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We present the notion of convoluted fractional𝐶-semigroup, which is the generalization of convoluted𝐶-semigroup in the Banach
space setting. We present two equivalent functional equations associated with convoluted fractional 𝐶-semigroup. Moreover, the
well-posedness of the corresponding fractional abstract Cauchy problems is studied.

1. Introduction

Let 𝑋 be a Banach space and let 𝐶 ∈ 𝐿(𝑋) (𝐿(𝑋) denotes the
space of bounded linear operators from 𝑋 to itself) be injec-
tive. Let Θ(𝑡) := ∫

𝑡

0
𝐾(𝑠)𝑑𝑠, where 𝐾(⋅) is locally integrable

on [0, +∞). A strongly continuous operator family {𝑆(𝑡)}
𝑡≥0

is called a 𝐾-convoluted 𝐶-semigroup if 𝑆(0) = 0, 𝑆(𝑡)𝐶 =

𝐶𝑆(𝑡), 𝑡 ≥ 0, and there holds

𝑆 (𝑡) 𝑆 (𝑠) 𝑥 = [∫

𝑡+𝑠

0

−∫

𝑡

0

−∫

𝑠

0

]𝐾 (𝑡 + 𝑠 − 𝑟) 𝑆 (𝑟) 𝐶𝑥 𝑑𝑟,

𝑥 ∈ 𝑋, 𝑡, 𝑠 ≥ 0.

(1)

If, in addition, 𝑆(𝑡)𝑥 = 0, 𝑡 ≥ 0, implies 𝑥 = 0, {𝑆(𝑡)}
𝑡≥0

is
called a nondegenerate𝐾-convoluted𝐶-semigroup. Formore
details, we refer to Kostić [1]. Obviously, 𝐾-convoluted 𝐶-
semigroups are a generalization of classical 𝐶

0
-semigroups.

The extension of Widder’s representation theorem by Arendt
[2] stimulated the development of the theory of 𝛼-times
integrated semigroups, which is the special case that 𝐾(𝑡) =

𝑡
𝛼−1

/Γ(𝛼), 𝐶 = 𝐼 (see [3–6] for 𝛼 being an integer and [7–
9] for 𝛼 being noninteger). Li and Shaw [10–12] introduced
exponentially bounded 𝑛-times integrated 𝐶-semigroups
which are the special case, where𝐾(𝑡) = 𝑡

𝑛−1
/(𝑛−1)!, and they

studied their connection with the associated abstract Cauchy
problem. Kuo and Shaw [13] were concerned with the case
𝐾(𝑡) = 𝑡

𝛼−1
/Γ(𝛼) with 𝛼 being noninteger and they called

it 𝛼-times integrated𝐶-semigroups. Convoluted semigroups,
which are the special case that 𝐶 = 𝐼, were introduced
by Cioranescu and Lumer [14–16]. It is a generalization of
integrated semigroups. Moreover, Kunstmann [17] showed
that there exists a global convoluted semigroup whose gen-
erator 𝐴 is not stationary dense and therefore it cannot be
the generator of a local integrated semigroup. After that, Mel-
nikova and Filinkov [18], Keyantuo et al. [19], and Kostić and
Pilipović [20] systematically studied the properties of con-
voluted semigroups and related them to associated abstract
Cauchy problems.

In [1], Kostić presented the notion 𝐾-convoluted 𝐶-
semigroup and found a sufficient condition for a nondegen-
erate strongly continuous linear operator family {𝑆(𝑡)}

𝑡≥0
to

be a 𝐾-Convoluted 𝐶-semigroup; that is, 𝑆(𝑡)𝐴 ⊂ 𝐴𝑆(𝑡),
𝐶𝑆(𝑡) = 𝑆(𝑡)𝐶, 𝑡 ≥ 0, ∫𝑡

0
𝑆(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝐴), 𝑥 ∈ 𝑋, and 𝑆(𝑡)𝑥 =

𝐴∫
𝑡

0
𝑆(𝑠)𝑥 𝑑𝑠 + Θ(𝑡)𝐶𝑥. Moreover, Kostić showed that if the

sufficient condition holds, the abstract Cauchy problem

𝑢
󸀠
(𝑡) = 𝐴𝑢 (𝑡) + Θ (𝑡) 𝐶𝑥,

𝑢 (0) = 0,

(2)
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is well-posed. In Proposition 2.3 of [3], it was proved that if
the following abstract Cauchy problem

𝑢
󸀠
(𝑡) = 𝐴𝑢 (𝑡) +

𝑡
𝛼

Γ (𝛼 + 1)
𝐶𝑥,

𝑢 (0) = 0,

(3)

is well-posed, then the above sufficient conditions hold.
Motivated by such facts, Kostić gave in [1] the definition of𝐾-
convoluted semigroup by the above sufficient conditions and
proved the equivalence of the two definitions. Later, Kostić
and Pilipović [21] gave the definition of 𝐾-convoluted 𝐶-
semigroups by using the sufficient condition.

Observe that the abstract Cauchy problems related to the
above “semigroups” are of integral order. Recently, fractional
differential equations have received increasing attention
because the behavior of many physical systems, such as fluid
flows, electrical networks, viscoelasticity, chemical physics,
electron-analytical chemistry, biology, and control theory,
can be properly described by using the fractional order
system theory and so forth (see [22–26]). Fractional deriva-
tives appear in the theory of fractional differential equations;
they describe the property of memory and heredity of
materials, and it is the major advantage of fractional deriva-
tives compared with integer order derivatives.

In [27], Bajlekova developed the notion of solution
operator to study the well-posedness of fractional differential
equations. da Prato and Iannelli [28] introduced the concept
of resolvent families, which can be regarded as an extension
of 𝐶

0
-semigroups, to study a class of integrodifferential

equations. After that, the theory of resolvent families was
developed rapidly to investigate the abstract Volterra equa-
tion:

𝑢 (𝑡) = 𝑓 (𝑡) + ∫

𝑡

0

𝑎 (𝑡 − 𝑠) 𝐴𝑢 (𝑠) 𝑑𝑠, (4)

where 𝑎 ∈ 𝐿
1

loc(𝑅+) (see [29–31]). Recently, Chen and Li
[32] gave the family of functional equations, using resolvent
operator function to equivalently describe resolvent families.
Motivated by this, Kexue and Jigen [33, 34], Li et al. [35], and
Mei et al. [36] studied different types of fractional resolvents
describing the functional equation and applied them to frac-
tional differential equations. Lizama and Poblete [37] studied
the functional equation associated with (𝑎, 𝑘)-regularized
resolvents. However, the above functional equations are not
expressed in terms of the sum of time variables: 𝑠 + 𝑡. This
is very important in concrete applications of the functional
equation, just like 𝐶

0
-semigroups, integrated semigroups,

integrated 𝐶-semigroups, and 𝐾-convoluted 𝐶-semigroups
(see (1)). In [38], Peng and Li derived a new characterization
of 𝛼-order semigroup (0 < 𝛼 < 1) as follows:

∫

𝑡+𝑠

0

𝑇 (𝜏)

(𝑡 + 𝑠 − 𝜏)
𝛼
𝑑𝜏 − ∫

𝑡

0

𝑇 (𝜏)

(𝑡 + 𝑠 − 𝜏)
𝛼
𝑑𝜏 − ∫

𝑠

0

𝑇 (𝜏)

(𝑡 + 𝑠 − 𝜏)
𝛼
𝑑𝜏

= 𝛼∫

𝑡

0

∫

𝑠

0

𝑇 (𝑟
1
) 𝑇 (𝑟

2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟
2
, 𝑡, 𝑠 ≥ 0,

(5)

which is proved to be equivalent to fractional resolvents
introduced in [32].Motivated by this,Mei et al. [39] presented
a characterization as follows:

Γ (1 − 𝛼) 𝑇 (𝑡 + 𝑠) = 𝛼∫

𝑡

0

∫

𝑠

0

𝑇 (𝑟
1
) 𝑇 (𝑟

2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟
2
,

𝑡, 𝑠 > 0, 0 < 𝛼 < 1,

(6)

which is proved to be equivalent to fractional resolvent pre-
sented byKexue and Jigen [34]. One of the tasks of the present
paper is to find a characterization of 𝐾-convoluted 𝛼-order
𝐶-semigroup (see Section 2 for the definition) in terms of 𝑡+𝑠.

