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This paper presents a tube-based model predictive control (MPC) algorithm with piecewise affine control laws for discrete-time
linear systems in the presence of bounded disturbances. By solving the standard multiparametric quadratic programming (mp-
QP), the explicit piecewise affine control laws for tube-basedMPC are obtained. Each control law is piecewise affine with respect to
the corresponding region (one of the partitions of the feasible set). Due to the fact that the above-mentioned procedures are totally
offline, the online computation time is short enough for stabilizing those systems with fast dynamics. In this paper, all the involved
constraint sets are assumed to be polytopes. An illustrative example is utilized to verify the feasibility and efficiency of the proposed
algorithm.

1. Introduction

The concept of “tube” in model predictive control (MPC)
is proposed by [1] for linear discrete-time systems with
bounded additive disturbance. The core idea is to design a
robust invariant set for the corresponding nominal system,
and then the optimization problem with tightening con-
straints is solved to get the optimal control action [2]. Since all
the predictions of state and control variables are confined to
the tighten constraint set, the real dynamics of controlled sys-
temswill never deviate the constraints under the impaction of
external disturbances. After the proposition of the algorithm,
it has been greatly developed. In [3], the tube-based MPC
algorithm is extended to the case of linear sampled-data
systems, and in [4] the tracking problem is considered. In
[5], the tuning parameter is incorporated into the basic MPC
strategy which enables us tomove smoothly from the existing
controller to a better MPC strategy, and the methodology
is applied to the tube-based output-feedback MPC case.
A probabilistic tube for linear systems with probabilistic
disturbances is designed in [6], which avoids the computation
burden in traditional stochastic MPC. A homothetic tube
MPC synthesis method is proposed by [7], which utilizes a

more general parameterization of the state and control tubes
based on homothety and invariance. The tube-based MPC
algorithms for nonlinear systems are presented in [8–10]. In
[8], a general nonlinear finite horizon optimization problem
with terminal zero constraints is resolved offline once, and
the optimal sequence of states and inputs are taken as the
reference trajectories, then the on-line optimization problem
is designed to tracking these trajectories with constraints sat-
isfaction. In [9], the nonlinear models are locally linearized,
and the errors between the linearized models and the true
models are confined to lie in the predesigned robust tubes.
In [10], a tube-based MPC algorithm for continuous-time
nonlinear systems, which satisfies the Lipschitz condition, is
proposed.Although the theory of robust tube-basedMPChas
been stimulated a lot, but far from perfect.

The optimization problems in standard MPC algorithms
are in general the linear programming (LP) or linear
quadratic programming (QP), and the computation time for
LP/QP can not be neglected when the controlled systems
have fast dynamics. The explicit MPC takes the LP or QP in
standard MPC as multiparametric linear programming (mp-
LP) or multiparametric quadratic programming (mp-QP)
and solves these optimization problems absolutely offline.
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The basic results and development on multiparametric pro-
gramming can be found in [11–14] for mp-LP and [15–19]
for mp-QP. In this paper, we mainly consider the mp-QP,
which is the most general form of optimization we faced
in the regular MPC. In [20], the theoretical perspectives of
multiparametric programming and explicit MPC are intro-
duced. In [21], the authors present a method to compute
the explicit state-feedback control laws for both the MPC
algorithm and the constrained linear quadratic regulation
problem with guaranteed feasibility, stability, and optimality,
in which the explicit feedback control laws are piecewise
affine and continuous. In [22], the approximated explicit con-
trol laws forMPC are obtained, which utilizes the inner/outer
polytopic approximation technique and the implicit double-
description algorithm. In [23], the systematical procedures
for the analytical expression of explicit control laws of linear
MPC via piecewise affine function are given, which saves the
online computation time and memory requirements. There
are many works which have been published on finding ways
to resolve themp-QP. In [17], an efficientmp-QP solver which
avoids unnecessary partitioning of the parameter space by
directly exploring the neighborhood of initial partition is
presented. In [18], an mp-QP solver with a new partitioning
method of the parametric (state vector) space is proposed,
which avoids the unnecessary partitioning and improves
the efficiency. In [19], an algorithm is proposed to revise
the existing algorithms in order to make them satisfy the
facet-to-facet property in general and guarantee that the
entire parameter space is explored. Because the partitions of
feasible sets are increasing exponentially with respect to the
prediction horizon, the complexity reduction methods are
presented by [24–26] to remove the unnecessary partitions.
The only online calculation for mp-QP in MPC is the point
location problem (to confirm which region contains the cur-
rent parameter). In [27–29], different efficient methodologies
have been proposed to resolve this problem.

This paper considers the constrained discrete-time linear
systems with additive disturbances. The disturbances are
assumed to be confined in a polytope. First, the standard
tube-based MPC algorithm, which solves the quadratic
programming (QP) online and takes initial state in the
optimization as an optimized variable, is designed. Then, by
transforming the optimization problem in standard tube-
based MPC into the mp-QP form, the optimization can be
solved throughmp-QP solvers, which separate the parameter
space into finite partitions and get a piecewise affine linear
optimal solution for each partition. In this paper, the standard
tube-based MPC algorithm is solved absolutely offline, and
the only online calculations are to confirm which partition
the current state lies in.

The remainder of this paper is structured as follows. In
Section 2, the basic formulation of the controlled systems and
basic definitions on polytope and polyhedron are introduced.
The multiparametric programming is described in Section 3.
In Section 4, the tube-based MPC algorithm with piecewise
affine state feedback control laws is presented. In Section 5,
the simulation results are provided to show the effectiveness
of the proposed algorithm.

2. Problem Statement and Preliminaries

Consider the following discrete-time linear systems with
additive disturbances:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝑤 (𝑘) , 𝑘 ≥ 0, (1)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑚, and 𝑤(𝑘) ∈ R𝑛 are the state,
input, and disturbance vector at sampling time 𝑘, respectively.
The system states and inputs are constrained by

𝑥 (𝑘) ∈ X ⊆ R
𝑛

, 𝑢 (𝑘) ∈ U ⊆ R
𝑚 (2)

and the disturbance 𝑤(𝑘) is bounded by

𝑤 (𝑘) ∈ W ⊆ R
𝑛

. (3)

The corresponding nominal model of (1) is given as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) . (4)

The system (1) is supposed to satisfy the following assump-
tions throughout the paper.

Assumption 1. The pair (𝐴, 𝐵) of system (1) is stabilizable.

Assumption 2. The states 𝑥(𝑘) of system (1) are measureable.

Assumption 3. X ⊆ R𝑛, U ⊆ R𝑚, and W ⊆ R𝑛 are
compact and convex and contain the origin as interior point,
respectively.

Since all the involved constraint sets in this note are
confined as the convex and bounded region, that is, the
polytope, the basic definitions related to polyhedron and
polytope are shown to make the paper more complete and
concise. For more knowledge about the polyhedron and
polytope, readers can refer to [30–32].

Definition 4. A polyhedron R ⊆ R𝑛 is a convex set which
originates from the intersection of a finite number of half-
spaces

R ≜ {𝑥 ∈ R
𝑛

| 𝐻𝑥 ≤ 𝐾} , (5)

where𝐻 ∈ R𝑟×𝑛 and𝐾 ∈ R𝑟 and 𝑟 is a finite integer.

Definition 5. A polytope P ⊆ R𝑛 is the bounded polyhedron

P ≜ {𝑥 ∈ R
𝑛

| 𝐻𝑥 ≤ 𝐾} . (6)

Definition 6. TheH-representation of a polytopeP, as in (6),
is to depict the polytopeP as an intersection region of a finite
number of half-spaces. The other way of statement is that the
H-representation of a polytope is the region described by
a finite number of linear inequalities 𝐻𝑥 ≤ 𝐾; that is, the
dimensions of𝐻 and𝐾 are not infinite.

Definition 7. The V-representation of a polytope P is to
describe the polytope as a convex hull of its vertices:

P ≜ {𝑥 ∈ R
𝑛

| 𝑥 =

𝑝

∑

𝑖=1

𝜆
𝑖
𝑥

𝑖
, 𝜆

𝑖
∈ [0, 1] ,

𝑝

∑

𝑖=1

𝜆
𝑖
= 1} , (7)

where 𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑝
are the vertices and 𝑝 is the total number

of vertices.
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After the basic definitions of polytope have been depicted,
the related operations involved in the remaining part of the
paper are listed below.

Definition 8. TheMinkowski sumof two given setsA andB is
defined asA⊕B ≜ {𝑎+ 𝑏 | 𝑎 ∈ A, 𝑏 ∈ B}, and the Minkowski
difference is A ⊖ B ≜ {𝑎 | 𝑎 ⊕ B ⊆ A}.

