture that

𝑀(𝑡, 𝑥) = 𝑚 (𝑡) 𝑥
2
+ 𝑛 (𝑡) 𝑥 + 𝑓 (𝑡) ,

𝑚 (𝑇) = −

𝛾

2

, 𝑛 (𝑇) = 𝑦, 𝑓 (𝑇) =

𝛾

2

𝑑
2
+ 𝑑 − 𝑦𝑑.

(18)

Obviously,

𝑀
𝑡
(𝑡, 𝑥) = �̇� (𝑡) 𝑥

2
+ ̇𝑛 (𝑡) 𝑥 +

̇
𝑓 (𝑡) ,

𝑀
𝑥
(𝑡, 𝑥) = 2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡) ,

𝑀
𝑥𝑥
(𝑡, 𝑥) = 2𝑚 (𝑡) .

(19)

Substituting (18)-(19) into (17), we have

sup
𝑙∈𝑈

{�̇� (𝑡) 𝑥
2
+ ̇𝑛 (𝑡) 𝑥 +

̇
𝑓 (𝑡) + (2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡))

× (𝑟
0
(𝑡) 𝑥 + 𝑐 + 𝑟

𝑇
(𝑡) 𝑙 (𝑡) + 𝜆𝜇

𝑧
)

+𝑚 (𝑡) (𝑙
𝑇
(𝑡) Σ (𝑡) 𝑙 (𝑡) + 𝜆𝜎

2

𝑧
+ 𝜎

2

0
) } = 0.

(20)

Differentiating the function in the left bracket of (20) with
respect to 𝑙 and setting the derivative to zero, we get

(2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡)) 𝑟 (𝑡) + 2𝑚 (𝑡) Σ (𝑡) 𝑙 (𝑡) = 0. (21)
thus,

𝑙 (𝑡) = −

(2𝑚 (𝑡) 𝑥 + 𝑛 (𝑡)) Σ
−1
(𝑡) 𝑟 (𝑡)

2𝑚 (𝑡)

. (22)

Inserting (22) into (20), we have

(�̇� (𝑡) + 𝑚 (𝑡) (2𝑟
0
(𝑡) − 𝜉 (𝑡))) 𝑥

2

+ ( ̇𝑛 (𝑡) + 𝑛 (𝑡) (𝑟
0
(𝑡) − 𝜉 (𝑡)) + 2𝑚 (𝑡) 𝑞) 𝑥

+ (
̇
𝑓 (𝑡) + (𝜆𝜎

2

𝑧
+ 𝜎

2

0
)𝑚 (𝑡) + 𝑞𝑛 (𝑡) −

𝑛
2
(𝑡)

4𝑚 (𝑡)

𝜉 (𝑡)) = 0,

(23)
where

𝜉 (𝑡) = 𝑟
𝑇
(𝑡) Σ

−1
(𝑡) 𝑟 (𝑡) ≥ 0, 𝑞 = 𝜆𝜇

𝑧
+ 𝑐 > 0. (24)

Letting the coefficients of 𝑥 and 𝑥2 and the constant coeffi-
cient be equal to 0 in (23), we have

�̇� (𝑡) + 𝑚 (𝑡) (2𝑟
0
(𝑡) − 𝜉 (𝑡)) = 0, 𝑚 (𝑇) = −

𝛾

2

,

̇𝑛 (𝑡) + 𝑛 (𝑡) (𝑟
0
(𝑡) − 𝜉 (𝑡)) + 2𝑚 (𝑡) 𝑞 = 0, 𝑛 (𝑇) = 𝑦,

̇
𝑓 (𝑡) + (𝜆𝜎

2

𝑧
+ 𝜎

2

0
)𝑚 (𝑡) + 𝑞𝑛 (𝑡) −

𝑛
2
(𝑡)

4𝑚 (𝑡)

𝜉 (𝑡) = 0,

𝑓 (𝑇) =

𝛾

2

𝑑
2
+ 𝑑 − 𝑦𝑑.

(25)
The solutions of the ordinary differential equation (25) are as
follows:

𝑚(𝑡) = −

𝛾

2

𝑒
∫
𝑇

𝑡
(2𝑟
0
(𝑠)−𝜉(𝑠)𝑑𝑠

, (26)

𝑛 (𝑡) = 𝑒
∫
𝑇

𝑡
(𝑟
0
(𝑠)−𝜉(𝑠)𝑑𝑠

(−𝑞𝛾∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 + 𝑦) , (27)

𝑓 (𝑡) = −

𝛾 (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

2

∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
(2𝑟
0
(𝑢)−𝜉(𝑢)𝑑𝑢

𝑑𝑠

−

1

2𝛾

𝑒
−∫
𝑇

𝑡
𝜉(𝑢)𝑑𝑢

[−𝑞𝛾∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑦]

2

+

𝛾

2

𝑑
2
+ 𝑑 − 𝑑𝑦 +

𝑦
2

2𝛾

.

(28)

Substituting (26) and (27) into (22), we have

𝑙 (𝑡) = Σ
−1
(𝑡) 𝑟 (𝑡)

× {𝑒
−∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠

(−𝑞∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 +

𝑦

𝛾

) − 𝑥 (𝑡)} .