In this paper, we consider the following fractional abstract
Cauchy problem (FACP):

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + Θ (𝑡) 𝐶𝑥,

𝑢 (0) = 0,

(7)

where 0 < 𝛼 < 1, 𝑥 ∈ 𝑋, and 𝐶

𝐷
𝛼

𝑡
is the modified Caputo

fractional derivative defined by operator

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡) =

1

Γ (1 − 𝛼)

𝑑

𝑑𝑡
∫

𝑡

0

(𝑡 − 𝜎)
−𝛼

(𝑢 (𝜎) − 𝑢 (0)) 𝑑𝜎.

(8)

Observe that fractional integral of 𝑢(𝑡) is defined by

𝐽
𝛼

𝑡
𝑢 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠. (9)

Then it is easy to show that, for 𝑢 ∈ 𝐶
1
([0,∞),𝑋), 𝐶

𝐷
𝛼

𝑡
𝑢(𝑡)

can be calculated by

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐽

1−𝛼

𝑡
𝑢
󸀠
(𝑠) 𝑑𝑠, (10)

which is just the original definition of Caputo fractional
derivative (see, e.g., [26]).

We plan to present in Section 2 the notion of 𝐾-
convoluted fractional 𝐶-semigroups, which is a generaliza-
tion of the notions of 𝐾-convoluted semigroups [20] and 𝐾-
convoluted𝐶-semigroups [21].Moreover, some of their prop-
erties are studied. Section 3 is to give two equivalent descrip-
tions of 𝐾-convoluted 𝐶-semigroup. The final section con-
cerns the study of the well-posedness of the fractional
abstract Cauchy problem.

Throughout this paper, 𝛼 ∈ (0, 1), without any additional
statement.

2. Convoluted Fractional 𝐶-Semigroup

In this section, we will introduce the notion of𝐾-convoluted
𝛼-order 𝐶-semigroup and study some of its properties. The
following definition is stimulated by the definitions of 𝐾-
convoluted semigroup [20] and 𝐾-convoluted 𝐶-semigroup
[21].



Abstract and Applied Analysis 3

Definition 1. Let 𝐴 be a closed linear operator on a Banach
space𝑋. If there exists a strongly continuous operator family
{𝑆
𝐾
(𝑡)}

𝑡≥0
such that 𝑆

𝐾
(𝑡)𝐶 = 𝐶𝑆

𝐾
(𝑡), 𝑆

𝐾
(𝑡)𝐴 ⊂ 𝐴𝑆

𝐾
(𝑡),

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡)𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ 𝑋, 𝑡 ≥ 0, and

𝐴𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑥 = 𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥, 𝑥 ∈ 𝑋, (11)

then {𝑆
𝐾
(𝑡)}

𝑡≥0
is called a𝐾-convoluted𝛼-order𝐶-semigroup

generated by 𝐴, and 𝐴 is called the generator of {𝑆
𝐾
(𝑡)}

𝑡≥0
. In

the special case 𝐶 = 𝐼, {𝑆
𝐾
(𝑡)}

𝑡≥0
is called 𝐾-convoluted 𝛼-

order semigroup. One says that {𝑆
𝐾
(𝑡)}

𝑡≥0
is an exponentially

bounded 𝐾-convoluted 𝛼-order 𝐶-semigroup generated by
𝐴 if, additionally, there exist 𝑀 > 0 and 𝜔 ∈ 𝑅 such that
‖𝑆
𝐾
(𝑡)‖ ≤ 𝑀𝑒

𝜔𝑡, 𝑡 ≥ 0.

Remark 2. We note that𝐾-convoluted 𝛼-order 𝐶-semigroup
is an (𝑎, 𝑘) regularized 𝐶-resolvent family (𝑎(𝑡) = 𝑡

𝛼−1
/Γ(𝛼)

and 𝑘(𝑡) = ∫
𝑡

0
𝐾(𝑠)𝑑𝑠), introduced by Kostić [40].We are con-

cerned with this case because it is closely related to fractional
differential equation.There are three reasonswhywe use such
concept: (1) Kostić and Pilipović called the special case 𝛼 = 1

and𝐶 = 𝐼 to be𝐾-convoluted semigroup [20] and 𝛼 = 2 to be
𝐾-convoluted 𝐶-cosine function [21]; (2) Peng and Li called
(𝑡
𝛼−1

/Γ(𝛼), 1)-regularized resolvent 𝛼-order semigroup (𝛼 ∈

(0, 1)) [38]; (3) “𝐾-convoluted 𝛼-order 𝐶-semigroup” should
be “(𝑡𝛼−1/Γ(𝛼), ∫𝑡

0
𝐾(𝑠)𝑑𝑠)-regularized 𝐶-resolvent,” but the

term “(𝑡𝛼−1/Γ(𝛼), ∫𝑡
0
𝐾(𝑠)𝑑𝑠)-regularized 𝐶-resolvent” is too

complex.

It can be checked directly that if 𝐴 generates a 𝐾-
convoluted 𝛼-order 𝐶-semigroup {𝑆

𝐾
(𝑡)}

𝑡≥0
, then 𝑆

𝐾
(𝑡)𝑥 ∈

𝐷(𝐴), 𝑡 ≥ 0, 𝑥 ∈ 𝑋. If 𝐾 ̸= 0 in 𝐿
1

loc([0,∞)), then it is
clear that the 𝐾-convoluted 𝛼-order 𝐶-semigroup {𝑆

𝐾
(𝑡)}

𝑡≥0

is nondegenerate (let 𝑆
𝐾
(𝑡)𝑥 = 0, 𝑡 > 0; (11) implies that

Θ(𝑡)𝐶𝑥 = 0; thereby 𝑥 = 0).

Lemma 3. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a nondegenerate 𝐾-

convoluted 𝛼-order 𝐶-semigroup generated by 𝐴 on Banach
space 𝑋. Then 𝐶𝐴 ⊂ 𝐴𝐶.

Proof. Let 𝑥 ∈ 𝐷(𝐴). By Definition 1, it follows that
𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡)𝐶𝑥 ∈ 𝐷(𝐴), 𝑡 ≥ 0, and

𝐴𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶𝑥 = 𝑆

𝐾
(𝑡) 𝐶𝑥 − Θ (𝑡) 𝐶

2
𝑥. (12)

The combination of the closedness of 𝐴 and (11) implies that

𝐽
𝛼

𝑡
𝐴𝑆

𝐾
(𝑡) 𝑥 = 𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥, (13)

which gives that

𝐶𝐽
𝛼

𝑡
𝐴𝑆

𝐾
(𝑡) 𝑥 = 𝐶𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶

2
𝑥. (14)

The two equalities (12) and (14) indicate that 𝐴𝐽𝛼
𝑡
𝑆
𝐾
(𝑡)𝐶𝑥 =

𝐶𝐽
𝛼

𝑡
𝐴𝑆

𝐾
(𝑡)𝑥. Hence,

𝐽
1−𝛼

𝑡
𝐴𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶𝑥 = 𝐽

1−𝛼

𝑡
𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶𝐴𝑥 = ∫

𝑡

0

𝑆
𝐾
(𝑠) 𝐶𝐴𝑥𝑑𝑠,

𝑡 ≥ 0.

(15)

Since 𝐴 is closed, it follows that

𝐴∫

𝑡

0

𝑆
𝐾
(𝑠) 𝐶𝑥 𝑑𝑠 = 𝐴𝐽

1−𝛼

𝑡
𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶𝑥 = ∫

𝑡

0

𝑆
𝐾
(𝑠) 𝐶𝐴𝑥𝑑𝑠,

𝑡 ≥ 0.