Definition 9. The set difference of two setsA andB is defined
as

A \ B ≜ {𝑎 ∈ R
𝑛

| 𝑎 ∈ A, 𝑎 ∉ B} . (8)

Definition 10. Given a set A, the affine map of A by the
mapping Γ : 𝑎 → 𝐴𝑎 + 𝑐, where Γ : R𝑛

→ R𝑚, to a set
B, then B is defined as

B ≜ {𝐴𝑎 + 𝑐 ∈ R
𝑚

| 𝑎 ∈ A} , (9)

where𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 are constant matrix and vector,
respectively.

Remark 11. Another problem we often faced is to find a
polytope A satisfying

A ≜ {𝑎 ∈ R
𝑛

| 𝐴𝑎 + 𝑐 ∈ B} , (10)

that is, to compute a polytopeA which is a map to B. It is the
inverse problem of Definition 10 and can be easily computed
by using the affinemap in Definition 10. A function “range” is
provided by Matlab toolbox called MPT [31] to compute the
B in Definition 10 and a function “domain” for calculating A
in (10).

Due to the fact that all the variables in this paper are
bounded by the polytopes, the state, input, and disturbance
constraint sets are assumed to have the following form:

X ≜ {𝑥 ∈ R
𝑛

| 𝐻
𝑥
𝑥 ≤ 𝐾

𝑥
} ,

U ≜ {𝑢 ∈ R
𝑚

| 𝐻
𝑢
𝑢 ≤ 𝐾

𝑢
} ,

W ≜ {𝑤 ∈ R
𝑚

| 𝐻
𝑤
𝑤 ≤ 𝐾

𝑤
} ,

(11)

where 𝐻
𝑥
∈ R𝑛ℎ𝑥×𝑛, 𝐾

𝑥
∈ R𝑛ℎ𝑥 , 𝐻

𝑢
∈ R𝑛ℎ𝑢×𝑚, 𝐾

𝑢
∈ R𝑛ℎ𝑢 ,

𝐻
𝑤
∈ R𝑛ℎ𝑤×𝑛, and𝐾

𝑤
∈ R𝑛ℎ𝑤 .

3. Multiparametric Quadratic Programming
(mp-QP)

Themultiparametric programming is the linear or nonlinear
programming with parameters in the objective function
or/and constraints.The semi-infinite programming andmul-
tilevel programming can be cast as special multiparametric
programming. The main advantage of multiparametric pro-
gramming is that the explicit piecewise affine solutions with
respect to the parameters can be calculated. In this section,
the general formulation of multiparametric programming is
introduced. We refer the readers to [11–19] and the references
therein for the basic definitions and results of the multipara-
metric programming used in this paper.

The general formulation of multiparametric program-
ming is as follows:

min
𝑋

𝑓 (𝑋, 𝑌) , (12a)

s.t. 𝑐
𝑖
(𝑋, 𝑌) ≤ 0, ∀𝑖 = 1, . . . , 𝑝, (12b)

𝑐
𝑗
(𝑋, 𝑌) = 0, ∀𝑗 = 1, . . . , 𝑞, (12c)

𝑌 ∈ Y ⊆ R
𝑛𝑦
, (12d)

where 𝑋 ∈ R𝑛𝑥 is the optimization variable and 𝑌 ∈ R𝑛𝑦 is
the parameter variable.

Define the Lagrangian as

L (𝑋, 𝑌, 𝜆, 𝛾) = 𝑓 (𝑋, 𝑌) −

𝑛

∑

𝑖=1

𝜆
𝑖
𝑐
𝑖
(𝑋, 𝑌)

−

𝑚

∑

𝑗=1

𝛾
𝑗
𝑐
𝑗
(𝑋, 𝑌) ,

(13)

where 𝜆 ∈ R𝑝 and 𝛾 ∈ R𝑞 are the Lagrange multipliers.
The first-order Karush-Kuhn-Tucker (KKT) optimality

conditions are

∇
𝑋
L (𝑋, 𝑌, 𝜆, 𝛾) = 0, (14a)

𝑐
𝑖
(𝑋, 𝑌) ≤ 0, 𝑖 = 1, . . . , 𝑝, (14b)

𝑐
𝑗
(𝑋, 𝑌) = 0, 𝑗 = 1, . . . , 𝑞, (14c)

𝜆
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑝, (14d)

𝛾
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑞, (14e)

𝜆
𝑖
𝑐
𝑖
(𝑋, 𝑌) = 0, 𝑖 = 1, . . . , 𝑝, (14f)

𝛾
𝑗
𝑐
𝑗
(𝑋, 𝑌) = 0, 𝑗 = 1, . . . , 𝑞, (14g)

where the gradient function ∇
𝑋
L(𝑋, 𝑌, 𝜆, 𝛾) is defined as

∇
𝑋
L (𝑋, 𝑌, 𝜆, 𝛾) = ∇𝑓 (𝑋, 𝑌) −

𝑛

∑

𝑖=1

𝜆
𝑖
∇𝑐

𝑖
(𝑋, 𝑌)

−

𝑚

∑

𝑗=1

𝛾
𝑗
∇𝑐

𝑗
(𝑋, 𝑌) .

(15)

Remark 12. The first-order KKT condition is a necessary
condition for a solution in constrained programming to be
optimal. That is to say, the solution which satisfies the first-
order KKT condition may not be the global optimal point
for the constrained programming. If we want to determine
whether the calculated point is global optimal point or not,
the second-order optimality condition is needed.

Although the solution satisfying the first-order KKT
condition may not be the optimal one, for the case in the
following theorem, the solution is optimal.

Theorem 13. For a fixed 𝑌, 𝑋∗ satisfying the first-order KKT
conditions (14a)–(14g) is the global optimal solution of (12a),
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if the objective function 𝑓(𝑋, 𝑌) and inequality constraint
functions 𝑐

𝑖
, 𝑖 = 1, . . . , 𝑝, in optimization problem (12a),

(12b), (12c), and (12d) are convex functions and the equality
constraint functions 𝑐

𝑗
, 𝑗 = 1, . . . , 𝑞, are linear functions. In this

case, the first-order KKT condition is the necessary and also the
sufficient condition for optimality.

Proof. The proof can be found in [33].

Most of the optimization problems involved in linear
control theory can be transformed into the mp-LP or mp-
QP. The mp-LP and mp-QP correspond to the case of
linear systems with linear performance cost functions and
linear systems with quadratic performance cost functions,
respectively. In general MPC algorithms, the mp-QP is the
most common optimization problem we utilized.

In this paper, we consider the following form of mp-QP
problem [17, 18, 21]:

𝑉
𝑋
(𝑌) = min

𝑋

1

2

𝑋
𝑇

𝐻𝑋 (16a)

s.t. 𝐺𝑋 ≤ 𝑊 + 𝑆𝑌, (16b)

where 𝐻 > 0, 𝑋 ∈ X ⊆ R𝑛𝑥 , 𝑌 ∈ Y ⊆ R𝑛𝑦 , 𝐻 ∈ R𝑛𝑥×𝑛𝑥 ,
𝐺 ∈ R𝑝×𝑛𝑥 ,𝑊 ∈ R𝑝, and 𝑆 ∈ R𝑝×𝑛𝑦 .

Then, from (14a), (14b), (14c), (14d), (14e), (14f), and (14g)
the first-order KKT conditions of (16a) and (16b) are

𝐻𝑋 + 𝐺
𝑇

𝜆 = 0, (17a)

𝐺𝑋 −𝑊 − 𝑆𝑌 ≤ 0, (17b)

𝜆
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑝, (17c)

𝜆
𝑖
(𝐺

𝑖
𝑋 −𝑊

𝑖
− 𝑆

𝑖
𝑌) = 0, 𝑖 = 1, . . . , 𝑝, (17d)

where 𝐺 = [𝐺
𝑇

1
, 𝐺

𝑇

2
, . . . , 𝐺

𝑇

𝑝
]
𝑇,𝑊 = [𝑊

𝑇

1
,𝑊

𝑇

2
, . . . ,𝑊

𝑇

𝑝
]
𝑇, 𝑆 =

[𝑆
𝑇

1
, 𝑆

𝑇

2
, . . . , 𝑆

𝑇

𝑝
]
𝑇, and 𝜆 ∈ R𝑝.