(29)
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According to the argument above, optimal investment strat-
egy and the value function for problem (MV

3
) are given by

the following theorem.

Theorem 3. For problem (MV
3
), optimal investment strategy

𝑙
∗

1
is given by

𝑙
∗

1
(𝑡) = Σ

−1
(𝑡) 𝑟 (𝑡)

× {𝑒
−∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠

(−𝑞∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 +

𝑦

𝛾

) − 𝑥 (𝑡)}

(30)

and the value function is given by

𝑉 (𝑥, 𝑑, 𝑦)

= −

𝛾 (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

2

∫

𝑇

0

𝑒
∫
𝑇

𝑠
(2𝑟
0
(𝑢)−𝜉(𝑢)𝑑𝑢

𝑑𝑠

−

𝛾

2

𝑒
−∫
𝑇

0
𝜉(𝑠)𝑑𝑠

{𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+ [𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 −

𝑦

𝛾

]}

2

+

𝛾

2

𝑑
2
+ 𝑑 − 𝑑𝑦 +

𝑦
2

2𝛾

.

(31)

Step 2. By virtue of 𝑉(𝑥, 𝑑) = inf
𝑦∈R𝑉(𝑥, 𝑑, 𝑦), we can solve

problem (MV
2
). Differentiating 𝑉(𝑥, 𝑑, 𝑦) with respect to 𝑦,

we have

𝜕𝑉

𝜕𝑦

= 𝑒
−∫
𝑇

0
𝜉(𝑠)𝑑𝑠

{𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+ [𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 −

𝑦

𝛾

]}

− 𝑑 +

𝑦

𝛾

.

(32)

Setting the derivative to zero yields that

𝑦
∗
=

[𝑞 ∫

𝑇

0
𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

− 𝑑𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

] 𝛾

1 − 𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

.
(33)

Furthermore,

𝜕
2
𝑉

𝜕𝑦
2
=

1 − 𝑒
−∫
𝑇

0
𝜉(𝑠)𝑑𝑠

𝛾

> 0. (34)

Therefore 𝑦∗ ∈ R is the point which minimizes 𝑉(𝑥, 𝑑, 𝑦)
according to the extreme value theory. By inserting (33)
into (30)-(31), optimal investment strategy 𝑙∗

2
(𝑡) and the

value function 𝑉(𝑥, 𝑑) for problem (MV
2
) are given by the

following theorem.

Theorem 4. For problem (𝑀𝑉
2
), optimal investment strategy

𝑙
∗

2
is given by

𝑙
∗

2
(𝑡)

= Σ
−1
(𝑡) 𝑟 (𝑡)

× {𝑒
−∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠

× ( − 𝑞∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

+

𝑞 ∫

𝑇

0
𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

− 𝑑𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

1 − 𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

)

−𝑥 (𝑡) }

(35)

and the value function is given by

𝑉 (𝑥, 𝑑) = −

𝛾𝜆𝜎
2

𝑧

2

∫

𝑇

0

𝑒
∫
𝑇

𝑠
(2𝑟
0
(𝑢)−𝜉(𝑢)𝑑𝑢

𝑑𝑠

+

𝛾

2 (1 − 𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

)

× {𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+ 𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 − 𝑑}

2

+ 𝑑.

(36)

Step 3. Problem (MV) can be finally solved by virtue of the
relationship of 𝑉(𝑥) and 𝑉(𝑥, 𝑑). Differentiating 𝑉(𝑥, 𝑑) at 𝑑
yields that

𝜕𝑉 (𝑥, 𝑑)

𝜕𝑑

=

𝛾

1 − 𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

× {𝑑 − 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

− 𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠} + 1,

𝜕
2
𝑉 (𝑥, 𝑑)

𝜕𝑑
2

=

𝛾

1 − 𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

< 0.

(37)

From the extreme value theory, the optimal expected termi-
nal wealth 𝑑∗ does exist and satisfies 𝜕𝑉(𝑥, 𝑑)/𝜕𝑑 = 0. By a
simple calculation, we have

𝑑
∗
= 𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+

(𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

− 1)

𝛾

.
(38)

Therefore, inserting (38) into (35) and (36), optimal invest-
ment strategy and the value function for problem (MV) can
be derived explicitly and they are given by the following
theorem.
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Theorem 5. For problem (MV), optimal precommitted invest-
ment strategy 𝑙∗ is given by

𝑙
∗
(𝑡)

= Σ
−1
(𝑡) 𝑟 (𝑡)

× {𝑒
−∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠

× (𝑞∫

𝑡

0

𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+

𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

𝛾

)

−𝑥 (𝑡) }

(39)

and the value function is given by

𝑉 (𝑥) = 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+ 𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

−

𝛾 (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

2

∫

𝑇

0

𝑒
∫
𝑇

𝑠
(2𝑟
0
(𝑢)−𝜉(𝑢)𝑑𝑢

𝑑𝑠

+

(𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

− 1)

2𝛾

.