(16)

Using the closedness of 𝐴 again, we obtain that 𝑆
𝐾
(𝑡)𝐶𝐴𝑥 =

𝐴𝑆
𝐾
(𝑡)𝐶𝑥 = 𝑆

𝐾
(𝑡)𝐴𝐶𝑥, 𝑡 ≥ 0. Since {𝑆(𝑡)}

𝑡≥0
is nondegen-

erate, it follows that 𝐶𝐴𝑥 = 𝐴𝐶𝑥, 𝑥 ∈ 𝐷(𝐴). The proof is
complete.

Theorem 4. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a nondegenerate 𝐾-

convoluted 𝛼-order 𝐶-semigroup generated by 𝐴 on Banach
space 𝑋. Define the operator 𝐵 by

𝑥 ∈ 𝐷 (𝐵) ,

𝐵𝑥 = 𝑦 ⇐⇒ 𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑦 = 𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥, ∀𝑡 ≥ 0.

(17)

Then

(i) 𝐵 is single-valued;
(ii) 𝐵 is closed;
(iii) 𝐵 = 𝐶

−1
𝐴𝐶.

Proof. We first prove that the nondegeneracy implies that 𝐵
is single-valued. Indeed, if, for any 𝑡 ≥ 0, 𝑦, 𝑧 ∈ 𝑋 satisfy,
respectively,

𝑆
𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥 = 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑠) 𝑦 𝑑𝑠,

𝑆
𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥 = 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑠) 𝑧 𝑑𝑠,

(18)

then

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑠) 𝑦 𝑑𝑠 = 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑠) 𝑧 𝑑𝑠. (19)

By Titchmarsh’s theorem, it follows that 𝑆
𝐾
(𝑠)𝑦 = 𝑆

𝐾
(𝑠)𝑧, 𝑠 ≥

0. The nondegeneracy implies that 𝑦 = 𝑧; thereby 𝐴 is single
valued. Hence we have 𝐴𝑥 = 𝑦.

Let the sequence {𝑥
𝑛
} ⊂ 𝐷(𝐵) satisfy 𝑥

𝑛
→ 𝑥 and𝐵𝑥

𝑛
→

𝑦 as 𝑛 → ∞. Then we have

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐴𝑥

𝑛
= 𝑆

𝐾
(𝑡) 𝑥

𝑛
− Θ (𝑡) 𝐶𝑥

𝑛
, ∀𝑡 ≥ 0. (20)

Letting 𝑛 → ∞, (43) gives that

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑦 = 𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥, ∀𝑡 ≥ 0, (21)

which implies that 𝑥 ∈ 𝐷(𝐵) and 𝑦 = 𝐵𝑥. Hence 𝐵 is closed.
If 𝑥 ∈ 𝐷(𝐵), then 𝑆

𝐾
(𝑡)𝑥 − Θ(𝑡)𝐶𝑥 = 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡)𝐵𝑥, 𝑡 ≥ 0.

The combination of (11) and (17) implies that

𝐴𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑥 = 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐵𝑥, 𝑡 ≥ 0. (22)

Similar to the proof of Lemma 3, using the closedness of 𝐴,
we obtain

𝐴𝑆
𝐾
(𝑡) 𝑥 = 𝑆

𝐾
(𝑡) 𝐵𝑥; (23)
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that is, 𝐴(Θ(𝑡)𝐶𝑥 + 𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡)𝐵𝑥) = 𝑆

𝐾
(𝑡)𝐵𝑥. Since Θ ̸= 0 and

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡)𝐵𝑥 ∈ 𝐷(𝐴), we obtain that 𝐶𝑥 ∈ 𝐷(𝐴). Combining

Lemma 3, Definition 1, and (23), it follows that 𝑆
𝐾
(𝑡)𝐶𝐵𝑥 =

𝐶𝑆
𝐾
(𝑡)𝐵𝑥 = 𝐶𝐴𝑆

𝐾
(𝑡)𝑥 = 𝐴𝐶𝑆

𝐾
(𝑡)𝑥 = 𝐴𝑆

𝐾
(𝑡)𝐶𝑥 =

𝑆
𝐾
(𝑡)𝐴𝐶𝑥. Since {𝑆(𝑡)}

𝑡≥0
is nondegenerate, it follows that

𝐶𝐵𝑥 = 𝐴𝐶𝑥; that is, 𝐵𝑥 = 𝐶
−1
𝐴𝐶𝑥. So 𝐵 ⊂ 𝐶

−1
𝐴𝐶.

Conversely, let 𝑥 ∈ 𝐷(𝐶
−1
𝐴𝐶); that is, 𝐶𝑥 ∈ 𝐷(𝐴) and

𝐴𝐶𝑥 ∈ 𝑅(𝐶). By Definition 1, 𝐽𝛼
𝑡
𝑆
𝐾
(𝑡)𝐶𝑥 ∈ 𝐷(𝐴) and

𝐴𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶𝑥 = 𝑆

𝐾
(𝑡) 𝐶𝑥 − Θ (𝑡) 𝐶

2
𝑥, (24)

which implies that

𝐶
−1
𝐴𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶𝑥 = 𝐶

−1
𝑆
𝐾
(𝑡) 𝐶𝑥 − 𝐶

−1
Θ (𝑡) 𝐶

2
𝑥. (25)

Since 𝐴 is closed, (26) indicates that

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶

−1
𝐴𝐶𝑥 = 𝑆

𝐾
(𝑡) 𝑥 − 𝐶

−1
Θ (𝑡) 𝐶𝑥. (26)

Hence 𝑥 ∈ 𝐷(𝐵) and 𝐵𝑥 = 𝐶
−1
𝐴𝐶𝑥. Hence (iii) holds.

Remark 5. Part of Lemma 3 and Theorem 4 are included in
[40]. However, our proofs are more specific.

By the above theorem, for a nondegenerate𝐾-convoluted
𝛼-order𝐶-semigroup {𝑆

𝐾
(𝑡)}

𝑡≥0
generated by𝐴, we have𝐴 ⊂

𝐵. Moreover, in the special case 𝐶 = 𝐼, we have 𝐴 = 𝐵.

3. Two Characterizations of Convoluted
Fractional 𝐶-Semigroup

In this section we will introduce two functional equations
characterizing𝐾-convoluted 𝛼-order 𝐶-semigroups, just like
𝐾-convoluted 𝐶-semigroups and integrated 𝐶-semigroups.

Lemma 6. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a strongly continuous

family of bounded linear operators on Banach space 𝑋. Then
{𝑆(𝑡)}

𝑡≥0
is a 𝐾-convoluted fractional 𝐶-semigroup if and only

if

𝑆
𝐾
(𝑡) 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) − 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑆

𝐾
(𝑠)

= Θ (𝑡) 𝐽
𝛼

𝑠
𝑆
𝐾
(𝑠) 𝐶 − Θ (𝑠) 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶, 𝑠, 𝑡 ≥ 0.

(27)

Proof

Necessity. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a 𝐾-convoluted 𝛼-order

𝐶-semigroup generated by 𝐴. Let 𝑥 ∈ 𝑋. Denote by 𝐴 the
generator of {𝑆

𝐾
(𝑡)}

𝑡≥0
. By (11), it follows that

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐴𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑥 = 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑆

𝐾
(𝑠) 𝑥 − 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) Θ (𝑠) 𝐶𝑥,

𝑥 ∈ 𝑋.

(28)

In (11), replacing 𝑥 with 𝐽
𝛼

𝑠
𝑆
𝐾
(𝑠)𝑥, it follows that

𝐴𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑥 = 𝑆

𝐾
(𝑡) 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑥 − Θ (𝑡) 𝐶𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑥,

𝑥 ∈ 𝑋.

(29)

Observe that 𝐽𝛼
𝑡
𝑆
𝐾
(𝑡)𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠)𝑥 ∈ 𝐷(𝐴) and

𝐽
𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐴𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑥 = 𝐴𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑥. (30)

The combination of (28), (29), and (30) implies that

𝑆
𝐾
(𝑡) 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) − 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑆

𝐾
(𝑠)

= Θ (𝑡) 𝐽
𝛼

𝑠
𝑆
𝐾
(𝑠) 𝐶 − Θ (𝑠) 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶,

𝑠, 𝑡 ≥ 0.

