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The numerical solution of optimal control problems by direct collocation is a widely used approach. Quasi-Newton approximations
of the Hessian of the Lagrangian of the resulting nonlinear program are also common practice. We illustrate that the transcribed
problem is separable with respect to the primal variables and propose the application of dense quasi-Newton updates to the small
diagonal blocks of the Hessian. This approach resolves memory limitations, preserves the correct sparsity pattern, and generates
more accurate curvature information.The effectiveness of this improvementwhen applied to engineering problems is demonstrated.
As an example, the fuel-optimal and emission-constrained control of a turbocharged diesel engine is considered. First results
indicate a significantly faster convergence of the nonlinear program solverwhen themethodproposed is used instead of the standard
quasi-Newton approximation.

1. Introduction

Quasi-Newton (QN) methods have become very popular in
the context of nonlinear optimisation. Above all, in nonlinear
programs (NLPs) arising from direct transcription of optimal
control problems (OCPs), the Hessian of the Lagrangian
often cannot be derived analytically in a convenient way.
Algorithmic differentiation may fail due to unsupported
operations or black-box parts in the model functions. Fur-
thermore, both approaches are computationally expensive if
the model functions are complex and yield long expressions
for the second derivatives. On the other hand, numerical
approximation by finite differences is inaccurate and hardly
improves the computational performance.

A common approach in these cases is to approximate the
Hessian by QN updates using gradient information collected
during the NLP iterations. However, if applied to real-
world OCPs, several limitations arise. These problems often
exhibit large dimensions; thus limited-memory versions of
the approximations are applicable only. Since many updates

may be necessary until a good approximation of the full
Hessian is obtained, the approximation remains poor when
using themost recent steps only. Furthermore, the favourable
sparsity structure of the underlying discretisation scheme is
generally not preserved. This fill-in drastically reduces the
performance of solvers for the linear system of equations
defining the step direction during each NLP iteration.

Partial separability, a concept introduced by [1], describes
a structural property of a nonlinear optimisation problem.
When present, this property allows for partitioned QN
updates of the Hessian of the Lagrangian (or of the objective,
in the unconstrained case). For unconstrained optimisation,
this approach was proposed and its convergence properties
were analysed in [2]. Although only superlinear local conver-
gence can be proven, a performance close to that obtained
with exact Newton methods, which exhibit quadratic local
convergence, was observed in practical experiments [3, 4].

This brief paper presents how partitioned QN updates
can be applied to the NLPs resulting from direct collocation
of OCPs. The concept of direct collocation to solve OCPs
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has been widely used and analysed [5–9]. We will show
that the Lagrangian of the resulting NLPs is separable in
the primal variables at each discretisation point. Due to this
separability, its Hessian can be approximated by full-memory
QN updates of the small diagonal blocks. This procedure
increases the accuracy of the approximation, preserves the
sparsity structure, and resolves memory limitations. The
results are first derived for Radau collocation schemes, which
include the right interval boundary as a collocation point.
The adaptations to Gauss schemes, which have internal col-
location points only, and to Lobatto schemes, which include
both boundaries, are provided thereafter in condensed form.
A consistent description of all three families of collocation is
provided in [10].

The partitioned update is applied to a real-world engi-
neering problem. The fuel consumption of a turbocharged
diesel engine is minimised while the limits on the cumulative
pollutant emissions need to be satisfied. This problem is
cast in the form of an OCP and is transcribed by Radau
collocation. The resulting NLP is solved by an exact and a
quasi-Newton method. For the latter, the partitioned update
achieves an increased convergence rate and a higher robust-
ness with respect to a poor initialisation of the approximation
as compared to the full QNupdate.Therefore, the findings for
the unconstrained case seem to transfer to the NLPs resulting
from direct collocation of OCPs.