(40)

Remark 6. The efficient frontier at initial state (0, 𝑥) can be
derived. ByTheorem 5 and the definition of 𝑑∗, we have

𝐸
0,𝑥
(𝑋

𝑙
∗

(𝑇)) = 𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+

(𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

− 1)

𝛾

,

Var
0,𝑥
(𝑋

𝑙
∗

(𝑇)) = (𝜆𝜎
2

𝑧
+ 𝜎

2

0
) ∫

𝑇

0

𝑒
∫
𝑇

𝑠
(2𝑟
0
(𝑢)−𝜉(𝑢)𝑑𝑢

𝑑𝑠

+

1

𝛾
2
(𝑒

∫
𝑇

0
𝜉(𝑠)𝑑𝑠

− 1) .

(41)

So the efficient frontier at initial state (0, 𝑥) is as follows:

𝐸
0,𝑥
(𝑋

𝑙
∗

(𝑇)) = 𝑞∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(V)𝑑V

𝑑𝑠 + 𝑥𝑒
∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠

+ ([Var
0,𝑥
(𝑋

𝑙
∗

(𝑇))

− (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)∫

𝑇

0

𝑒
∫
𝑇

𝑠
(2𝑟
0
(𝑢)−𝜉(𝑢)𝑑𝑢

𝑑𝑠]

× (𝑒
∫
𝑇

0
𝜉(𝑠)𝑑𝑠

− 1))

1/2

.

(42)

This efficient frontier is not a straight line but a hyperbola in
the mean-standard deviation plane.

Remark 7. The precommitted investment strategy is stochas-
tically dependent on the current wealth which means that
𝑙
∗
(𝑡) is a stochastic process which satisfies the following

stochastic differential equation:

𝑑𝑋
𝑙
∗

(𝑡) = (𝑟
0
(𝑡) 𝑋

𝑙
∗

(𝑡) + 𝑟
𝑇
(𝑡) 𝑙

∗
(𝑡) + 𝑐) 𝑑𝑡

+ (𝑙
∗
(𝑡))

𝑇

𝜎 (𝑡) 𝑑𝑊 (𝑡) + 𝑑

𝑁(𝑡)

∑

𝑗=1

𝑍
𝑗
+ 𝜎

0
𝑊

0
(𝑡) .

(43)

So all the parameters impact the precommitted investment
strategy together, and we can only analyze the effect of the
parameters on 𝑙∗(𝑡) by numerical simulation.

Remark 8. When all the parameters are all constants and
𝑑 = 𝑛 = 1, the optimal precommitted investment strategy,
the corresponding value function, and the efficient frontier
are given by the following equations:

𝑙
∗
(𝑡) =

𝑟
1
− 𝑟

0

𝜎
2
{

𝜆𝜇
𝑧
+ 𝑐

𝑟
0

(𝑒
𝑟
0
𝑡
− 1) + 𝑥𝑒

𝑟
0
𝑡

+

𝑒
[(𝑟
1
−𝑟
0
)
2
/𝜎
2
−𝑟
0
]𝑇
𝑒
𝑟
0
𝑡

𝛾

− 𝑥 (𝑡)} ,

(44)

𝑉 (𝑥) = 𝑥𝑒
𝑟
0
𝑇
+

𝜆𝜇
𝑧
+ 𝑐

𝑟
0

(𝑒
𝑟
0
𝑇
− 1)

−

𝛾 (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

2 (2𝑟
0
− (𝑟

1
− 𝑟

0
)
2
/𝜎

2
)

(𝑒
(2𝑟
0
−(𝑟
1
−𝑟
0
)
2
/𝜎
2
)𝑇
− 1)

+

(𝑒
((𝑟
1
−𝑟
0
)
2
/𝜎
2
)𝑇
− 1)

2𝛾

,

(45)

𝐸
0,𝑥
(𝑋

𝑙
∗

(𝑇))

= ([Var
0,𝑥
(𝑋

𝑙
∗

(𝑇)) −

(𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

(2𝑟
0
− (𝑟

1
− 𝑟

0
)
2
/𝜎

2
)

× (𝑒
(2𝑟
0
−(𝑟
1
−𝑟
0
)
2
/𝜎
2
)𝑇
− 1)]

× (𝑒
((𝑟
1
−𝑟
0
)
2
/𝜎
2
)𝑇
− 1))

1/2

+ 𝑥𝑒
𝑟
0
𝑇
+

𝜆𝜇
𝑧
+ 𝑐

𝑟
0

(𝑒
𝑟
0
𝑇
− 1) .

(46)
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4. Optimal Time-Consistent Investment
Strategy for Problem (MV)

In this section, we will provide optimal time-consistent
investment strategy and the equilibrium value function for
problem (MV) by solving the extended HJB equations.

Firstly define problem (MV)

(MV)
{

{

{

𝐸
𝑡,𝑥
[𝑋

𝑙
(𝑇)] −

𝛾

2

Var
𝑡,𝑥
[𝑋

𝑙
(𝑇)] → max

𝑙 ∈ 𝑈,

(47)

and denote the value function by 𝜓(𝑡, 𝑥) for problem (MV).
Due to the fact that this objective function is nonlinear in
the expectation of the terminal surplus, problem (MV) is
time-inconsistent in the sense that the Bellman Optimality
Principle does not hold. In order to deal with this time-
inconsistent problem, we can view the investment problem
as a noncooperative game with one player for each time
𝑡 and look for some equilibrium strategy which will also
be equilibrium for any time 𝑡 ∈ [0, 𝑇]. The definitions of
equilibrium strategy and verification theorem for problem
(MV) are described as similarly as in Björk and Murgoci [4]
or Zeng et al. [10].