(31)

Sufficiency. Assume that (27) holds. Define operator 𝐵 as in
(17).Then 𝐵 is closed. Moreover, (27) implies that 𝐽𝛼

𝑠
𝑆
𝐾
(𝑠)𝑥 ∈

𝐷(𝐵) and 𝐵𝐽
𝛼

𝑠
𝑆
𝐾
(𝑠)𝑥 = 𝑆

𝐾
(𝑠)𝑥 − Θ(𝑠)𝐶𝑥. Hence {𝑆

𝐾
(𝑡)}

𝑡≥0

is a 𝐾-convoluted 𝛼-order 𝐶-semigroup generated by 𝐵 =

𝐶
−1
𝐴𝐶. The proof is therefore complete.

Remark 7. We have to mention that the theory of (𝑎, 𝑘)-
regularized 𝐶-resolvent families is a generalization of the
theory of (𝑎, 𝑘)-regularized resolvent families developed by
Lizama and Poblete (see the survey paper [37]) and has been
used by the same mentioned author in the development of
many properties concerning the study of fractional differen-
tial equations [41].Therefore, Lemma 6 is a natural extension
to the case 𝐶 ̸= 𝐼 of the results in [37] and the proof is also
motivated by that of [37].

We note that (27) does not express the functional equa-
tion in terms of the sum of time variables: 𝑠+𝑡. As we describe
semigroups and convoluted 𝐶-semigroups, this is very
important in concrete applications of the functional equation
modeling evolution in time. Below we will find a novel
functional equation in terms of the sum of time variables 𝑠+𝑡
to describe 𝐾-convoluted 𝛼-order 𝐶-semigroup.

Theorem 8. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a𝐾-convoluted 𝛼-order

𝐶-semigroup generated by 𝐴 on the Banach space𝑋. Then

(i) 𝑆
𝐾
(0) = 0;

(ii) 𝐶𝑆
𝐾
(⋅) = 𝑆

𝐾
(⋅)𝐶;

(iii) for any 𝑡, 𝑠 ≥ 0,

𝛼∫

𝑡

0

∫

𝑠

0

𝑆
𝐾
(𝜏) 𝑆

𝐾
(𝜎)

(𝑡 + 𝑠 − 𝜎 − 𝜏)
1+𝛼

𝑑𝜏 𝑑𝜎

= ∫

𝑡+𝑠

0

∫

𝑡+𝑠−𝜎

0

𝐾 (𝜏) 𝑆
𝐾
(𝜎) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝜎

− ∫

𝑡

0

∫

𝑡+𝑠−𝜎

0

𝐾 (𝜏) 𝑆
𝐾
(𝜎) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝜎

− ∫

𝑠

0

∫

𝑡+𝑠−𝜎

0

𝐾 (𝜏) 𝑆
𝐾
(𝜎) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝜎,

(32)

where the integrals are taken in the strong sense.

Proof. Denote by 𝐿(𝑡, 𝑠) and 𝑅(𝑡, 𝑠) the left and right hand
sides of equality (32), respectively. We only have to prove that
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𝐿(𝑡, 𝑠) = 𝑅(𝑡, 𝑠) for all 𝑡, 𝑠 ≥ 0. For brevity, we introduce the
following notations. Let

𝐻(𝑡, 𝑠) = 𝑆
𝐾
(𝑡) 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) − 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑆

𝐾
(𝑠) ,

𝐾 (𝑡, 𝑠) = Θ (𝑡) 𝐽
𝛼

𝑠
𝑆
𝐾
(𝑠) 𝐶 − Θ (𝑠) 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝐶, 𝑡, 𝑠 ≥ 0.

(33)

Moreover, for sufficiently large 𝑏 > 0 denote by 𝑔
𝑏
(𝑡) the

truncation of 𝑆
𝐾
(𝑡) at 𝑏 and by 𝑅

𝑏
(𝑡, 𝑠), 𝐿

𝑏
(𝑡, 𝑠), 𝐻

𝑏
(𝑡, 𝑠), and

𝐾
𝑏
(𝑡, 𝑠) the quantities obtained by replacing 𝑆

𝐾
(𝑡) with 𝑔

𝑏
(𝑡)

in 𝑅(𝑡, 𝑠), 𝐿(𝑡, 𝑠),𝐻(𝑡, 𝑠), and𝐾(𝑡, 𝑠), respectively.
By [38, (20)], it follows that the Laplace transform of

𝐿
𝑏
(𝑡, 𝑠) with respect to 𝑡 and 𝑠 is given by

𝐿̂
𝑏
(𝜇, 𝜆) =

Γ (1 − 𝛼)

𝜆 − 𝜇
(𝜆
𝛼
− 𝜇

𝛼
) 𝑔

𝑏
(𝜇) 𝑔

𝑏
(𝜆) . (34)

We now compute the Laplace transform of 𝑅
𝑏
(𝑡, 𝑠) with

respect to 𝑠 and 𝑡. It can be shown that, for any 𝑡 ≥ 0,

𝑅̂
𝑏
(𝑡, 𝜆)

= ∫

∞

0

𝑒
−𝜆𝑠

[∫

𝑡+𝑠

𝑡

∫

𝑡+𝑠−𝜎

0

𝐾 (𝜏) 𝑔
𝑏
(𝜎) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝜎

−∫

𝑠

0

∫

𝑡+𝑠−𝜎

0

𝐾 (𝜏) 𝑔
𝑏
(𝜎) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝜎] 𝑑𝑠

= ∫

∞

𝑡

𝑔
𝑏
(𝜎) ∫

∞

𝜎−𝑡

∫

𝑡+𝑠−𝜎

0

𝑒
−𝜆𝑠

𝐾 (𝜏) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝑠 𝑑𝜎

− ∫

∞

0

𝑔
𝑏
(𝜎) ∫

∞

𝜎

∫

𝑡+𝑠−𝜎

0

𝑒
−𝜆𝑠

𝐾 (𝜏) 𝐶

(𝑡 + 𝑠 − 𝜏 − 𝜎)
𝛼
𝑑𝜏 𝑑𝑠 𝑑𝜎

= ∫

∞

𝑡

𝑔
𝑏
(𝜎) 𝑒

𝜆(𝑡−𝜎)
∫

∞

0

𝑒
−𝜆𝑟

∫

𝑟

0

(𝑟 − 𝜏)
−𝛼
𝐾 (𝜏) 𝐶 𝑑𝜏 𝑑𝑟 𝑑𝜎

− ∫

∞

0

𝑒
−𝜆(𝑡−𝜎)

𝑔
𝑏
(𝜎) ∫

∞

0

𝑒
−𝜆(𝑡+𝑟)

∫

𝑡+𝑟

0

𝐾 (𝜏) 𝐶

(𝑡 + 𝑟 − 𝜏)
𝛼
𝑑𝜏 𝑑𝑟 𝑑𝜎

= ∫

∞

𝑡

𝑔
𝑏
(𝜎) 𝑒

𝜆(𝑡−𝜎)
∫

∞

0

𝑒
−𝜆𝑟

∫

𝑟

0

(𝑟 − 𝜏)
−𝛼
𝐾 (𝜏) 𝐶 𝑑𝜏 𝑑𝑟 𝑑𝜎

− ∫

∞

0

𝑒
−𝜆(𝑡−𝜎)

𝑔
𝑏
(𝜎) ∫

∞

𝑡

𝑒
−𝜆𝑟

∫

𝑟

0

𝐾 (𝜏) 𝐶

(𝑟 − 𝜏)
𝛼
𝑑𝜏 𝑑𝑟 𝑑𝜎

= ∫

∞

0

𝑔
𝑏
(𝜎) 𝑒

𝜆(𝑡−𝜎)
∫

𝑡

0

𝑒
−𝜆𝑟

∫

𝑟

0

(𝑟 − 𝜏)
−𝛼
𝐾 (𝜏) 𝐶 𝑑𝜏 𝑑𝑟 𝑑𝜎

− ∫

𝑡

0

𝑒
−𝜆(𝑡−𝜎)