Define 𝐼 ≜ {1, 2, . . . , 𝑝}. By analyzing the KKT conditions
(17a), (17b), (17c), and (17d), the explicit solution at a given 𝑌
is given by [18]

𝑋 = 𝐻
−1

(𝐺
A
)

𝑇

(𝐺
A
𝐻

−1

(𝐺
A
)

𝑇

)

−1

(𝑊
A
+ 𝑆

A
𝑌) , (18)

whereA ≜ {𝐺
𝑖
𝑋−𝑊

𝑖
−𝑆

𝑖
𝑌 | 𝐺

𝑖
𝑋−𝑊

𝑖
−𝑆

𝑖
𝑌 = 0, 𝑖 ∈ 𝐸}denotes

the set of active constraints in (16b), 𝐸 ≜ {𝑖 | 𝐺
𝑖
𝑋−𝑊

𝑖
−𝑆

𝑖
𝑌 =

0, 𝑖 ∈ 𝐼} = {𝑖
1
, 𝑖

2
, . . . , 𝑖

𝑛
}, and 𝐺A

= [𝐺
𝑇

𝑖1

, 𝐺
𝑇

𝑖2

, . . . , 𝐺
𝑇

𝑖𝑛

]
𝑇,𝑊A

=

[𝑊
𝑇

𝑖1

,𝑊
𝑇

𝑖2

, . . . ,𝑊
𝑇

𝑖𝑛

]
𝑇, and 𝑆A = [𝑆

𝑇

𝑖1

, 𝑆
𝑇

𝑖2

, . . . , 𝑆
𝑇

𝑖𝑛

]
𝑇. Since the𝑋

in (18) is the function of 𝑌, define Y
0
as the region of 𝑌 in

which the equation of 𝑋 in (18) remains optimal. The region
Y

0
is a polytope and itsH-representation is as follows [18]:

Y
0
≜ {𝑌 ∈ R

𝑛𝑦
| 𝐻

𝑦0
𝑌 ≤ 𝐾

𝑦
0

} , (19)

where

𝐻
𝑦

0

=
[

[

[

𝐺𝐻
−1

(𝐺
A
)

𝑇

(𝐺
A
𝐻

−1

(𝐺
A
)

𝑇

)

−1

𝑆
A
− 𝑆

−(𝐺
A
𝐻

−1

(𝐺
A
)

𝑇

)

−1

𝑆
A

]

]

]

,

𝐾
𝑦

0

=
[

[

[

𝑊 − 𝐺𝐻
−1

(𝐺
A
)

𝑇

(𝐺
A
𝐻

−1

(𝐺
A
)

𝑇

)

−1

𝑊
A

−(𝐺
A
𝐻

−1

(𝐺
A
)

𝑇

)

−1

𝑊
A

]

]

]

.

(20)

To solve the mp-QP problem (16a) and (16b), the feasible
region Y

𝐹
of 𝑌 needs to be confirmed firstly. Assume that the

region Y
𝐹
≜ {𝐻

𝑦
𝑌 ≤ 𝐾

𝑦
} and is the largest ball contained

in Y ; then it can be calculated by solving the following LP
problem [21]:

max
𝑋,𝑌,𝜖

𝜖 (21a)

s.t. 𝐻
𝑖

𝑦
𝑌 + 𝜖






𝐻

𝑖

𝑦






≤ 𝐾

𝑖

𝑦
(21b)

𝐺𝑋 − 𝑆𝑌 ≤ 𝑊. (21c)

In order to get the explicit piecewise affine solutions
on the whole feasible set Y

𝐹
, the feasible set needs to be

partitioned into a finite number of polytopes. Suppose Y
𝐹

is partitioned into 𝑟 partitions; then the partitions P
𝑖
, 𝑖 ∈

{1, 2, . . . , 𝑟}, have to satisfy

(i) ⋃𝑟

𝑖=1
P

𝑖
= Y

𝐹
;

(ii) (P
𝑖
\D

𝑖
) ∩ (P

𝑗
\D

𝑗
) = ⌀, ∀𝑖 ̸= 𝑗, whereD

𝑖
denotes the

border of partition P
𝑖
.

Remark 14. ThepartitionsP
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑟}, are determined

by finding the regionY
0
defined in (19) on thewholeY

𝐹
.There

now exist manymethods to determine the partitionsP
𝑖
, such

as themethodby exploiting the facet-to-facet property [19, 21]
and adding/withdrawing constraints from active set [18].

Theorem 15. Consider the mp-QP of (16a) and (16b) and let
Y be a polytope. Then the feasible set Y

𝐹
⊆ Y is convex, the

optimizer𝑋 is continuous and piecewise affine in each partition
P

𝑖
, and the value function 𝑉

𝑋
(𝑌) is continuous, convex, and

piecewise quadratic.

Proof. The proof is in [21].

Remark 16. The convexity and continuous properties in
Theorem 15 are critical for the optimality of mp-QP. From
Theorem 25, since all the involved sets are convex, the
inequality constraints in (16b) and the objective function are
convex functions in each partition P

𝑖
; then the optimizer 𝑋

is the optimal solution of (16a) and (16b) in the whole region
of each partition P

𝑖
.
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4. Tube-Based MPC with Piecewise Affine
Control Laws

In this section, a robust tube-based MPC algorithm with
piecewise affine solutions is proposed. For the basic defini-
tions and researching development on the general tube-based
MPC algorithm, readers can refer to [1, 2].

For clarity, the linear nominal model of (1) is rewritten as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) . (22)

Since the system (22) satisfies Assumption 1, then there
exists a feedback gain matrix𝐾, such that closed-loop system
𝑥(𝑘 + 1) = 𝐴

𝐾
𝑥(𝑘), where 𝐴

𝐾
= 𝐴 + 𝐵𝐾, is stable.

In the sequel, the basic definition of robust invariant set
is introduced by referring to [34].

Definition 17. The setZ is said to be a robust invariant set for
uncertain linear system 𝑥(𝑘 + 1) = 𝐴

𝐾
𝑥(𝑘) + 𝑤(𝑘), if for any

𝑥(0) ∈ Z and any sequence of disturbances 𝑤(𝑘) ∈ W, the
solution of 𝑥(𝑘 + 1) = 𝐴

𝐾
𝑥(𝑘) + 𝑤(𝑘) satisfies 𝑥(𝑘) ∈ Z for

all 𝑘 ≥ 0.

Remark 18. In [2], a concise description of the condition is
presented as𝐴

𝐾
Z⊕W ⊆ Z, where ⊕ denotes the Minkowski

sum defined in Definition 8.

By assuming that the set W is a polytope, that is,
W ≜ {𝑤 ∈ R𝑚

| 𝑓
𝑖
𝑤 ≤ 𝑔

𝑖
, [𝑓

𝑇

1
, 𝑓

𝑇

2
, . . . , 𝑓

𝑇

𝑛ℎ𝑤

]
𝑇

=

𝐻
𝑤
, [𝑔

1
, 𝑔

2
, . . . , 𝑔

𝑛ℎ𝑤
]
𝑇

= 𝐾
𝑤
, 𝑖 = 1, 2, . . . , 𝑛

ℎ𝑤
}, the robust

invariant set is chosen as the minimal robust positive invari-
ant (mRPI) set 𝐹

∞
for uncertain linear system 𝑥(𝑘 + 1) =

𝐴
𝐾
𝑥(𝑘) + 𝑤(𝑘) by the outer 𝜀-approximation approaches in

[35]. The main procedures are listed as follows.

Algorithm 19 (the procedures for finding Z).

Step 0. Given 𝐴
𝐾
,W, 𝜀 > 0 and let 𝑠 = 0.

Step 1. Set 𝑠 = 𝑠 + 1.

Step 2. Compute 𝛼𝑜

(𝑠) by the following equation:

𝛼
𝑜

(𝑠) = max
𝑖∈{1,2,...,𝑛ℎ𝑤}

ℎW ((𝐴
𝑠

𝐾
)

𝑇

𝑓
𝑇

𝑖
)

𝑔
𝑖

, (23)

where ℎW(𝑎) ≜ sup
𝑤∈W𝑎

𝑇

𝑤 and 𝑒
𝑗
is the standard basis vector

inR𝑛. Set 𝛼 = 𝛼𝑜

(𝑠).

Step 3. Compute𝑀(𝑠) as

𝑀(𝑠) = max
𝑗∈{1,...,𝑛}

{

𝑠−1

∑

𝑖=0

ℎW ((𝐴
𝑖

𝐾
)

𝑇

𝑒
𝑗
) ,

𝑠−1

∑

𝑖=0

ℎW (−(𝐴
𝑖

𝐾
)

𝑇

𝑒
𝑗
)} .