Definition 9 (equilibrium strategy). For any fixed chosen
initial state (𝑡, 𝑥) ∈ 𝑄, consider an admissible strategy 𝑙

∗
(𝑡, 𝑥).

Choose two fixed real numbers̃𝑙 > 0 and 𝜀 > 0 and define the
following strategy:

𝑙
𝜀
(𝑠, 𝑥) = {

̃
𝑙, for (𝑠, 𝑥) ∈ [𝑡, 𝑡 + 𝜀] ×R
𝑙
∗
(𝑠, 𝑥) , for (𝑠, 𝑥) ∈ [𝑡 + 𝜀, 𝑇] ×R.

(48)

If

lim inf
𝜖→0

𝐽 (𝑡, 𝑥, 𝑙
∗
) − 𝐽 (𝑡, 𝑥, 𝑙

𝜀
)

𝜀

≥ 0, ∀
̃
𝑙 ∈ R

+
, (𝑡, 𝑥) ∈ 𝑄,

(49)

then 𝑙
∗
(𝑡, 𝑥) is called an equilibrium strategy, and the corre-

sponding equilibrium value function is defined by

𝜓 (𝑡, 𝑥) = 𝐽 (𝑡, 𝑥, 𝑙
∗
) = 𝐸

𝑡,𝑥
[𝑋

𝑙
∗
(𝑇)] −

𝛾

2

Var
𝑡,𝑥
[𝑋

𝑙
∗
(𝑇)] .

(50)

It is easy to see that the equilibrium strategy is time-
consistent. So the equilibrium strategy 𝑙

∗
is called optimal

time-consistent strategy.

Lemma 10 (verification theorem). If there exist two real
functions𝑄(𝑡, 𝑥) and𝑔(𝑡, 𝑥) ∈ 𝐶1,2(𝑄), satisfying the following
extended HJB equations:

sup
𝑙∈𝑈

{A
𝑙
𝑄 (𝑡, 𝑥) −A

𝑙
(

𝛾

2

𝑔
2
(𝑡, 𝑥)) + 𝛾𝑔 (𝑡, 𝑥)A

𝑙
𝑔 (𝑡, 𝑥)} = 0,

(51)

𝑄 (𝑇, 𝑥) = 𝑥, (52)

A
𝑙
∗
𝑔 (𝑡, 𝑥) = 0, (53)

𝑔 (𝑇, 𝑥) = 𝑥, (54)

where

𝑙
∗
= arg sup {A𝑄 (𝑡, 𝑥) −A(

𝛾

2

𝑔
2
(𝑡, 𝑥))

+ 𝛾𝑔 (𝑡, 𝑥)A𝑔 (𝑡, 𝑥) } ,

(55)

then 𝜓(𝑡, 𝑥) = 𝑄(𝑡, 𝑥), 𝐸
𝑡,𝑥
(𝑋

𝑙
∗
(𝑡)) = 𝑔(𝑡, 𝑥), and 𝑙

∗
is optimal

time-consistent strategy.

Next, we will find the solution to the extended HJB
equations. By using the infinitesimal generator (8), we can
rewrite the extended HJB equations in Lemma 10 as

sup
𝑙∈𝑈

{𝑄
𝑡
(𝑡, 𝑥) + 𝑄

𝑥
(𝑡, 𝑥) (𝑟

0
(𝑡) 𝑥 + 𝑐 + 𝑟

𝑇
(𝑡) 𝑙 (𝑡))

+

1

2

(𝑄
𝑥𝑥
(𝑡, 𝑥) − 𝛾𝑔

2

𝑥
(𝑡, 𝑥)) (𝑙

𝑇
(𝑡) Σ (𝑡) 𝑙 (𝑡) + 𝜎

2

0
)

+ 𝜆𝐸 [𝑄 (𝑡, 𝑥 + 𝑍) −

𝛾

2

𝑔 (𝑡, 𝑥 + 𝑍)

× (𝑔 (𝑡, 𝑥 + 𝑍) − 2𝑔 (𝑡, 𝑥)) ]

−𝜆 [𝑄 (𝑡, 𝑥) +

𝛾

2

𝑔
2
(𝑡, 𝑥)]} = 0,

(56)

𝑔
𝑡
(𝑡, 𝑥) + 𝑔

𝑥
(𝑡, 𝑥) (𝑟

0
(𝑡) 𝑥 + 𝑐 + 𝑟

𝑇
(𝑡) 𝑙

∗
(𝑡))

+

1

2

𝑔
𝑥𝑥
(𝑡, 𝑥) (𝑙

𝑇

∗
(𝑡) Σ (𝑡) 𝑙

∗
(𝑡) + 𝜎

2

0
)

+ 𝜆𝐸 [𝑔 (𝑡, 𝑥 + 𝑍) − 𝑔 (𝑡, 𝑥)] = 0,

(57)

where 𝑙
∗
(𝑡) is determined below.