𝑔
𝑏
(𝜎) ∫

∞

0

𝑒
−𝜆𝑟

∫

𝑟

0

𝐾 (𝜏) 𝐶

(𝑟 − 𝜏)
𝛼
𝑑𝜏 𝑑𝑟 𝑑𝜎

= ∫

∞

0

𝑔
𝑏
(𝜎) 𝑒

−𝜆𝜎
∫

𝑡

0

𝑒
𝜆(𝑡−𝑟)

∫

𝑟

0

(𝑟 − 𝜏)
−𝛼
𝐾 (𝜏) 𝐶 𝑑𝜏 𝑑𝑟 𝑑𝜎

− ∫

𝑡

0

𝑒
−𝜆(𝑡−𝜎)

𝑔
𝑏
(𝜎) ∫

∞

0

𝑒
−𝜆𝑟

∫

𝑟

0

𝐾 (𝜏) 𝐶

(𝑟 − 𝜏)
𝛼
𝑑𝜏 𝑑𝑟 𝑑𝜎

= 𝑔
𝑏
(𝜆) ∫

𝑡

0

𝑒
𝜆(𝑡−𝑟)

∫

𝑟

0

(𝑟 − 𝜏)
−𝛼
𝐾 (𝜏) 𝐶 𝑑𝜏 𝑑𝑟

− 𝜆
𝛼−1

Γ (1 − 𝛼)∫

𝑡

0

𝑒
𝜆(𝑡−𝜎)

𝑔
𝑏
(𝜎) 𝑑𝜎𝐾̂ (𝜆) 𝐶,

(35)

with which we can further take Laplace transform of 𝑅̂
𝑏
(𝑡, 𝜆)

with respect to 𝑡 as follows:

𝑅̂
𝑏
(𝜇, 𝜆)

= ∫

∞

0

𝑒
−𝜇𝑡

𝑔
𝑏
(𝜆) ∫

𝑡

0

𝑒
𝜆(𝑡−𝑟)

∫

𝑟

0

(𝑟 − 𝜏)
−𝛼
𝐾 (𝜏) 𝐶 𝑑𝜏 𝑑𝑟 𝑑𝑡

− ∫

∞

0

𝑒
−𝜇𝑡

𝜆
𝛼−1

Γ (1 − 𝛼)∫

𝑡

0

𝑒
𝜆(𝑡−𝜎)

𝑔
𝑏
(𝜎) 𝑑𝜎𝐾̂ (𝜆) 𝑑𝑡

=
𝜇
𝛼−1

Γ (1 − 𝛼) 𝑔
𝑏
(𝜆) 𝐾̂ (𝜇) 𝐶

𝜇 − 𝜆

−
𝜆
𝛼−1

Γ (1 − 𝛼) 𝑔
𝑏
(𝜇) 𝐾̂ (𝜆) 𝐶

𝜇 − 𝜆
.

(36)

We set

𝑃
𝑏
(𝑡, 𝑠) = 𝛼∫

𝑡

0

∫

𝑠

0

𝐻
𝑏
(𝑟
1
, 𝑟
2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟
2
,

𝑄
𝑏
(𝑡, 𝑠) = 𝛼∫

𝑡

0

∫

𝑠

0

𝐾
𝑏
(𝑟
1
, 𝑟
2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟
2
.

(37)

By Lemma 6, it follows that𝐻(𝑡, 𝑠) = 𝐾(𝑡, 𝑠) for any 𝑡, 𝑠 ≥ 0.
Thus, for all 𝑡, 𝑠 ≥ 0,

lim
𝑏→∞

𝑃
𝑏
(𝑡, 𝑠) = lim

𝑏→∞

𝐾
𝑏
(𝑡, 𝑠) . (38)

The Laplace transform of 𝑃
𝑎
(𝑡, 𝑠) is

𝑃̂
𝑏
(𝜇, 𝜆) = (𝜇

−𝛼
− 𝜆

−𝛼
) 𝐿̂

𝑏
(𝜇, 𝜆) . (39)

Therefore,

𝑄̂𝑏 (𝑡, 𝜆)

= 𝛼∫

∞

0

𝑒
−𝜆𝑠
∫

𝑡

0

∫

𝑠

0

Θ(𝑟2) 𝐽
𝛼

𝑟1
𝑔𝑏 (𝑟1) 𝐶 − Θ (𝑟1) 𝐽

𝛼

𝑟2
𝑔𝑏 (𝑟2) 𝐶

(𝑡 + 𝑠 − 𝑟1 − 𝑟2)
1+𝛼

𝑑𝑟1𝑑𝑟2𝑑𝑠

= 𝛼∫

𝑡

0

∫

∞

0

𝑒
−𝜆𝑠
∫

𝑠

0

Θ(𝑟2) 𝐽
𝛼

𝑟1
𝑔𝑏 (𝑟1) 𝐶 − Θ (𝑟1) 𝐽

𝛼

𝑟2
𝑔𝑏 (𝑟2) 𝐶

(𝑡 + 𝑠 − 𝑟1 − 𝑟2)
1+𝛼

𝑑𝑟1𝑑𝑠 𝑑𝑟2

= 𝛼∫

𝑡

0

(Θ (𝑟2) 𝜆
−𝛼
𝑔𝑏 (𝜆)𝐶 − 𝜆

−1
𝐾̂ (𝜆) 𝐽

𝛼

𝑟2
𝑔𝑏 (𝑟2) 𝐶) Π̂ (𝑡 − 𝑟2, 𝜆) 𝑑𝑟2,

(40)



6 Abstract and Applied Analysis

where Π̂(𝑡, 𝜆) stands for the Laplace transformof the function
(𝑡 + 𝑠)

−𝛼−1 of 𝑠. Thus, we obtain

𝑄
𝑏
(𝜇, 𝜆)

= 𝛼 [𝜆
−𝛼
𝜇
−1
𝐾̂ (𝜇) 𝑔

𝑏
(𝜆) 𝐶 − 𝜇

−𝛼
𝜆
−1
𝐾̂ (𝜆) 𝑔

𝑏
(𝜇) 𝐶] Π̂ (𝜇, 𝜆)

= 𝛼𝜆
−𝛼
𝜇
−𝛼

(𝜇
𝛼−1

𝐾̂ (𝜇) 𝑔
𝑏
(𝜆) 𝐶 − 𝜆

𝛼−1
𝐾̂ (𝜆) 𝑔

𝑏
(𝜇) 𝐶)

× ∫

∞

0

𝑒
−𝜇𝑡

∫

∞

0

𝑒
−𝜆𝑠 1

(𝑡 + 𝑠)
1+𝛼

𝑑𝑠 𝑑𝑡

= 𝛼𝜆
−𝛼
𝜇
−𝛼

(𝜇
𝛼−1

𝐾̂ (𝜇) 𝑔
𝑏
(𝜆) 𝐶 − 𝜆

𝛼−1
𝐾̂ (𝜆) 𝑔

𝑏
(𝜇) 𝐶)

×
Γ (1 − 𝛼)

𝛼 (𝜆 − 𝜇)
(𝜆
𝛼
− 𝜇

𝛼
)

= (𝜇
−𝛼

− 𝜆
−𝛼
) 𝑅̂

𝑏
(𝜇, 𝜆) .

(41)

By virtue of inverse Laplace transform, we obtain from
(39) and (41) that

𝑃
𝑏
(𝑡, 𝑠) = (𝐽

𝛼

𝑠
− 𝐽

𝛼

𝑡
) 𝐿

𝑏
(𝑡, 𝑠) ,

𝑄
𝑏
(𝑡, 𝑠) = (𝐽

𝛼

𝑠
− 𝐽

𝛼

𝑡
) 𝑅

𝑏
(𝑡, 𝑠) , ∀𝑡, 𝑠 ≥ 0.

(42)

The combination of (38) and (42) implies that

(𝐽
𝛼

𝑠
− 𝐽

𝛼

𝑡
) 𝑅 (𝑡, 𝑠) = (𝐽

𝛼

𝑠
− 𝐽

𝛼

𝑡
) 𝐿 (𝑡, 𝑠) , ∀𝑡, 𝑠 ≥ 0. (43)

Therefore, 𝑅(𝑡, 𝑠) = 𝐿(𝑡, 𝑠), for all 𝑡, 𝑠 ≥ 0. This completes the
proof.