(24)

Step 4. If 𝛼 > 𝜀/(𝜀 + 𝑀(𝑠)), go back to Step 1.

Step 5. Compute F
𝑠
as the Minkowski sum

F
𝑠
=

𝑠−1

⨁

𝑖=0

𝐴
𝑖

𝐾
W, F

0
≜ {0} (25)

and let F(𝛼, 𝑠) = (1 − 𝛼)−1

F
𝑠
be the outer 𝜀-approximation of

robust invariant set Z.

Proposition 20. Given a disturbance invariant setZ for 𝑥(𝑘+
1) = 𝐴

𝐾
𝑥(𝑘) + 𝑤(𝑘), let (𝑥(𝑘), 𝑢(𝑘)) and (𝑥(𝑘), 𝑢(𝑘)) be the

state and input pair of the system 𝑥(𝑘+1) = 𝐴𝑥(𝑘)+𝐵𝑢(𝑘) and
𝑥(𝑘+1) = 𝐴𝑥(𝑘)+𝐵𝑢(𝑘)+𝑤(𝑘), respectively. If 𝑥(𝑘) ∈ 𝑥(𝑘)⊕Z
and 𝑢(𝑘) = 𝑢(𝑘)+𝐾(𝑥(𝑘)−𝑥(𝑘)), then 𝑥(𝑘+1) ∈ 𝑥(𝑘+1)⊕Z
for all 𝑤(𝑘) ∈ W.

Proof. The proof is in [1].

For the purpose of proving the stability of tube-based
MPC, the general robust MPC algorithm with tighten con-
straints is described as follows:

𝑉
1

𝑁
(𝑥 (𝑘)) = min

𝑢(𝑘|𝑘),...,𝑢(𝑘+𝑁−1𝑘)

𝐽 (𝑥 (𝑘) , 𝑢 (⋅)) , (26a)

s.t. 𝑥 (𝑘 + 𝑖 + 1 | 𝑘) = 𝐴𝑥 (𝑘 + 𝑖 | 𝑘) + 𝐵𝑢 (𝑘 + 𝑖 | 𝑘) ,

(26b)

𝑥 (𝑘 + 𝑖 | 𝑘) ∈ X, 𝑖 = 0, . . . , 𝑁 − 1, (26c)

𝑢 (𝑘 + 𝑖 | 𝑘) ∈ U, 𝑖 = 0, . . . , 𝑁 − 1, (26d)

𝑥 (𝑘 + 𝑁 | 𝑘) ∈ X
𝑓
, (26e)

with the objective function

𝐽 (𝑥 (𝑘) , 𝑢 (⋅))

=

𝑁−1

∑

𝑖=0

{‖𝑥 (𝑘 + 𝑖 | 𝑘)‖
2

𝑄
+ ‖𝑢 (𝑘 + 𝑖 | 𝑘)‖

2

𝑅
}

+ ‖𝑥 (𝑘 + 𝑁 | 𝑘)‖
2

𝑃
,

(27)

where 𝑥(𝑘 + 𝑖 | 𝑘) is the prediction of 𝑥 at the future time
𝑘+ 𝑖, predicted at time 𝑘, and 𝑥(𝑘 | 𝑘) equals the current state
𝑥(𝑘). The corresponding weighting matrices 𝑄, 𝑃, and 𝑅 in
(27) are chosen to be positive definite. The tighten constraint
set X, U is defined as X ≜ X ⊖ Z, U ≜ U ⊖ 𝐾Z. The
terminal constraint setX

𝑓
satisfiesX

𝑓
⊆ X ⊖Z and contains

the equilibrium point in its interior. The optimization (26a),
(26b), (26c), (26d), and (26e) can easily be transformed into
the QP problem, the solvers for which are fast and efficient in
most cases.

Let the terminal cost function 𝑉
𝐿
(𝑘) = 𝑥(𝑘)

𝑇

𝑃𝑥(𝑘) be a
Lyapunov function; then the terminal constraints are chosen
to satisfy the following stability conditions [2, 36]:

C.1: 𝐴
𝐾
X

𝑓
⊆ X

𝑓
,X

𝑓
⊆ X ⊖ Z,𝐾X

𝑓
⊆ U ⊖ 𝐾Z,

C.2: 𝑉
𝐿
(𝐴

𝐾
𝑥(𝑘)) − 𝑉

𝐿
(𝑥(𝑘)) ≤ −‖𝑥(𝑘 + 𝑖𝑘)‖

2

𝑄
−

‖𝑢(𝑘 + 𝑖 | 𝑘)‖
2

𝑅
, ∀𝑥(𝑘) ∈ X

𝑓
.

The principle for choosing X
𝑓
is to satisfy condition C.1.

Then, the terminal regionX
𝑓
can be chosen as the maximum

output admissible set 𝑂
∞
, as in [37]. Consider the linear

autonomous system 𝑥(𝑘 + 1) = 𝐴
𝐾
𝑥(𝑘) with the output

constraint (state constraint) X = {𝑥 ∈ R𝑛

| Ψ
𝑖
𝑥 ≤

𝜓
𝑖
, 𝑖 = 1, 2, . . . , 𝑞}, where [𝜓𝑇

1
, 𝜓

𝑇

2
, . . . , 𝜓

𝑇

𝑞
]
𝑇

= Ψ ∈ R𝑞×𝑛,
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[𝜓
1
, 𝜓

2
, . . . , 𝜓

𝑞
]
𝑇

= 𝜓 ∈ R𝑞. The main procedures to
determineX

𝑓
are listed as follows [37, 38].

Algorithm 21 (the procedures for findingX
𝑓
).

Step 0. Set 𝑗 = 0.

Step 1. Solve the following linear programming problem for
𝑖 = 1, 2, . . . , 𝑞:

𝐽
𝑖
= max

𝑦

Ψ
𝑖
𝐴

𝑗+1

𝐾
𝑦

s.t. Ψ
𝑙
𝐴

𝑘

𝐾
𝑦 ≤ 𝜓

𝑙
, 𝑙 = 1, 2, . . . , 𝑞, 𝑘 = 0, 1, . . . , 𝑗,

(28)

where Ψ
𝑖
denotes the 𝑖th row of the matrix Ψ.

Step 2. If 𝐽
𝑖
≤ 𝜓

𝑖
, ∀𝑖 = 1, 2, . . . , 𝑞, stop. Set

X
𝑓
= 𝑂

∞
= {𝑥 | Ψ𝐴

𝑘

𝐾
𝑥 ≤ 𝜓, ∀𝑘 = 0, 1, 2, . . . , 𝑗} . (29)

Otherwise, continue.

Step 3. Set 𝑗 = 𝑗 + 1. Go back to Step 1.

By solving the optimization (26a), (26b), (26c), (26d),
and (26e), the optimal control sequence is 𝑈∗

(𝑘) = [𝑢
∗

(𝑘 |

𝑘), 𝑢
∗

(𝑘 + 1 | 𝑘), . . . , 𝑢
∗

(𝑁 − 1 | 𝑘)]. The control input 𝑢(𝑘),
applied to the system (1), is the first element of 𝑈∗

(𝑘). Then,
define

𝑢
∗

(𝑥 (𝑘)) = 𝑢
∗

tc (𝑥 (𝑘)) = 𝑢
∗

(𝑘 | 𝑘) , (30)

where the symbol 𝑢∗

tc is defined to make differences between
the solution of (26a), (26b), (26c), (26d), and (26e) and other
optimizations which will be described later.

The𝑁-step feasible set X1

𝑁
for (26a), (26b), (26c), (26d),

and (26e) is defined as

X
1

𝑁
= {𝑥 (𝑘) ∈ R

𝑛

| ∃𝑢 (𝑘 + 𝑖 | 𝑘) ∈ U,

𝑖 = 0, 1, . . . , 𝑁 − 1, such that

𝑥 (𝑘 + 𝑖 | 𝑘) ∈ X, 𝑥 (𝑘 + 𝑁 | 𝑘) ∈ X
𝑓
} .

(31)

Remark 22. The 𝑁-step feasible set for optimization (26a),
(26b), (26c), (26d), and (26e), which is also called the 𝑁-
step controllable set, is the set of initial states which can be
stabilized to the target set in 𝑁 steps. The procedures for
computing the𝑁-step feasible set can be found in [32].