On one hand, differentiating the function in the left
bracket of (56) with respect to 𝑙 and setting the derivative to
zero, we get

𝑙
∗
(𝑡) = −

Σ
−1
(𝑡) 𝑟 (𝑡) 𝑄

𝑥
(𝑡, 𝑥)

𝑄
𝑥𝑥
(𝑡, 𝑥) − 𝛾𝑔

2

𝑥
(𝑡, 𝑥)

. (58)

On the other hand, since the linear structure of (56) and (57)
and the boundary conditions of 𝑄(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) given by
(52) and (54) are linear in 𝑥, we can guess that

𝑄 (𝑡, 𝑥) = 𝐴 (𝑡) 𝑥 + 𝐷 (𝑡) , 𝐴 (𝑇) = 1, 𝐷 (𝑇) = 0,

𝑔 (𝑡, 𝑥) = 𝑎 (𝑡) 𝑥 + 𝑑 (𝑡) , 𝑎 (𝑇) = 1, 𝑑 (𝑇) = 0.

(59)

Thus, the partial derivatives for the functions𝑄(𝑡, 𝑥) and 𝑔(𝑡,
𝑥) are easily calculated:

𝑄
𝑡
(𝑡, 𝑥) = �̇� (𝑡) 𝑥 + �̇� (𝑡) ,

𝑄
𝑥
(𝑡, 𝑥) = 𝐴 (𝑡) , 𝑄

𝑥𝑥
(𝑡, 𝑥) = 0,

𝑔
𝑡
(𝑡, 𝑥) = ̇𝑎 (𝑡) 𝑥 +

̇
𝑑 (𝑡) ,

𝑔
𝑥
(𝑡, 𝑥) = 𝑎 (𝑡) , 𝑔

𝑥𝑥
(𝑡, 𝑥) = 0.

(60)
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Substituting (60) into (58) yields

𝑙
∗
(𝑡) =

𝐴 (𝑡) Σ
−1
(𝑡) 𝑟 (𝑡)

𝛾𝑎
2
(𝑡)

. (61)

Inserting (59)–(61) into (56)-(57), we have

(�̇� (𝑡) + 𝑟
0
(𝑡) 𝐴 (𝑡)) 𝑥 + �̇� (𝑡) + 𝑐𝐴 (𝑡) + 𝜆𝜇

𝑧
𝐴 (𝑡)

−

𝛾

2

𝑎
2
(𝑡) (𝜆𝜎

2

𝑧
+ 𝜎

2

0
) +

𝐴
2
(𝑡) 𝜉 (𝑡)

2𝛾𝑎
2
(𝑡)

= 0,

( ̇𝑎 (𝑡) + 𝑟
0
(𝑡) 𝑎 (𝑡)) 𝑥 +

̇
𝑑 (𝑡) + 𝑐𝑎 (𝑡) + 𝜆𝜇

𝑧
𝑎 (𝑡)

+

𝐴 (𝑡) 𝜉 (𝑡)

𝛾𝑎 (𝑡)

= 0,

(62)

where

𝜉 (𝑡) = 𝑟
𝑇
(𝑡) Σ

−1
(𝑡) 𝑟 (𝑡) ≥ 0. (63)

Because (62) holds for ∀𝑥 ∈ R which means that the
coefficient of 𝑥 and the constant coefficient are equal to 0, we
have

�̇� (𝑡) + 𝑟
0
(𝑡) 𝐴 (𝑡) = 0, 𝐴 (𝑇) = 1,

�̇� (𝑡) + (𝜆𝜇
𝑧
+ 𝑐)𝐴 (𝑡) −

𝛾

2

𝑎
2
(𝑡) (𝜆𝜎

2

𝑧
+ 𝜎

2

0
)

+

𝐴
2
(𝑡) 𝜉 (𝑡)

2𝛾𝑎
2
(𝑡)

= 0, 𝐷 (𝑇) = 0,

̇𝑎 (𝑡) + 𝑟
0
(𝑡) 𝑎 (𝑡) = 0, 𝑎 (𝑇) = 1,

̇
𝑑 (𝑡) + (𝜆𝜇

𝑧
+ 𝑐) 𝑎 (𝑡) +

𝐴 (𝑡) 𝜉 (𝑡)

𝛾𝑎 (𝑡)

= 0, 𝑑 (𝑇) = 0.

(64)

The solutions of the system to ordinary equations are given as
follows:

𝐴 (𝑡) = 𝑒
∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠
, (65)

𝐷 (𝑡) = (𝜆𝜇
𝑧
+ 𝑐) ∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

−

𝛾

2

(𝜆𝜎
2

𝑧
+ 𝜎

2

0
) ∫

𝑇

𝑡

𝑒
2 ∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

+

1

2𝛾

∫

𝑇

𝑡

𝜉 (𝑠) 𝑑𝑠,

(66)

𝑎 (𝑡) = 𝑒
∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠
, (67)

𝑑 (𝑡) = (𝜆𝜇
𝑧
+ 𝑐) ∫

𝑇

𝑡

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠 +

1

𝛾

∫

𝑇

𝑡

𝜉 (𝑠) 𝑑𝑠. (68)

By inserting (65) and (67) into (61), the optimal time-
consistent strategy is given by the following equation:

𝑙
∗
(𝑡) =

Σ
−1
(𝑡) 𝑟 (𝑡)

𝛾

𝑒
−∫
𝑇

𝑡
𝑟
0
(𝑠)𝑑𝑠
. (69)

Based on the argument above, the explicit expressions for
𝑄(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are obtained. Let the original time 𝑡 for
problem (MV) equal 0 and the value function for problem
(MV) is given by the following theorem.