Theorem 9. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a strongly continuous

nondegenerate operator family on Banach space 𝑋. Suppose
that the conditions (i), (ii), and (iii) in Theorem 8 hold.
Then {𝑆

𝐾
(𝑡)}

𝑡≥0
is a nondegenerate 𝐾-convoluted 𝛼-order 𝐶-

semigroup generated by 𝐵, where 𝐵 is defined as inTheorem 4.

Proof. Obviously, the right hand side of (32) is symmetric
with respect to 𝑡 and 𝑠. Hence the left hand side is symmetric
with respect to 𝑡 and 𝑠. By the proof of Proposition 1 of [38],
it follows that {𝑆

𝐾
(𝑡)}

𝑡≥0
is commutative; that is,

𝑆
𝐾
(𝑡) 𝑆

𝐾
(𝑠) = 𝑆

𝐾
(𝑠) 𝑆

𝐾
(𝑡) , ∀𝑡, 𝑠 ≥ 0. (44)

For any 𝑥 ∈ 𝐷(𝐵), there holds

𝑆
𝐾
(𝑠) 𝑥 − Θ (𝑠) 𝐶𝑥 = 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝐵𝑥, 𝑠 ≥ 0. (45)

Applying 𝑆
𝑘
(𝑡) on both sides of (45) and using the commuta-

tivity (44) of {𝑆
𝐾
(𝑠)}

𝑡≥0
, we obtain

𝑆
𝐾
(𝑠) 𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑠) 𝐶𝑆

𝐾
(𝑡) 𝑥 = 𝐽

𝛼

𝑠
𝑆
𝐾
(𝑠) 𝑆

𝐾
(𝑡) 𝐵𝑥, 𝑠 ≥ 0.

(46)

This implies by definition that 𝑆
𝐾
(𝑡)𝑥 ∈ 𝐷(𝐵) and 𝐵𝑆

𝐾
(𝑡)𝑥 =

𝑆
𝐾
(𝑡)𝐵𝑥.
Denote by 𝐿(𝑡, 𝑠) and 𝑅(𝑡, 𝑠) the left and right hand sides

of equality (32), respectively. For any 𝑐 ≥ 0, denote by 𝑔
𝑐
(𝑡)

the truncation of 𝑆
𝐾
(𝑡) at 𝑐; that is, 𝑔

𝑐
(𝜎) = 𝑆

𝐾
(𝜎), 0 ≤ 𝜎 ≤ 𝑐

and 𝑔
𝑐
(𝜎) = 0 otherwise. Denote by 𝑅

𝑐
(𝑡, 𝑠) and 𝐿

𝑐
(𝑡, 𝑠) the

quantities obtained by replacing 𝑆
𝐾
(𝑡) with 𝑔

𝑐
(𝑡) in 𝑅(𝑡, 𝑠),

𝐿(𝑡, 𝑠), respectively.
Let 𝑥 ∈ 𝑋 and 𝑡 ≥ 0 be fixed. Define the function𝐻

𝑡
(𝑟, 𝑠)

for 𝑟, 𝑠 ≥ 0 by

𝐻
𝑡
(𝑟, 𝑠) = (𝑔

𝑡
(𝑟) − Θ (𝑟) 𝐶) 𝐽

𝛼

𝑠
𝑔
𝑡
(𝑠) 𝑥. (47)

Obviously, for 0 ≤ 𝑟 ≤ 𝑡,

𝐻
𝑡
(𝑟, 𝑡) = (𝑆

𝐾
(𝑟) − Θ (𝑟) 𝐶) 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑥. (48)

Taking the Laplace transform with respect to 𝑟 and 𝑠 succes-
sively for both sides of (47), we derive

𝐻̂
𝑡
(𝜇, 𝜆) = 𝜆

−𝛼
𝑔
𝑡
(𝜇) 𝑔

𝑡
(𝜆) 𝑥 − 𝜆

−𝛼
𝜇
−1
𝐾̂ (𝜇) 𝑔

𝑡
(𝜆) 𝑥. (49)

The combination of (43) and (49) implies that

𝐻̂
𝑡
(𝜇, 𝜆) = 𝜇

−𝛼
𝑔
𝑡
(𝜇) 𝑔

𝑡
(𝜆) 𝑥 − 𝜇

−𝛼
𝜆
−1
𝐾̂ (𝜆) 𝑔

𝑡
(𝜇) 𝑥

+
𝜆
−𝛼
𝜇
−𝛼

(𝜆 − 𝜇)

Γ (1 − 𝛼)
(𝑅̂

𝑡
(𝜇, 𝜆) − 𝐿̂

𝑡
(𝜇, 𝜆)) 𝑥.

(50)

By virtue of inverse Laplace transform, it follows that

𝐻
𝑡
(𝑟, 𝑠)

= (𝑔
𝑡
(𝑠) − Θ (𝑠) 𝐶) 𝐽

𝛼

𝑟
𝑔
𝑡
(𝑟) 𝑥

+

[(
𝐶
𝐷
1−𝛼

𝑠
) 𝐽

𝛼

𝑟
− (

𝐶
𝐷
1−𝛼

𝑟
) 𝐽

𝛼

𝑠
] ⋅ [𝑅

𝑡
(𝑟, 𝑠) − 𝐿

𝑡
(𝑟, 𝑠)] 𝑥

Γ (1 − 𝛼)
.

(51)

Here the Laplace transform formula

𝐶̂

𝐷
𝛽

𝑡
𝑓 (𝜆) = 𝜆

𝛽
𝑓 (𝜆) − 𝜆

𝛽−1
𝑓 (0) ,

0 < 𝛽 < 1, 𝑓 ∈ 𝐶 ([0,∞) ,𝑋) ,

(52)

is used.
By the definition of 𝑔

𝑡
, it follows that 𝐿

𝑡
(𝑟, 𝑠) = 𝑅

𝑡
(𝑟, 𝑠) for

all 0 ≤ 𝑠, 𝑟 ≤ 𝑡; we have that

𝐻
𝑡
(𝑟, 𝑠) = (𝑆

𝐾
(𝑠) − Θ (𝑠) 𝐶) 𝐽

𝛼

𝑟
𝑆
𝐾
(𝑟) 𝑥,

∀0 ≤ 𝑟, 𝑠 ≤ 𝑡.

(53)

In particular, we obtain

𝐻
𝑡
(𝑟, 𝑡) = (𝑆

𝐾
(𝑡) − Θ (𝑡) 𝐶) 𝐽

𝛼

𝑟
𝑆
𝐾
(𝑟) 𝑥,

∀0 ≤ 𝑟 ≤ 𝑡.

(54)

Combining (48) and (54), we derive that

(𝑆
𝐾
(𝑟) − Θ (𝑟) 𝐶) 𝐽

𝛼

𝑡
𝑆
𝐾
(𝑡) 𝑥 = (𝑆

𝐾
(𝑡) − Θ (𝑡) 𝐶) 𝐽

𝛼

𝑟
𝑆
𝐾
(𝑟) 𝑥

= 𝐽
𝛼

𝑟
𝑆
𝐾
(𝑟) (𝑆

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥) .

(55)

This implies by definition that 𝐽𝛼
𝑟
𝑆
𝐾
(𝑟)𝑥 ∈ 𝐷(𝐵) and

𝐵𝐽
𝛼

𝑟
𝑆
𝐾
(𝑟) 𝑥 = 𝑆

𝐾
(𝑟) 𝑥 − Θ (𝑟) 𝐶𝑥. (56)

Therefore, {𝑆
𝐾
(𝑡)}

𝑡≥0
is a𝐾-convoluted 𝛼-order 𝐶-semigroup

generated by 𝐵.
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The combination of Theorems 8 and 9 indicates the
following theorem.

Theorem 10. Assume that {𝑆
𝐾
(𝑡)}

𝑡≥0
is a strongly continuous

operator family on Banach space 𝑋. Then {𝑆
𝐾
(𝑡)}

𝑡≥0
is a 𝐾-

convoluted 𝛼-order 𝐶-semigroup if and only if (i), (ii), and (iii)
in Theorem 8 hold.