2. Material and Methods

Consider the system of nonautonomous ordinary differential
equations (ODEs) ẋ = f(x, u) on the interval [𝑡

0
, 𝑡

𝑓
], with

x, f ∈ R1×𝑛𝑥 , u ∈ R1×𝑛𝑢 . Radau collocation represents each
element of the state vector x(𝑡) as a polynomial, say of degree
𝑁. The time derivative of this polynomial is then equated to
the values of f at 𝑁 collocation points 𝑡
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The notation x
𝑗
:= x(𝜏

𝑗
) is adopted. The left boundary 𝜏

0
=

𝑡

0
is a noncollocated point in Radau collocation schemes. By

introducing the appropriate matrices, this matrix equation in
R𝑁×𝑛𝑥 can be written in short as

D [

x
0

X] = F (X,U) . (2)

The rows of X and F correspond to one collocation point
each. In turn, the columns of X and F represent one state
variable and its corresponding ODE right-hand side at all
collocation points. In the following, consider the notation in
(2) as shorthand for stacking the transpose of the rows in one
large column vector.

The step length ℎ = 𝑡

𝑓
− 𝑡

0
of the interval is assumed

to be accounted for in the differentiation matrixD. Lagrange

interpolation by barycentric weights is used to calculate D
along with the vector of the quadrature weights w [11]. The
latter may be used to approximate the definite integral of a
function 𝑔(𝑡) as ∫𝑡𝑓

𝑡
0

𝑔(𝑡) 𝑑𝑡 ≈ ∑

𝑁

𝑗=1
𝑤

𝑗
𝑔(𝜏

𝑗
).

2.1. Direct Collocation of Optimal Control Problems. We
consider an OCP of the form

min
x(⋅),u(⋅)

∫

𝑇

0

𝐿 (x (𝑡) , u (𝑡)) 𝑑𝑡 (3a)

s.t. ẋ (𝑡) − f (x (𝑡) , u (𝑡)) = 0, ∀𝑡 ∈ [0, 𝑇] , (3b)

∫

𝑇

0

g (x (𝑡) , u (𝑡)) 𝑑𝑡 ≤ 0,
(3c)

c (x (𝑡) , u (𝑡) , 𝑡) ≤ 0, ∀𝑡 ∈ [0, 𝑇] , (3d)

where 𝐿 ∈ R, g ∈ R𝑛𝑔 , and c ∈ R𝑛𝑐 . Simple bounds on x
and u, equality constraints, and a fixed initial or end state can
be included in the path constraints (3d). An objective term in
Lagrange form is used, which is preferable over an equivalent
Mayer term [12, Section 4.9].

Direct transcription discretises all functions and integrals
by consistently applying an integration scheme. Here, 𝑘 =

1, . . . , 𝑚 integration intervals [𝑡
𝑘−1

, 𝑡

𝑘
] are used with 0 = 𝑡

0
<

𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑇. The number of collocation points 𝑁

𝑘

can be different for each interval. Summing up the collocation
points throughout all integration intervals results in a total
of 𝑀 = 𝑙(𝑚,𝑁

𝑚
) discretisation points. The “linear index” 𝑙

thereby corresponds to collocation node 𝑖 in interval 𝑘,

𝑙 := 𝑙 (𝑘, 𝑖) = 𝑖 +

𝑘−1

∑

𝛼=1

𝑁

𝛼
. (4)

The transcribed OCP reads

minx
∙
,u
∙

𝑀

∑

𝑙=1

𝑊

𝑙
⋅ 𝐿 (x
𝑙
, u
𝑙
) (5a)

s.t. D(𝑘) [X
(𝑘−1)

𝑁
𝑘−1
,∙

X(𝑘)
] − F (X(𝑘),U(𝑘)) = 0, 𝑘 = 1, . . . , 𝑚,

(5b)

𝑀

∑

𝑙=1

𝑊l ⋅ g (x𝑙, u𝑙) ≤ 0, (5c)

c
𝑙
(x
𝑙
, u
𝑙
) ≤ 0, 𝑙 = 1, . . . ,𝑀. (5d)

The notation 𝑥

∙
denotes all instances of variable 𝑥

𝑙
at any

applicable index 𝑙. The vector of the “global” quadrature
weightsW results from stacking the vectors of the quadrature
weights w(𝑘) of each interval 𝑘 after removing the first
element, which is zero. For the first interval, X(𝑘−1)