Theorem 11. For problem (MV), optimal time-consistent strat-
egy 𝑙

∗
is given by (69) and the equilibrium value function is

given by the following equation:

𝑉
∗
(𝑥) = 𝑒

∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠
𝑥 + (𝜆𝜇

𝑧
+ 𝑐) ∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

−

𝛾 (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

2

∫

𝑇

0

𝑒
2 ∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

+

1

2𝛾

∫

𝑇

0

𝜉 (𝑠) 𝑑𝑠.

(70)

Furthermore,

𝐸
0,𝑥
(𝑋

𝑙
∗
(𝑇)) = 𝑔 (0, 𝑥) = 𝑒

∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠
𝑥

+ (𝜆𝜇
𝑧
+ 𝑐) ∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

+

1

𝛾

∫

𝑇

0

𝜉 (𝑠) 𝑑𝑠.

(71)

Remark 12. By virtue of (70) and (71), the relationship
between the expectation and the variance of the terminal
wealth is derived:

𝐸
0,𝑥
(𝑋

𝑙
∗
(𝑇)) = 𝑒

∫
𝑇

0
𝑟
0
(𝑠)𝑑𝑠
𝑥 + (𝜆𝜇

𝑧
+ 𝑐) ∫

𝑇

0

𝑒
∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠

+ ([Var
0,𝑥
(𝑋

𝑙
∗
(𝑇)) − (𝜆𝜎

2

𝑧
+ 𝜎

2

0
)

× ∫

𝑇

0

𝑒
2 ∫
𝑇

𝑠
𝑟
0
(𝑢)𝑑𝑢

𝑑𝑠]∫

𝑇

0

𝜉 (𝑠) 𝑑𝑠)

1/2

.

(72)

Equation (72) also shows this efficient frontier is a hyperbola
in the mean-standard deviation plane.

Remark 13. This time-consistent investment strategy is inde-
pendent on the current wealth which means 𝑙

∗
(𝑡) is a

deterministic function with respect to 𝑡. The parameters of
the surplus process have no impact on the optimal strategy;
the risk aversion coefficient and the coefficients of financial
market decide the optimal strategy together.
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Figure 1: The effect of parameters on optimal precommitted strategy for the general risk model.

Remark 14. When all the parameters are all constants and 𝑑 =
𝑛 = 1, optimal time-consistent strategy 𝑙

∗
, the equilibrium

value function 𝑉∗
(𝑥), and the efficient frontier are given by

𝑙
∗
(𝑡) =

𝑟
1
− 𝑟

0

𝛾𝜎
2
𝑒
−𝑟
0
(𝑇−𝑡)

, (73)

𝑉
∗
(𝑥) = 𝑥𝑒

𝑟
0
𝑇
+

𝜆𝜇
𝑧
+ 𝑐

𝑟
0

(𝑒
𝑟
0
𝑇
− 1)

−

𝛾 (𝜆𝜎
2

𝑧
+ 𝜎

2

0
)

4𝑟
0

(𝑒
2𝑟
0
𝑇
− 1) +

1

2𝛾

(𝑟
1
− 𝑟

0
)
2

𝜎
2

𝑇,

(74)
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Figure 2: The effect of parameters on optimal precommitted strategy for the C-L risk model.

𝐸
0,𝑥
(𝑋

𝑙
∗
(𝑇))

= 𝑥𝑒
𝑟
0
𝑇
+

𝜆𝜇
𝑧
+ 𝑐

𝑟
0

(𝑒
𝑟
0
𝑇
− 1)

+ ([Var
0,𝑥
(𝑋

𝑙
∗
(𝑇)) −

𝜆𝜎
2

𝑧
+ 𝜎

2

0

2𝑟
0

(𝑒
2𝑟
0
𝑇
− 1)]

×

(𝑟
1
− 𝑟

0
)
2

𝜎
2

𝑇)

1/2

.

(75)

5. Numerical Analysis

In the next two subsections, we study the effect of parameters
on the optimal strategies (precommitted strategy and time-
consistent strategy) and the corresponding value functions
and provide some numerical examples to illustrate the effects.
Finally, compare the precommitment results with the time-
consistent ones by some numerical analysis. For convenience
but without loss of generality, all the parameters involved are
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Figure 3: The effect of parameters on the value function.

constants and 𝑑 = 𝑛 = 1. The optimal investment strategies,
the corresponding value functions, and the efficient frontiers
are given by Remarks 8 and 14 from different views. For the
following numerical illustrates, unless otherwise stated, the
basic parameters are given by 𝑟

0
= 0.03, 𝑟

1
= 0.12, 𝑐 = −0.5,

𝑥 = 5, 𝛾 = 0.7, 𝜆 = 1, 𝜇
𝑧
= 1.25, 𝜎

𝑧
= 2.0, 𝜎 = 0.2, 𝜎

0
= 0.4,

and 𝑇 = 10.