Remark 11. Letting 𝛼 → 1
−, (32) becomes the𝐾-convoluted

𝐶-semigroup defined in [1]. Indeed, if for each 𝑥 in some
dense set the mapping 𝑡 󳨃→ 𝑆

𝐾
(𝑡)𝑥 is continuously dif-

ferentiable in [0,∞), then the limits of two sides of the
equality (32) multiplied with 1 − 𝛼 equal 𝑆

𝐾
(𝑡)𝑆

𝐾
(𝑠)𝑥 and

[∫
𝑡+𝑠

0
−∫

𝑡

0
−∫

𝑠

0
]𝐾(𝑡 + 𝑠 − 𝑟)𝑆

𝐾
(𝑟)𝐶𝑥 𝑑𝑟, respectively. The

combination of the above fact andTheorem 10 implies that𝐾-
convoluted 𝛼-order 𝐶-semigroup can be deemed as a natural
extension of𝐾-convoluted 𝐶-semigroup.

4. Fractional Abstract Cauchy Problems

In this section we will apply the theory of 𝐾-convoluted
𝛼-order 𝐶-semigroups developed in Sections 2 and 3 to
fractional abstract Cauchy problems (FACP). We begin with
the definition of classical solution of FACP.

Definition 12. A function 𝑢 ∈ 𝐶([0,∞),𝑋) is called a classical
solution of FACP, if 𝑢(0) = 0, 𝑢 ∈ 𝐶([0,∞),𝐷(𝐴)), and the
mapping 𝑡 󳨃→ ∫

𝑡

0
(𝑡 − 𝑠)

−𝛼
𝑢(𝑠)𝑑𝑠 is continuously differentiable

such that (1/Γ(1 − 𝛼))(𝑑/𝑑𝑡) ∫
𝑡

0
(𝑡 − 𝜎)

−𝛼
𝑢(𝜎)𝑑𝜎 = 𝐴𝑢(𝑡) +

Θ(𝑡)𝐶𝑥, 𝑡 ≥ 0 holds.

Remark 13. In Definition 12, (1/Γ(1 − 𝛼))(𝑑/𝑑𝑡) ∫
𝑡

0
(𝑡 −

𝜎)
−𝛼
𝑢(𝜎) is just the modified Caputo derivative of 𝑢(𝑡)

because 𝑢(0) = 0.

Definition 14. The fractional abstract Cauchy problem
(FACP) is said to be 𝐶-well-posed if for any 𝑥 ∈ 𝑋, there
exists a unique solution 𝑢(𝑡, 𝑥), and𝑋 ∋ 𝑥

𝑛
→ 0 implies that

𝑢(𝑡, 𝑥
𝑛
) → 0 as 𝑛 → ∞ in 𝑋, uniformly on any compact

subinterval of [0,∞).

Theorem 15. Assume that 𝐴 is closed, 𝐶𝐴 ⊂ 𝐴𝐶, and FACP
is 𝐶-well-posed. Then 𝐴 generates a 𝐾-convoluted 𝛼-order 𝐶-
semigroup.

Proof. For any 𝑥 ∈ 𝑋, denote by 𝑢(𝑡, 𝑥), 𝑡 ≥ 0, the solution
of FACP. Denote by 𝑆(𝑡)𝑥 =

𝐶

𝐷
𝛼

𝑡
𝑢(𝑡, 𝑥), 𝑥 ∈ 𝑋. Obviously,

𝑆(0) =
𝐶

𝐷
𝛼

𝑡
𝑢(0, ⋅) = 0 and {𝑆(𝑡)}

𝑡≥0
is strongly continuous.

Since 𝐶𝐴 ⊂ 𝐴𝐶, we have

𝐶

𝐷
𝛼

𝑡
[𝐶𝑢 (𝑡, 𝑥)] = 𝐶

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡, 𝑥)

= 𝐶𝐴𝑢 (𝑡, 𝑥) + Θ (𝑡) 𝐶
2
𝑥

= 𝐴 [𝐶𝑢 (𝑡, 𝑥)] + Θ (𝑡) 𝐶 (𝐶𝑥) .

(57)

By the uniqueness of the solution of ACP, we have 𝐶𝑢(𝑡, 𝑥) =
𝑢(𝑡, 𝐶𝑥). Then

𝐶𝑆 (𝑡) 𝑥 =
𝐶

𝐷
𝛼

𝑡
𝐶𝑢 (𝑡, 𝑥) =

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡, 𝐶𝑥)

= 𝑆 (𝑡) 𝐶𝑥, 𝑡 ≥ 0.

(58)

By (1.21) of [27], it follows that

𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥 = 𝐽

𝛼

𝑡

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥) − 𝑢 (0, 𝑥) = 𝑢 (𝑡, 𝑥) .

(59)

Then 𝐽
𝛼

𝑡
𝑆(𝑡)𝑥 ∈ 𝐷(𝐴) and

𝐴𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥 + Θ (𝑡) 𝐶𝑥 = 𝐴𝑢 (𝑡, 𝑥) + Θ (𝑡) 𝐶𝑥 = 𝑆 (𝑡) 𝑥.

(60)

Below we will show that 𝑆(𝑡) is continuous, a.e. 𝑆(𝑡) ∈

𝐵(𝑋), 𝑡 ∈ [0,∞). By (59), it follows that 𝑉(𝑡)𝑥 =: 𝐽
𝛼

𝑡
𝑆(𝑡)𝑥

is the solution of ACP.
Let 𝑦 ∈ 𝐷(𝐴). Define 𝑆(𝑡) = 𝐽

𝛼

𝑡
𝑆(𝑡)𝐴𝑦 + Θ(𝑡)𝐶𝑦. Then

𝐽
𝛼

𝑡
𝑆(𝑡) = 𝐽

𝛼

𝑡
𝐽
𝛼

𝑡
𝑆(𝑡)𝐴𝑦 + 𝐽

𝛼

𝑡
Θ(𝑡)𝐶𝑦. Since 𝐽𝛼

𝑡
𝑆(𝑡)𝐴𝑦 ∈ 𝐷(𝐴),

𝐶𝑦 ∈ 𝐷(𝐴), and𝐴 is closed, it follows that 𝐽𝛼
𝑡
𝑆(𝑡) ∈ 𝐷(𝐴) and

𝐴𝐽
𝛼

𝑡
𝑆 (𝑡) = 𝐽

𝛼

𝑡
𝐴𝐽

𝛼

𝑡
𝑆 (𝑡) 𝐴𝑦 + 𝐽

𝛼

𝑡
Θ (𝑡) 𝐶𝐴𝑦

= 𝐽
𝛼

𝑡
(𝐴𝐽

𝛼

𝑡
𝑆 (𝑡) 𝐴𝑦 + Θ (𝑡) 𝐶𝐴𝑦)

= 𝐽
𝛼

𝑡
𝑆 (𝑡) 𝐴𝑦 = 𝑆 (𝑡) − Θ (𝑡) 𝐶𝑦.

(61)

Then 𝑆(𝑡) = 𝑆(𝑡) and 𝑆(𝑡) = 𝐽
𝛼

𝑡
𝑆(𝑡)𝐴𝑦 + Θ(𝑡)𝐶𝑦. Hence

𝐴𝐽
𝛼

𝑡
𝑆(𝑡)𝑦 = 𝐽

𝛼

𝑡
𝑆(𝑡)𝐴𝑦, 𝑦 ∈ 𝐷(𝐴). Since 𝐴 is closed, we have

𝐽
𝛼

𝑡
𝑆(𝑡)𝐴𝑦 = 𝐴𝐽

𝛼

𝑡
𝑆(𝑡)𝑦 = 𝐽

𝛼

𝑡
𝐴𝑆(𝑡)𝑦. By Titchmarsh’s theorem,

𝑆(𝑡)𝐴𝑦 = 𝐴𝑆(𝑡)𝑦, 𝑡 ≥ 0. The proof is complete.

Theorem 16. Assume that 𝐴 generates a nondegenerate 𝐾-
convoluted 𝛼-order 𝐶-semigroup. Then, FACP is 𝐶-well-posed.