𝑁
𝑘−1
,∙
is the

initial state x(0).
The Lagrangian of the NLP (5a)–(5d) is the sum of the

objective (5a) and all constraints (5b), (5c), and (5d), which
are weighted by the Lagrange multipliers 𝜆. To clarify the
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notation, the Lagrange multipliers are grouped according
to the problem structure. The 𝑛

𝑥
⋅ 𝑁

𝑘
multipliers for the

discretised dynamic constraints on each integration interval
𝑘 are denoted by 𝜆(𝑘)

𝑑
, the 𝑛

𝑔
multipliers for the integral

inequalities are stacked in 𝜆
𝑔
, and the 𝑛

𝑐
multipliers for the

path constraints at each discretisation point 𝑙 are gathered in
the vector 𝜆

𝑐,𝑙
.

2.2. Separability in the Primal Variables. The objective (5a),
the integral inequalities (5c), and the path constraints (5d)
are inherently separated with respect to time; that is, the
individual terms are pairwise disjoint in x

𝑙
and u

𝑙
. We thus

focus on the separability of the dynamic constraints (5b). For
the derivation, we assume that 𝑓, 𝑥, and 𝑢 are scalar. The
extension to the vector-valued case is straightforward andwill
be provided subsequently.

Consider the term of the Lagrangian representing the
discretised dynamic constraints (5b) for interval 𝑘,
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(6)

This formulation constitutes a separation in the dual variables
(the Lagrange multipliers). By collecting terms at each collo-
cation point and accounting for the 𝑑

0
terms in the previous

interval, we obtain a separation in the primal variables,
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with

𝛿

(𝑘)

𝑖
= {

1, if 𝑖 = 𝑁

𝑘
, 𝑘 ̸=𝑚,

0, otherwise.
(8)

Each term inside the round brackets in (7) is a
collocation-point separated part of the Lagrangian which
stems from the dynamic constraints. We denote these terms
byL(𝑘)
𝑑,𝑖

and introduce the notation

𝜔 := (𝑥, 𝑢) , 𝜔
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The gradient with respect to the primal variables is

∇
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The Hessian is simply

∇

2

𝜔
L
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𝑑,𝑖
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(𝑘)

𝑑,𝑖

𝜕

2
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𝑖
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2
.

(11)

2.2.1. Vector-Valued Case and Complete Element Lagrangian.
For multiple control inputs and state variables, the primal
variables 𝜔

𝑙
at each collocation point become a vector in

R1×(𝑛𝑢+𝑛𝑥). Consistently, we define the gradient of a scalar
function with respect to 𝜔 as a row vector. Thus, the model
Jacobian 𝜕f/𝜕𝜔 is a matrix in R𝑛𝑥×(𝑛𝑢+𝑛𝑥), and the Hessian of
each model-function element 𝑠, 𝜕2𝑓

𝑠
/𝜕𝜔
2, is a square matrix

of size (𝑛
𝑢
+ 𝑛

𝑥
). The multiplier 𝜆(𝑘)

𝑑,𝑖
itself also becomes a

vector inR𝑛𝑥 . All terms involving f , its Jacobian, or itsHessian
therefore turn into sums.

The full element Lagrangian L
(𝑘)

𝑖
consists of the terms

of the dynamic constraints L(𝑘)
𝑑,𝑖

as derived above, plus the
contributions of the objective, the integral inequalities, and
the path constraints,

L
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= 𝑊

𝑙
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𝑔
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𝑙
) + 𝜆
𝑇
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c
𝑙
(𝜔
𝑙
) .

(12)

The Lagrangian of the full NLP is obtained by summing
these element Lagrangians, which are separated in the primal
variables. Its Hessian thus is a perfect block-diagonal matrix
with uniformly sized square blocks of size (𝑛

𝑢
+ 𝑛

𝑥
).

2.2.2. Extension to Gauss and Lobatto Collocation. Gauss
collocation does not include the right interval boundary.
Thus, the terms involving d

0
can be included locally in

each interval, which simplifies the separation in the primal
variables. However, the continuity constraint

x(𝑘+1)
0

= x(𝑘)
0
+ w(𝑘)𝑇F (X(𝑘),U(𝑘)) (13)

has to be introduced for each interval. Similarly to the proce-
dure above, this constraint can be separated. The quadrature
weights w(𝑘) are stacked inW without any modification.