5.1. Analysis of Optimal Precommitted Strategy and the Cor-
responding Value Function. In this subsection, we will work
on numerical analysis of the precommitted strategy and the
value function.

Firstly, we will show how the coefficients involved impact
on the precommitted strategy. Since the precommitted invest-
ment strategy is stochastically dependent on the current
wealth, we explore the effect of parameters of the finan-
cial market and the risk aversion by stochastic simulation.
Because the precommitted strategy is indeed a stochastic
process, we investigate the effect of different parameters in
a same sample trajectory. In order to model the trajectory,
we assume that {𝑁(𝑡)}

𝑡≥0
is a Poisson process with intensity

𝜆 and the profits or the incomes 𝑍
𝑗
(𝑗 = 1, 2, 3 . . .) are

double exponentially distributed with parameters 𝑝, 𝛼, and
𝛽; namely, its probability density function is given by 𝑓

𝑧
(𝑧) =

𝑝×𝛼𝑒
−𝛼𝑧
𝐼
𝑧>0
+(1−𝑝)×𝛽𝑒

𝛽𝑧
𝐼
𝑧<0

. From (44), we can see that the
optimal precommitted investment strategy increases when
the current wealth decreases; namely, if the current wealth
is big enough, the company should invest less money in the
risk-risky asset. In order to simulate the general risk model
assume 𝑝 = 0.4, 𝛼 = 0.2, and 𝛽 = 0.8 and Figure 1 shows how
the coefficients involved impact the optimal precommitted
investment strategy for the general risk model with diffusion.
In order to simulate the C-L risk model, assume 𝑝 = 0,
𝛼 = 0.2, 𝛽 = 0.8, and 𝑐 = 1.5 and Figure 2 shows how
the coefficients involved impact the optimal precommitted
investment strategy for the C-L risk model with diffusion.
From Figures 1 and 2, we can conclude the following findings:
all the parameters impact the precommitted strategy together
and optimal precommitted investment strategy has more
complex relationwith all the parameters, because the increase
of one parameter can change the deterministic part of the
precommitted strategy and the current wealth together which
results in the uncertainty of their difference.

Secondly, we will show how the coefficients involved
impact the value function. For convenience, introduce the
notation 𝑎 = (2𝑟

0
− (𝑟

1
− 𝑟

0
)
2
/𝜎

2
)𝑇 and we can show that

(𝑒
𝑎
− 1)/𝑎 > 0 and 𝑒𝑎𝑎 − (𝑒𝑎 − 1) ≥ 0 for all 𝑎 ∈ R by

an elementary calculation. From (45), we can conclude the
following findings.
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Figure 4: The effect of parameters on optimal time-consistent strategy.
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− 1)/𝑎)((𝜇

𝑧
/𝑟
0
)(𝑒

𝑟
0
𝑇
− 1) < (𝛾𝜎
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𝑇/2)

((𝑒
𝑎
− 1)/𝑎), which means as the coefficient risk

aversion 𝛾 increases or as the intensity of the jumps of
the profit 𝜆 decreases (increases), the optimal mean-
variance utilities decrease; see Figure 3(a).

(2) 𝜕𝑉/𝜕𝑟
1
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2
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)
2
/𝜎
2
)𝑇
< 0, which illustrates that

when the appreciation rate 𝑟
1
increases or the volatil-

ity of themarket’s risky asset 𝜎2 decreases, the optimal
mean-variance utilities increase; see Figure 3(b).

(3) 𝜕𝑉/𝜕𝜇
𝑧
= (𝜆/𝑟

0
)(𝑒

𝑟
0
𝑇
− 1) > 0 and 𝜕𝑉/𝜕𝜎2

𝑧
= −(𝛾𝜆𝑇/

2)((𝑒
𝑎
− 1)/𝑎) < 0, which shows that when the ex-

pectation of the size of each income 𝜇
𝑧
increases or

the second moment of the size of each income 𝜎2
𝑧

decreases, the optimal mean-variance utilities in-
crease; see Figure 3(c).

(4) 𝜕𝑉/𝜕𝜎2
0
= −(𝛾𝑇/2) × ((𝑒

𝑎
− 1)/𝑎) < 0, which

reveals that the value function is decreasing with
respect to 𝜎2

0
; namely, when the uncertainty of the

profit increases, the optimal mean-variance utilities
decrease; see Figure 3(d).

5.2. Analysis of Optimal Time-Consistent Strategy and the
Equilibrium Value Function. In this subsection, we will work
on numerical analysis of the time-consistent strategy and the
equilibrium value function.

Firstly, we work on how the coefficients involved impact
optimal time-consistent investment strategy. From (73) it is
easy to see that 𝜕𝑙

∗
/𝜕𝑡 = (𝑟

0
(𝑟
1
− 𝑟

0
)/𝛾𝜎

2
)𝑒
−𝑟
0
(𝑇−𝑡)

> 0, which
means the company will invest more money into the risky
asset as time goes by and also obtain the following findings.

(1) 𝜕𝑙
∗
/𝜕𝛾 = −𝑙

∗
/𝛾 < 0, which illustrates that the more

the company dislikes risk, the less amount the com-
pany invests into the risky asset; see Figure 4(a).