The robust tube-based MPC algorithm, proposed by [1,
2], is to solve the following optimization:

𝑉
2

𝑁
(𝑥 (𝑘)) = min

𝑥(𝑘|𝑘),𝑢(𝑘|𝑘),...,𝑢(𝑘+𝑁−1|𝑘)

𝐽 (𝑥 (𝑘) , 𝑢 (⋅)) , (32a)

s.t. 𝑥 (𝑘 + 𝑖 + 1 | 𝑘) = 𝐴𝑥 (𝑘 + 𝑖 | 𝑘) + 𝐵𝑢 (𝑘 + 𝑖 | 𝑘) ,

(32b)

𝑥 (𝑘 + 𝑖 | 𝑘) ∈ X, 𝑖 = 0, . . . , 𝑁 − 1, (32c)

𝑢 (𝑘 + 𝑖 | 𝑘) ∈ U, 𝑖 = 0, . . . , 𝑁 − 1, (32d)

𝑥 (𝑘) ∈ 𝑥 (𝑘 | 𝑘) ⊕ Z, (32e)

𝑥 (𝑘 + 𝑁 | 𝑘) ∈ X
𝑓
, (32f)

where the parameters𝑄, 𝑅, 𝑃,X,U, andX
𝑓
and the objective

function 𝐽(𝑥(𝑘), 𝑢(⋅)) are the same as in optimization (26a),
(26b), (26c), (26d), and (26e). In this optimization, the
current state 𝑥(𝑘) does not equal 𝑥(𝑘 | 𝑘), which is the
prediction of current state 𝑥(𝑘) at time 𝑘. Z is the robust
invariant set solved by Algorithm 19.

Remark 23. The optimization (32a), (32b), (32c), (32d), (32e),
and (32f) can also be transformed into the QP form. The
significant difference between the tube-based MPC (32a),
(32b), (32c), (32d), (32e), and (32f) and the general constraint
tightening MPC (26a), (26b), (26c), (26d), and (26e) is that
𝑥(𝑘 | 𝑘) is taken as an optimization variable in (32a), (32b),
(32c), (32d), (32e), and (32f), which does not equal 𝑥(𝑘) but
satisfies the constraint 𝑥(𝑘) ∈ 𝑥(𝑘 | 𝑘) ⊕ Z. Moreover, the
constraint 𝑥(𝑘) ∈ 𝑥(𝑘 | 𝑘) ⊕ Z is equivalent to 𝑥(𝑘) − 𝑥(𝑘 |
𝑘) ∈ Z. And in particular 𝑥(𝑘 | 𝑘) ∈ 𝑥(𝑘) ⊕ Z, when
Z is symmetric. In Remark 11, the way of computing the
constraint set of variable 𝑥(𝑘 | 𝑘) by affine map is shown.

Then, the 𝑁-step feasible set X2

𝑁
for (32a), (32b), (32c),

(32d), (32e), and (32f) is defined as

X
2

𝑁
= {𝑥 (𝑘) ∈ R

𝑛

| ∃𝑢 (𝑘 + 𝑖 | 𝑘) ∈ U,

𝑖 = 0, 1, . . . , 𝑁 − 1, such that𝑥 (𝑘 + 𝑖 | 𝑘) ∈ X,

𝑥 (𝑘 + 𝑁 | 𝑘) ∈ X
𝑓
, 𝑥 (𝑘) ∈ 𝑥 (𝑘 | 𝑘) ⊕ Z} .

(33)

Remark 24. The𝑁-step feasible setX2

𝑁
can also be computed

using the method in [32].

The robust tube-based MPC solves the optimization
(32a), (32b), (32c), (32d), (32e), and (32f) repeatedly at each
time instant 𝑘. The optimal solutions are 𝑈∗

(𝑘) = {𝑢
∗

(𝑘 |

𝑘), 𝑢
∗

(𝑘 + 1 | 𝑘), . . . , 𝑢
∗

(𝑘 + 𝑁 − 1 | 𝑘)}, and 𝑥∗

(𝑘 | 𝑘),
which related to the real initial state 𝑥(𝑘). The control law to
be applied is chosen as

𝑢
∗

(𝑥 (𝑘)) = 𝑢
∗

tb (𝑥 (𝑘))

= 𝑢
∗

(𝑘 | 𝑘) + 𝐾 (𝑥 (𝑘) − 𝑥
∗

(𝑘 | 𝑘)) .

(34)
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Theorem 25 (stability results). The system dynamics of (1)
under control input 𝑢

∗

𝑡𝑏
(𝑥(𝑘)) satisfies 𝑉

2

𝑁
(𝑥(𝑘 + 1)) −

𝑉
2

𝑁
(𝑥(𝑘)) ≤ −‖𝑥

∗

(𝑘 | 𝑘)‖
2

𝑄
− ‖𝑢

∗

𝑡𝑐
(𝑥

∗

(𝑘 | 𝑘))‖
2

𝑅
, ∀𝑤(𝑘) ∈ W,

and the robust invariant set Z is robustly exponentially stable
for system 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢

∗

𝑡𝑏
(𝑥(𝑘)) + 𝑤(𝑘), ∀𝑤(𝑘) ∈ W,

in the region ofX2

𝑁
.

Proof. The proof is in [2].

In the sequel, we define X ≜ {𝑥 ∈ R𝑛

| 𝐻
𝑥
𝑥 ≤ 𝐾

𝑥
},

U ≜ {𝑢 ∈ R𝑚

| 𝐻
𝑢
𝑢 ≤ 𝐾

𝑢
}, X

𝑓
≜ {𝑥 ∈ R𝑛

| 𝐻
𝑥𝑓
𝑥 ≤ 𝐾

𝑥𝑓
},

Z ≜ {𝑥 ∈ R𝑛

| 𝐻
𝑧
𝑥 ≤ 𝐾

𝑧
}, and 𝑥(𝑘) ∈ 𝑥(𝑘 | 𝑘) ⊕ Z ⇒

{𝑥(𝑘 | 𝑘) ∈ R𝑛

| 𝐻
𝑥𝑧
𝑥(𝑘 | 𝑘) ≤ 𝐾

𝑥𝑧
+ 𝐾

𝑧𝑎
∗ 𝑥(𝑘)}, where we

can get 𝐻
𝑥𝑧
= 𝐾

𝑧𝑎
= 𝐻

𝑧
∗ inv(−eye(𝑛)) and 𝐾

𝑥𝑧
= 𝐾

𝑧
from

Remark 11. The symbol inv(𝐴) denotes the inverse of matrix
𝐴 and eye(𝑛) produces an 𝑛 × 𝑛 identity matrix.

In spite of the fact that the QP problem can be solved effi-
ciently by the existing solvers, for systems with fast dynamics,
the computational burden is still too huge to control these
systems well. Even worse, the long computation time may
make the controlled systems unstable. A viable way to tackle
this problem is to use the offline approach, which solves
the related optimization totally offline. The explicit regulator
together withmultiparametric programming is an alternative
way to give a control strategy with less computation time.

Since the initial state 𝑥(𝑘 | 𝑘) in the optimization (32a),
(32b), (32c), (32d), (32e), and (32f) is as an optimization
variable, let

�̆� = [𝑢(𝑘 | 𝑘)
𝑇

, 𝑢(𝑘 + 1 | 𝑘)
𝑇

, . . . ,

𝑢(𝑘 + 𝑁 − 1 | 𝑘)
𝑇

, 𝑥(𝑘 | 𝑘)
𝑇

]

𝑇

(35)

be the augmented vector of optimization variables 𝑢(𝑘+ 𝑖 | 𝑘)
and 𝑥(𝑘 | 𝑘).

Then, the optimization problem (32a), (32b), (32c), (32d),
(32e), and (32f) can be transformed into the following mp-
QP:

𝑉
3

𝑁
(𝑥 (𝑘)) = min

�̆�

�̆�
𝑇

𝐻�̆� (36a)

s.t. 𝐺�̆� ≤ 𝑊 + 𝑆𝑥 (𝑘) , (36b)

where 𝑥(𝑘) ∈ X. Thematrices𝐻 > 0,𝐺,𝑊, and 𝑆 are defined
as

𝐻 = blkdiag (B𝑇

QB +R, zeros (𝑛))

+ blkdiag (zeros (𝑁𝑚,𝑁𝑚) ,A𝑇

QA)

+ 2 × [

zeros (𝑛,𝑚) zeros (𝑛, 𝑛)
A𝑇QB zeros (𝑛,𝑚)] ,

𝐺 = [

𝐻
𝐺1

𝐻
𝐺2

] , 𝑊 = [

𝐾
𝑊1

𝐾
𝑊2

] ,

𝑆 = [

0

𝐾
𝑧𝑎

] , 0 ∈ R
{size(𝐺,1)−size(𝐻𝑍,1)}×length(𝑥)

,

(37)

with

A =

[

[

[

[

[

[

[

[

[

𝐼

𝐴

𝐴
2

...
𝐴

𝑁−1

𝐴
𝑁

]

]

]

]

]

]

]

]

]

, 𝐼 = eye (𝑛) ,

B =

[

[

[

[

[

[

[

[

[

0 0 0 . . . 0

𝐵 0 0 . . . 0

𝐴𝐵 𝐵 0 . . . 0

... d d d
...