Proof. Since {𝑆(𝑡)}
𝑡≥0

is a nondegenerate strongly continuous
family generated by 𝐴, for any 𝑥 ∈ 𝑋, we have 𝐽

𝛼

⋅
𝑆(⋅)𝑥 ∈

𝐶([0,∞),𝐷(𝐴)), the mapping

𝑡 󳨃󳨀→ ∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝐽
𝛼

𝑠
𝑆 (𝑠) 𝑑𝑠 = Γ (1 − 𝛼)∫

𝑡

0

𝑆 (𝑡) 𝑥 (62)

is continuously differentiable, and there holds

𝐷
𝛼

𝑡
𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥 =

𝑑

𝑑𝑡

1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝐽
𝛼

𝑠
𝑆 (𝑠) 𝑑𝑠

= 𝑆 (𝑡) 𝑥 = 𝐴𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥 + Θ (𝑡) 𝐶𝑥.

(63)

Therefore, 𝑢(𝑡, 𝑥) := 𝐽
𝛼

𝑡
𝑆(𝑡)𝑥 is a solution of FACP.

Now we prove the uniqueness of solution of FACP.
Assume that V(𝑡, 𝑥) is another solution of FACP. Then

𝐶

𝐷
𝛼

𝑡
V (𝑡, 𝑥) = 𝐴V (𝑡, 𝑥) + Θ (𝑡) 𝐶𝑥, 𝑡 ≥ 0. (64)

Taking 𝛼-time integrals, we derive that

V (𝑡, 𝑥) = 𝐽
𝛼

𝑡

𝐶

𝐷
𝛼

𝑡
V (𝑡, 𝑥) = 𝐽

𝛼

𝑡
𝐴V (𝑡, 𝑥) + 𝐽

𝛼

𝑡
Θ (𝑡) 𝐶𝑥,

𝑡 ≥ 0,

(65)
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which implies that

Θ (𝑡) 𝐶 ∗ V (𝑡, 𝑥) = [𝑆 (𝑡) − 𝐴𝐽
𝛼

𝑡
∗ 𝑆 (𝑡)] ∗ V (𝑡, 𝑥)

= 𝑆 (𝑡) ∗ V (𝑡, 𝑥) − 𝐴𝐽
𝛼

𝑡
∗ 𝑆 (𝑡) ∗ V (𝑡, 𝑥) ,

𝑡 ≥ 0.

(66)

Observe that𝐴 is closed and communicative with 𝑆(𝑡), and𝐶
is communicative with 𝑆(𝑡). By (67), it follows that

Θ (𝑡) ∗ 𝐶V (𝑡, 𝑥) = Θ (𝑡) 𝐶 ∗ V (𝑡, 𝑥)

= 𝑆 (𝑡) ∗ V (𝑡, 𝑥) − 𝑆 (𝑡) ∗ 𝐽
𝛼

𝑡
∗ 𝐴V (𝑡, 𝑥)

= 𝑆 (𝑡) ∗ [V (𝑡, 𝑥) − 𝐽
𝛼

𝑡
∗ 𝐴V (𝑡, 𝑥)]

= 𝑆 (𝑡) ∗ 𝐽
𝛼

𝑡
Θ (𝑡) 𝐶𝑥

= Θ (𝑡) 𝐶 ∗ 𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥

= Θ (𝑡) ∗ 𝐶𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥, 𝑡 ≥ 0.

(67)

Since 𝑆 is nondegenerate, it follows that 𝐶V(𝑡, 𝑥) = 𝐶𝐽
𝛼

𝑡
𝑆(𝑡)𝑥,

𝑡 ≥ 0. Then V(𝑡, 𝑥) = 𝐽
𝛼

𝑡
𝑆(𝑡)𝑥, 𝑡 ≥ 0 because 𝐶 is injective.

For any 𝑇 > 0, let𝑋 ∋ 𝑥
𝑛
→ 0; we have

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥𝑛)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝐽
𝛼

𝑡
𝑆 (𝑡) 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
𝑇
𝛼sup

𝑡≥𝑇
‖𝑆 (𝑡)‖

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 , 𝑡 ∈ [0, 𝑇] ,

(68)

which implies that 𝑢(𝑡, 𝑥
𝑛
) tends to 0 uniformly on 𝑡 ∈ [0, 𝑇].

This completes the proof.

The combination of Lemma 3 and Theorems 15 and 16
implies the following theorem.

Theorem 17. The operator 𝐴 generates a 𝐾-convoluted 𝛼-
order 𝐶-semigroup if and only if 𝐴 is closed, 𝐶𝐴 ⊂ 𝐴𝐶, and
FACP is 𝐶-well-posed.

Corollary 18. Assume that there exists a nondegenerate
strongly continuous operator family {𝑆(𝑡)}

𝑡≥0
on Banach space

𝑋 such that (27) holds, and 𝐵 defined in Theorem 4 is equal to
𝐴. Then FACP is 𝐶-well-posed.

Corollary 19. Assume that there exists a nondegnerate
strongly continuous operator family {𝑆(𝑡)}

𝑡≥0
on Banach space

𝑋 satisfying (i), (ii), and (iii) in Theorem 8, and 𝐵 defined in
Theorem 4 is equal to 𝐴. Then FACP is 𝐶-well-posed.

Corollary 20. Assume that {𝑆(𝑡)}
𝑡≥0

is a nondegnerate
strongly continuous operator family on the Banach space 𝑋.
Suppose that 𝐴 = 𝐶

−1
𝐴𝐶. Then the following statements are

equivalent:

(1) {𝑆(𝑡)}
𝑡≥0

is a 𝐾-convoluted 𝛼-order 𝐶-semigroup gen-
erated by 𝐴;

(2) 𝐴 is a closed linear operator on𝑋, and FACP is𝐶-well-
posed;

(3) {𝑆(𝑡)}
𝑡≥0

satisfies (27), and 𝐵 = 𝐴, where 𝐵 is defined
as in Theorem 4;

(4) {𝑆(𝑡)}
𝑡≥0

satisfies (i), (ii), and (iii) in Theorem 8, and
𝐵 = 𝐴, where 𝐵 is defined as in Theorem 4.
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[9] M. Mijatović, S. Pilipović, and F. Vajzović, “𝛼-times integrated
semigroups (𝛼 ∈ 𝑅

+
),” Journal of Mathematical Analysis and

Applications, vol. 210, no. 2, pp. 790–803, 1997.
[10] Y. C. Li, Integral C-semigroups and C-cosine functions of oper-

ators on locally convex spaces [Ph.D. dissertation], National
Central University, 1991.

[11] Y. C. Li and S. Y. Shaw, “On generators of integrated C-
semigroups and C-cosine functions,” Semigroup Forum, vol. 47,
no. 1, pp. 29–35, 1993.

[12] Y. C. Li and S. Y. Shaw, “N-times integrated C-semigroups and
the abstract Cauchy problem,” Taiwanese Journal of Mathemat-
ics, vol. 1, no. 1, pp. 75–102, 1997.



Abstract and Applied Analysis 9

[13] C. C. Kuo and S. Y. Shaw, “On 𝛼-times integratedC-semigroups
and the abstract Cauchy problem,” StudiaMathematica, vol. 142,
no. 3, pp. 201–217, 2000.

[14] I. Cioranescu, “Local convoluted semigroups,” in Evolution
Equations, pp. 107–122, Dekker, New York, NY, USA, 1995.

[15] I. Cioranescu andG. Lumer, “Problèmes d’évolution régularisés
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[20] M. Kostić and S. Pilipović, “Global convoluted semigroups,”
Mathematische Nachrichten, vol. 280, no. 15, pp. 1727–1743, 2007.
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[40] M. Kostić, “(𝑎, 𝑘)-regularized C-resolvent families: regularity
and local properties,” Abstract and Applied Analysis, vol. 2009,
Article ID 858242, 27 pages, 2009.

[41] C. Lizama and G. M. N’Guerekata, “Mild solutions for abstract
fractional differential equations,” Applicable Analysis, vol. 92,
no. 8, pp. 1731–1754, 2013.