(2) 𝜕𝑙
∗
/𝜕𝑟

0
= −((1 + (𝑟

1
− 𝑟

0
)(𝑇 − 𝑡))/𝛾𝜎

2
)𝑒
−𝑟
0
(𝑇−𝑡)

< 0,
which reveals that the smaller the risk-free rate is, the
more amount the company invests into the risky asset;
see Figure 4(b).
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Figure 5: The effect of parameters on the equilibrium value function.
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> 0, which reveals when
the appreciation rate 𝑟

1
increases, the company should

invest more money into the risky asset; see Figure
4(c).

(4) 𝜕𝑙
∗
/𝜕𝜎

2
= −𝑙

∗
/𝜎

2
< 0, which tells that when the vol-

atility of the risky asset increases, the company should
invest more money into the risk-free asset; see Figure
4(d).

Secondly, we will show how the coefficients involved
impact the value function. From (74), we can conclude the
following findings:
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(76)

Figure 5 shows that how the coefficients involved impact the
equilibriumvalue function.Theparameters 𝛾,𝜆, 𝑟

1
,𝜎2,𝜇

𝑧
,𝜎2

𝑧
,

and 𝜎2
0
have the similar effect on the equilibrium value func-

tion as their effect on the value functionwith precommitment
discussed in Section 5.1.

5.3. Comparisons between the Precommitted Strategy and the
Time-Consistent Strategy. In this subsection, we compare
the optimal investment strategy, the corresponding value
function, and the efficient frontier under the precommitted
framework with the ones under the time-consistent frame-
work.

Firstly, we compare the precommitted strategy with the
time-consistent strategy. The time-consistent strategy is time
deterministic but the precommitted strategy depends on
the current wealth. We also assume that {𝑁(𝑡)}

𝑡≥0
is a

Poisson process with intensity 𝜆 and 𝑍
𝑗
(𝑗 = 1, 2, 3 . . .)
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Figure 6: The comparisons between the precommitted strategy and the time-consistent strategy.

are double exponentially distributed with their probability
density function 𝑓

𝑧
(𝑧) = 𝑝 × 𝛼𝑒

−𝛼𝑧
𝐼
𝑧>0
+ (1 − 𝑝) × 𝛽𝑒

𝛽𝑧
𝐼z<0.

Here, fix the parameter 𝜆 = 1.25, 𝑝 = 0.4, 𝛼 = 0.2, and
𝛽 = 0.8.We investigate the precommitted investment strategy
by exploitingMonte CarloMethods.We simulate 2000 tracks
of the precommitted investment strategy and calculate the
average of 2000 tracks. Figure 6(a) illustrates that the average
of the precommitted investment strategy is bigger than the
time-consistent investment strategy which means that the
company with the time-consistent strategy makes a more
conservative investment than the one with the precommitted
strategy on the long term.

Secondly, we compare the optimal value function 𝑉(𝑥)
with the equilibrium value function 𝑉∗

(𝑥). By a simple

calculation, we can conclude that𝑉(𝑡) > 𝑉∗
(𝑥) which means

that the company with the time-consistent strategy has to
give up the chance to attain greater current utility in order
to ensure a consistent return for the whole time horizon as is
illustrated in Figure 6(b).

Thirdly, we compare the efficient frontiers derived from
two different perspectives. From (46) and (75) we can see that
the efficient frontiers are no longer straight lines no matter
in each perspective. The efficient frontier under the time-
consistent strategy is never above the efficient frontier under
the precommitted strategy as is illustrated by Figure 6(c).

It seems to be true that the precommitted strategy is
prior to the time-consistent strategy from the comparison
of the value functions and the efficient frontiers, but we
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cannot conclude that the precommitted strategy is better than
that from the game theoretical framework. Because the latter
strategy is time-consistent and it can make the company
ensure a consistent return for the whole time horizon.
Meanwhile, the precommitted strategy is a global optimal
strategy which only can make the company’s mean-variance
utilitiesmaximized at 𝑡 = 0. Furthermore, the time-consistent
strategy is suboptimal strategy for all 𝑡 ≥ 0 and the investment
problem for all 𝑡 ≥ 0 can be viewed as a noncooperative game
with one player for each time t. The time-consistent strategy
can make this entire system equilibrium and it is suboptimal
for the player 𝑡. Correspondingly, the precommitted strategy
is a global optimal strategy for player 𝑡 = 0 and it cannotmake
the entire system equilibrium.

6. Conclusion

In this paper, we have investigated the optimal investment
strategy for a general risk model under mean-variance crite-
rion. The precommitted strategy is derived by the lagrange
method and the time-consistent strategy is also calculated
via the approach based on the time-consistent equilibrium
controls. In the end, we theoretically and numerically provide
the effect of the parameters on the optimal investment
strategies and the corresponding value functions. The value
function and the efficient frontier under the precommitted
strategy are prior to the ones under the time-consistent
strategy, we cannot conclude that the precommitted strategy
is better than that from game theoretical framework, because
the company under the time-consistent strategy has to give
up the better current utility in order to keep a consistent
satisfaction over the whole time horizon. Meanwhile, the
precommitted strategy is a global optimal strategy and it only
can make the company’s mean-variance utilities maximized
at initial time 𝑡 = 0.
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