𝐴
𝑁−2

𝐵 . . . 𝐴𝐵 𝐵 0

𝐴
𝑁−1

𝐵 . . . 𝐴
2

𝐵 𝐴𝐵 𝐵

]

]

]

]

]

]

]

]

]

, 0 ∈ R
𝑛×𝑚

,

Q = blkdiag(𝑄,𝑄, . . . , 𝑄⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

, 𝑃) ,

R = blkdiag(𝑅, 𝑅, . . . , 𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

) ,

𝐻
𝑋
= blkdiag(𝐻

𝑥
, 𝐻

𝑥
, . . . , 𝐻

𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

, 𝐻
𝑥𝑓
) ,

𝐾
𝑋
=
[

[

𝐾
𝑇

𝑥
, 𝐾

𝑇

𝑥
, . . . , 𝐾

𝑇

𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

, 𝐾
𝑇

𝑥𝑓

]

]

𝑇

,

𝐻
𝑈
= blkdiag(𝐻

𝑢
, 𝐻

𝑢
, . . . , 𝐻

𝑢⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

) ,

𝐾
𝑈
=
[

[

𝐾
𝑇

𝑢
, 𝐾

𝑇

𝑢
, . . . , 𝐾

𝑇

𝑢⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

]

]

𝑇

,

𝐻
𝐺1
= [𝐻

𝑋
×B, 𝐻

𝑋
×A] ,

𝐻
𝐺2
= blkdiag (𝐻

𝑈
, 𝐻

𝑥𝑧
) ,

𝐾
𝑊1

= 𝐾
𝑋
, 𝐾

𝑊2
= [

𝐾
𝑈

𝐾
𝑥𝑧

] .

(38)

By applying the algorithm in (21a), (21b), and (21c), the
feasible setX3

𝑁
of 𝑥(𝑘) is calculated, and we have

𝑥 (𝑘) ∈ X
3

𝑁
. (39)

Remark 26. Since the optimization problems (32a), (32b),
(32c), (32d), (32e), and (32f) and (36a) and (36b) are the
same one with different forms, the feasible setX3

𝑁
equals the

feasible setX2

𝑁
.

By solving the mp-QP (36a) and (36b) through algo-
rithms in [18, 19, 21], the feasible regionX3

𝑁
is assumed to be
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partitioned into 𝑟 partitions and each partition P
𝑖
≜ {𝐻

𝑝𝑖
𝑥 ≤

𝐾
𝑝𝑖
}, 𝑖 = 1, 2, . . . , 𝑟, is a polytope.The explicit piecewise affine

solution with respect to P
𝑖
is defined as

�̆�
∗

1
= Γ

1
𝑥 (𝑘) + 𝜂

1
, 𝑥 (𝑘) ∈ P

1
≜ {𝐻

𝑝1
𝑥 ≤ 𝐾

𝑝1
}

�̆�
∗

2
= Γ

2
𝑥 (𝑘) + 𝜂

2
, 𝑥 (𝑘) ∈ P

2
≜ {𝐻

𝑝2
𝑥 ≤ 𝐾

𝑝2
}

...

�̆�
∗

𝑟
= Γ

𝑟
𝑥 (𝑘) + 𝜂

𝑟
, 𝑥 (𝑘) ∈ P

𝑟
≜ {𝐻

𝑝𝑟
𝑥 ≤ 𝐾

𝑝𝑟
} ,

(40)

where �̆�∗

𝑖
∈ R𝑁𝑚+𝑛 denotes the piecewise affine function of

�̆�
∗ in partition P

𝑖
, Γ

𝑖
∈ R(𝑁𝑚+𝑛)×𝑛, 𝑖 = 1, . . . , 𝑟, and 𝜂

𝑖
∈

R𝑁𝑚+𝑛, 𝑖 = 1, . . . , 𝑟.
Due to the fact that the optimization sequence �̆� is the

combination of 𝑢(𝑘 + 𝑖 | 𝑘) and 𝑥(𝑘 | 𝑘), the decomposition
procedures are needed to get the explicit solutions for (32a),
(32b), (32c), (32d), (32e), and (32f). Define

Γ
𝑖
=

[

[

[

[

[

[

[

Γ
1

𝑖

Γ
2

𝑖

...
Γ

𝑁

𝑖

Γ
𝑁+1

𝑖

]

]

]

]

]

]

]

, 𝜂
𝑖
=

[

[

[

[

[

[

[

𝜂
1

𝑖

𝜂
2

𝑖

...
𝜂

𝑁

𝑖

𝜂
𝑁+1

𝑖

]

]

]

]

]

]

]

, 𝑖 = 1, . . . , 𝑟, (41)

where Γ𝑗

𝑖
∈ R𝑚×𝑛, ∀𝑗 = 1, 2, . . . , 𝑁, Γ𝑁+1

𝑖
∈ R𝑛×𝑛, 𝜂𝑗

𝑖
∈ R𝑚,

∀𝑗 = 1, 2, . . . , 𝑁, and 𝜂𝑁+1

𝑖
∈ R𝑛, for all 𝑖 = 1, 2, . . . , 𝑟.

Then, the piecewise affine state feedback control laws 𝑢∗

𝑖

in (32a), (32b), (32c), (32d), (32e), and (32f) are

𝑢
∗

1
(𝑘 | 𝑘) = Γ

1

1
𝑥 (𝑘) + 𝜂

1

1
, 𝑥 (𝑘) ∈ P

1

𝑢
∗

2
(𝑘 | 𝑘) = Γ

1

2
𝑥 (𝑘) + 𝜂

1

2
, 𝑥 (𝑘) ∈ P

2

...

𝑢
∗

𝑟
(𝑘 | 𝑘) = Γ

1

𝑟
𝑥 (𝑘) + 𝜂

1

𝑟
, 𝑥 (𝑘) ∈ P

𝑟

(42)

and the corresponding piecewise affine linear 𝑥∗

𝑖
(𝑘 | 𝑘) is

calculated by

𝑥
∗

1
(𝑘 | 𝑘) = Γ

𝑁+1

1
𝑥 (𝑘) + 𝜂

𝑁+1

1
, 𝑥 (𝑘) ∈ P

1

𝑥
∗

2
(𝑘 | 𝑘) = Γ

𝑁+1

2
𝑥 (𝑘) + 𝜂

𝑁+1

2
, 𝑥 (𝑘) ∈ P

2

...

𝑥
∗

𝑟
(𝑘 | 𝑘) = Γ

𝑁+1

𝑟
𝑥 (𝑘) + 𝜂

𝑁+1

𝑟
, 𝑥 (𝑘) ∈ P

𝑟
,

(43)

where 𝑢∗

𝑖
(𝑘 | 𝑘) and 𝑥∗

𝑖
(𝑘 | 𝑘) denote the piecewise affine

function of 𝑢∗

(𝑘 | 𝑘) and 𝑥∗

(𝑘 | 𝑘) with respect to 𝑥(𝑘) in
partition P

𝑖
, respectively.

The explicit piecewise affine linear control law for robust
tube-based MPC at the initial point 𝑥(𝑘) ∈ P

𝑖
is defined as

𝑢
∗

pa (𝑥 (𝑘))

=

{
{
{
{
{

{
{
{
{
{

{

𝑢
∗

1
(𝑘 | 𝑘) + 𝐾 (𝑥 (𝑘) − 𝑥

∗

1
(𝑘 | 𝑘)) , 𝑥 (𝑘) ∈ P

1

𝑢
∗

2
(𝑘 | 𝑘) + 𝐾 (𝑥 (𝑘) − 𝑥

∗

2
(𝑘 | 𝑘)) , 𝑥 (𝑘) ∈ P

2

...
𝑢

∗

𝑟
(𝑘 | 𝑘) + 𝐾 (𝑥 (𝑘) − 𝑥

∗

𝑟
(𝑘 | 𝑘)) , 𝑥 (𝑘) ∈ P

𝑟
.

(44)

Remark 27. Comparing (44) with (34), the control law (44)
is explicit piecewise affine linear with respect to the initial
state 𝑥(𝑘) and can be computed totally offline. The piecewise
affine linear control laws are prestored in the memory of
computer, and when these control laws are needed to be
applied online, the only measure to take is finding the
partition P

𝑖
which contains 𝑥(𝑘) by searching in a lookup

table. So the computation time has been extremely decreased,
and the algorithm is fit for controlling those systems with fast
dynamics.

Substituting (42) and (43) into (44) yields the concise
form of (44) as

𝑢
∗

pa (𝑥 (𝑘))

=

{
{
{
{
{

{
{
{
{
{

{

(Γ
1

1
+ 𝐾 − 𝐾Γ

𝑁+1

1
) 𝑥 (𝑘) + (𝜂

1

1
− 𝐾𝜂

𝑁+1

1
) , 𝑥 (𝑘) ∈ P

1

(Γ
1

2
+ 𝐾 − 𝐾Γ

𝑁+1

2
) 𝑥 (𝑘) + (𝜂

1

2
− 𝐾𝜂

𝑁+1

2
) , 𝑥 (𝑘) ∈ P

2

...
(Γ

1

𝑟
+ 𝐾 − 𝐾Γ

𝑁+1

𝑟
) 𝑥 (𝑘) + (𝜂

1

𝑟
− 𝐾𝜂

𝑁+1

𝑟
) , 𝑥 (𝑘) ∈ P

𝑟
.

(45)

Since the explicit piecewise affine state feedback control
laws are stored in a lookup table, certain searching methods
are needed to confirm which partition contains the current
state 𝑥(𝑘). The related procedures are referred to as the well-
known “point location” problem. There already exist many
viable and efficient methods to figure out these point location
problems, such as the binary search tree utilized in [27], the
subdivision walking method in [28], and the hash tables in
[29].

Theorem 28. Consider the mp-QP of (36a) and (36b) with
piecewise affine solutions (44); then one has the following.

(i) The feasible set X3

𝑁
⊆ X is convex, the optimizer �̆� is

continuous and piecewise affine in each partition P
𝑖
,

and the value function𝑉3

𝑁
(𝑥(𝑘)) is continuous, convex,

and piecewise quadratic.
(ii) The piecewise affine linear control law 𝑢

∗

𝑝𝑎
(𝑥(𝑘)) in

(44) for tube-based MPC algorithm is continuous and
piecewise affine in each partition P

𝑖
.

Proof. Since (ii) in the theorem is deeply involved with (i), (i)
and (ii) will be proven separately and orderly. We first prove
(i). It is obvious that (i) inTheorem 28 is the direct conclusion
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of Theorem 15; then (i) is proven. We then prove (ii). From
(i), �̆� is continuous and piecewise affine in P

𝑖
. Also by (18),

�̆� is linear with respect to 𝑥(𝑘) in P
𝑖
. Since 𝑢∗

𝑖
(𝑘 | 𝑘) =

[𝐼
1
, 0, . . . , 0]�̆�

𝑖
, where 𝐼

1
∈ R𝑚×𝑚 is the identify matrix, and

𝑥
∗

𝑖
(𝑘 | 𝑘) = [0, . . . , 0, 𝐼

2
]�̆�

𝑖
, where 𝐼

2
∈ R𝑛×𝑛 is the identify

matrix, 𝑢∗

𝑖
(𝑘 | 𝑘) and 𝑥∗

𝑖
(𝑘 | 𝑘) are the combinations of �̆�

𝑖
;

then 𝑢∗

𝑖
(𝑘 | 𝑘) and 𝑥∗

𝑖
(𝑘 | 𝑘) are continuous piecewise linear

in P
𝑖
. Also 𝑢∗

pa(𝑥(𝑘)) is the combination of 𝑢∗

𝑖
(𝑘 | 𝑘) and

𝑥
∗

𝑖
(𝑘 | 𝑘); then 𝑢∗

pa(𝑥(𝑘)) is continuous and piecewise affine
in each P

𝑖
.

In the sequel, the robust stability of the disturbed linear
system (1) under explicit piecewise affine control law (44) is
analyzed.

Theorem 29 (stability results). The system dynamics of (1)
under control input 𝑢∗

𝑝𝑎
(𝑥(𝑘)) satisfies 𝑉

2

𝑁
(𝑥(𝑘 + 1)) −

𝑉
2

𝑁
(𝑥(𝑘)) ≤ −‖𝑥

∗

𝑖
(𝑘 | 𝑘)‖

2

𝑄
− ‖𝑢

∗

𝑡𝑐
(𝑥

∗

𝑖
(𝑘 | 𝑘))‖

2

𝑅
, ∀𝑤(𝑘) ∈ W,

𝑥(𝑘) ∈ P
𝑖
, 𝑖 = 1, 2, . . . , 𝑟, and the robust invariant set Z is

robustly exponentially stable for system 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +

𝐵𝑢
∗

𝑝𝑎
(𝑥(𝑘)) + 𝑤(𝑘), ∀𝑤(𝑘) ∈ W, in the region ofX3

𝑁
.

Proof. In this proof, we discard the traditional idea as in [39,
40], which takes the system (1) under piecewise affine control
law 𝑢∗

pa(𝑥(𝑘)) as a switched linear system. To prove the stabil-
ity of these switched linear systems, we need to construct and
then prove the asymptotical decreasing property of a series of
piecewise Lyapunov functions for each separate subsystem,
which is fairly complex. So we changed the way to prove
that the piecewise affine control law 𝑢

∗

pa(𝑥(𝑘)) is equivalent
to 𝑢∗

tb(𝑥(𝑘)) for all 𝑥(𝑘) ∈ P
𝑖
, ∀𝑖 ∈ {1, 2, . . . , 𝑟}. Since all the

constraints in (36b) are linear functions for each fixed 𝑥(𝑘)
and the objective function is a quadratic function, then both
of them are convex functions. From Theorem 25, we can see
that �̆�∗

𝑖
which satisfies the first-order KKT condition is the

optimal solution of (36a) and (36b) at 𝑥(𝑘) ∈ P
𝑖
; then it

means 𝑢∗

𝑖
(𝑘 | 𝑘) and 𝑥∗

𝑖
(𝑘 | 𝑘) are also optimal at 𝑥(𝑘) ∈

P
𝑖
, ∀𝑖 ∈ {1, 2, . . . , 𝑟}; then 𝑢∗

pa(𝑥(𝑘)) is optimal in P
𝑖
, ∀𝑖 ∈

{1, 2, . . . , 𝑟}. If 𝑥(𝑘) ∈ P
𝑖
, ∀𝑖 ∈ {1, 2, . . . , 𝑟}, the corresponding

optimal solutions of (32a), (32b), (32c), (32d), (32e), and (32f)
are 𝑢∗

(𝑘 | 𝑘) and 𝑥∗

(𝑘 | 𝑘). Since the optimizations (36a) and
(36b) and (32a), (32b), (32c), (32d), (32e), and (32f) are the
same optimization with different forms and 𝑉2

𝑁
(𝑥(𝑘)) equals

𝑉
3

𝑁
(𝑥(𝑘)), combined with Theorem 28, we conclude that the

piecewise affine control laws 𝑢∗

pa(𝑥(𝑘)) in (44) equal the
control law 𝑢

∗

tb(𝑥(𝑘)) for all 𝑥(𝑘) ∈ X2

𝑁
/X3

𝑁
. Then, by virtue

of the robust stability results in Theorem 25, Theorem 29 is
proven.

5. Illustrative Example

In order to verify the efficiency of the control strategy, the
proposed algorithm is applied to a disturbed linear system,
which is borrowed from [2]. For simplicity and comparison,

the related parameters are mostly the same as [2].The system
model is described as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝑤 (𝑘) , (46)

where

𝐴 = [

1 1

0 1
] , 𝐵 = [

0.5

1
] . (47)

The bounds on the state, control, and disturbance are

𝑥 (𝑘) ∈ X ≜ {𝑥 | [01] 𝑥 (𝑘) ≤ 2} ,

𝑢 (𝑘) ∈ U ≜ {𝑢 | |𝑢 (𝑘)| ≤ 1} ,

𝑤 (𝑘) ∈ W ≜ {𝑤 | ‖𝑤 (𝑘)‖
∞
≤ 0.1} .

(48)

The corresponding nominal model is

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) . (49)

Choose

𝑄 = [

1 0

0 1
] , 𝑅 = 0.01. (50)

For the nominal model (49), the optimal state-feedback
gain 𝐾 is calculated by solving the discrete-time LQR prob-
lem. By applying the Matlab function “dlqr,” 𝐾 is calculated
as

𝐾 = [−0.6609 −1.3261] (51)

and the corresponding positive symmetric matrix 𝑃 is

𝑃 = [

2.0066 0.5099

0.5099 1.2682
] . (52)

The robust invariant setZ for (1) under 𝑢(𝑘) = 𝐾𝑥(𝑘) can
be computed from Algorithm 19. Z is a polytope and its H-
representation is

Z = {𝑥 ∈ 𝑅
𝑛

| 𝐻
𝑧
𝑥 ≤ 𝐾

𝑧
} , (53)
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where

𝐻
𝑧
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 −1

0.70249 0.71169

0.69544 0.71858

0 1

−0.70926 −0.70495

−1 0

−0.709 −0.7052

−0.70249 −0.71169

−0.69544 −0.71858

0.709 0.7052

0.70926 0.70495

1 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐾
𝑧
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0.23307

0.14236

0.14328

0.23307

0.16326

0.23482

0.14321

0.14236

0.14328

0.14321

0.14326

0.23482

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(54)

Similarly, the terminal region X
𝑓
can be calculated from

Algorithm 21. TheH-representation ofX
𝑓
is

X
𝑓
= {𝑥 ∈ 𝑅

𝑛

| 𝐻
𝑥𝑓
𝑥 ≤ 𝐾

𝑥𝑓
} , (55)

where

𝐻
𝑥𝑓
=

[

[

[

[

[

[

0 −1

−0.44605 −0.89501

0.44605 0.89501

0.90033 0.43521

−0.90033 −0.43521

]

]

]

]

]

]

,

𝐾
𝑥𝑓
=

[

[

[

[

[

[

1.7669

0.48182

0.48132

1.4813

1.4813

]

]

]

]

]

]

.

(56)

Choose 𝑁 = 9 and initial state 𝑥(0) = (−5, −2). By
utilizing the algorithm proposed in this paper, the feasible
sets X1

9
, X2

9
, and X3

9
are plotted in Figure 1, the partitions

of X3

9
are shown in Figure 2, and the phase trajectory with

embedded robust invariant sets Z from the starting point
𝑥(0) = (−5, −2) is plotted in Figure 3. In order to test
whether the constraints on state and input are violated or
not, the Monte Carlo method is utilized and the results are
shown in Figures 4 and 5. Also to verify the feasibility in the
whole feasible set X3

9
, different representative initial points

are simulated and the corresponding phase trajectories are
plotted in Figure 6. Moreover, for comparison, the partitions
of the feasible sets X3

𝑁
, 𝑁 = 1, 3, 5, 7, are plotted in Figures
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Figure 1: The feasible regionsX1

9
,X2

9
, andX3

9
(𝑁 = 9).
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Figure 2: The partitions of feasible setX3

9
(𝑁 = 9).
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Figure 3: The phase trajectories from (−5, −2) (𝑁 = 9).
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3
(𝑁 = 3).

Table 1: Number of partitions.

𝑁 1 2 3 4 5 6 7 8 9
Partitions 77 118 173 241 298 380 477 557 657

7, 8, 9, and 10. The total number of partitions of X3

𝑁
,

𝑁 = 1, 2, . . . , 9, is shown in Table 1. And the comparison of
online computation time between the method in [2] and the
proposed method in this paper for each control step is given
in Table 2. For simplicity, the representative partitions of X3

1

and corresponding piecewise affine control laws are listed in
Table 3.

Figure 1 shows that X1

𝑁
⊂ X2

𝑁
= X3

𝑁
. Figure 2 combined

with Figures 7–10, or directly Table 1, shows that the number
of partitions P

𝑖
is exponentially increased with respect to

the prediction horizon 𝑁. It can also be seen from Figure 4
that the system (46), under the piecewise affine control laws
(44), is asymptotic stable to region 0 ⊕ Z, and all the hard
constraints on state and input are not violated at all. Figure 7
illustrates that the state in the obtained feasible set X3

9
is

feasible. The total simulations are achieved using Matlab 7.6a
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Figure 10: The partitions of feasible setX3

7
(𝑁 = 7).

Table 2: Mean online computation time for each control step.

𝑁 Method in [2] Proposed method
1 0.0125 s 5.1377 × 10

−4 s
2 0.0131 s 6.0158 × 10

−4 s
3 0.0140 s 7.3339 × 10

−4 s
4 0.0158 s 7.7544 × 10

−4 s
5 0.0162 s 9.6099 × 10

−4 s
6 0.0183 s 1.0000 × 10

−3 s
7 0.0191 s 1.3000 × 10

−3 s
8 0.0204 s 1.6000 × 10

−3 s
9 0.0215 s 1.8000 × 10

−3 s

and theMPT [31] on our laptop with a 2.67GHz Intel Core i5
processor and 4GBRAM.

6. Conclusion

In this paper, a robust tube-based MPC algorithm with
piecewise affine control laws is proposed to control the
disturbed linear systems.Themain advantage of the proposed

Table 3: Representative partitions of𝑋3

1
.

Regions Corresponding control law
R1 𝑢 = [−0.6609 − 1.3261]𝑥

R2 𝑢 = [−0.6609 − 1.3208]𝑥 − 0.0012

R3 𝑢 = [−0.6580 − 1.3203]𝑥 − 0.0013

R4 𝑢 = [−0.0000 − 0.0000]𝑥 − 1.0000

R5 𝑢 = [−0.6609 − 0.4151]𝑥 − 0.7481

R6 𝑢 = [−0.0000 − 0.0000]𝑥 − 0.8678

R7 𝑢 = [−0.6580 − 1.3203]𝑥 − 0.0007

R8 𝑢 = [−0.3990 − 1.1995]𝑥 + 0.4629

R9 𝑢 = [−0.6522 − 1.3261]𝑥 − 0.4373

R10 𝑢 = [−0.4411 − 1.3261]𝑥 + 0.4527

R11 𝑢 = [−0.4312 − 1.3261]𝑥 + 0.4783

R12 𝑢 = [−0.6593 − 1.3261]𝑥 + 0.0004

R13 𝑢 = [−0.6580 − 1.3203]𝑥 + 0.0005

R14 𝑢 = [−0.0000 − 0.0000]𝑥 + 0.8253

R15 𝑢 = [0.1908 − 0.4635]𝑥 + 0.7536

R16 𝑢 = [−0.6563 − 1.3215]𝑥 + 0.0009

R17 𝑢 = [−0.6563 − 1.3215]𝑥 − 0.0009

R18 𝑢 = [0.1908 − 0.4635]𝑥 − 0.7536

R19 𝑢 = [−0.0000 − 0.0000]𝑥 − 0.8253

R20 𝑢 = [−0.6580 − 1.3203]𝑥 − 0.0005

R21 𝑢 = [−0.6593 − 1.3261]𝑥 − 0.0004

R22 𝑢 = [−0.6609 − 1.3208]𝑥 + 0.0012

R23 𝑢 = [−0.0000 − 0.0000]𝑥 + 1.0000

R24 𝑢 = [−0.6609 − 0.4151]𝑥 + 0.7481

R25 𝑢 = [−0.0000 − 0.0000]𝑥 + 0.8678

R26 𝑢 = [−0.6580 − 1.3203]𝑥 + 0.0007

R27 𝑢 = [−0.4312 − 1.3261]𝑥 − 0.4783

R28 𝑢 = [−0.4411 − 1.3261]𝑥 − 0.4527

R29 𝑢 = [−0.3990 − 1.1995]𝑥 − 0.4629

R30 𝑢 = [−0.6522 − 1.3261]𝑥 + 0.4293

algorithm is that the explicit control laws, which are piecewise
affine to the partition of feasible set, are obtained totally
offline by transforming the optimization of the general tube-
based MPC into the mp-QP. Since the involved functions are
convex and all the sets are polytopes, the piecewise affine
control laws are optimal. By applying these control laws to
the controlled system, the stability and robustness properties
still hold. The simulation results illustrate the effectiveness.
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parametric linear programming for control,” in Proceedings of
the 27th Chinese Control Conference (CCC ’08), pp. 2–4, July
2008.

[14] M. Hladı́k, “Multiparametric linear programming: support set
and optimal partition invariancy,” European Journal of Opera-
tional Research, vol. 202, no. 1, pp. 25–31, 2010.

[15] A. Bemporad and C. Filippi, “Suboptimal explicit receding
horizon control via approximate multiparametric quadratic
programming,” Journal of Optimization Theory and Applica-
tions, vol. 117, no. 1, pp. 9–38, 2003.

[16] A. Gupta, S. Bhartiya, and P. S. V. Nataraj, “A novel approach to
multiparametric quadratic programming,” Automatica, vol. 47,
no. 9, pp. 2112–2117, 2011.
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