Lobatto collocation includes both boundaries as colloca-
tion points.Thus, thematrixD in (1) and (2) has an additional
“zeroth” row, and the argument of F becomes [x𝑇

0
,X𝑇]𝑇 in (2).

The additional term

−𝛿

(𝑘)

𝑖
𝜆

(𝑘+1)

𝑑,0
𝑓 (𝜔

(𝑘)

𝑖
) (14)

arises in L
(𝑘)

𝑑,𝑖
. Each element of W corresponding to the

interval boundary between any two neighbouring intervals
𝑘 and 𝑘 + 1 is a sum of the two weights 𝑤(𝑘)

𝑁
𝑘

and 𝑤(𝑘+1)
0

.

2.3. Block-Diagonal Approximation of the Hessian. The sep-
arability of the problem with respect to the primal variables
allows a perfect exploitation of the problem sparsity. In fact,
the Jacobian of the objective and the constraints, as well as
the Hessian of the Lagrangian, can be constructed from the
first and second partial derivatives of the nonlinear model
functions 𝐿, f , g, and c at each discretisation point [13].
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We propose to also exploit the separability when cal-
culating QN approximations of the Hessian. These itera-
tive updates collect information about the curvature of the
Lagrangian by observing the change of its gradient along the
NLP iterations. Although they perform well in practice, they
exhibit several drawbacks for large problems.

(I) Loss of sparsity. QN approximations generally do not
preserve the sparsity pattern of the exact Hessian,
which leads to low computational performance [12,
Section 4.13]. Enforcing the correct sparsity pattern
results in QN schemes with poor performance [14,
Section 7.3].

(II) Storage versus accuracy. Due to the loss of spar-
sity, the approximated Hessian needs to be stored
in dense format. To resolve possible memory lim-
itations, “limited-memory” updates can be applied,
which rely on a few recent gradient samples only.
However, these methods provide less accuracy than
their full-memory equivalents [14, Section 7.2].

(III) Dimensionality versus sampling. When sampling the
gradient of a function that lives in a high-dimensional
space, many samples are required to construct an
accurate approximation. In fact, to obtain an approx-
imation that is valid along any direction, an entire
spanning set needs to be sampled. Although QN
methods require accurate second-order information
only along the direction of the steps [15], the step
direction may change fast in highly nonlinear prob-
lems such as the one considered here. In these cases,
an exhaustive set of gradient samples would ensure a
fast convergence, which conflicts with (II).

Using approximations of the small diagonal blocks,
that is, exploiting the separability illustrated in Section 2.2,
resolves these problems.

(I) The exact sparsity pattern of the Hessian is preserved.
(II) Only 𝑀(𝑛

𝑥
+ 𝑛

𝑢
)

2 numbers have to be stored, com-
pared to𝑀2(𝑛

𝑥
+ 𝑛

𝑢
)

2 for the full Hessian.
(III) Since the dimension of each diagonal block is small,

a good approximation is already obtained after few
iterations of the Hessian update [3, 4].

The partitioned QN update can be combined with the
exploitation of the problem sparsity to reduce the number of
the model evaluations required. In fact, when these two con-
cepts are combined, the gradients of the model functions at
each collocation point are sufficient to construct an accurate
and sparsity-preserving approximation of the Hessian of the
Lagrangian.

2.4. Implementation. Any QN approximation operates with
the differences between two consecutive iterates and the
corresponding gradients of the Lagrangian. For constrained
problems,

s𝑇 := �̂� − 𝜔, (15)

y𝑇 := ∇

𝜔
L (�̂�, ̂𝜆) − ∇

𝜔
L (𝜔, ̂𝜆) . (16)

The hat indicates the values at the current iteration, that is,
the new data. In the following formulas, B denotes the QN
approximation. Here, the damped BFGS update is used [14,
Section 18.3], which reads

𝜃 =

{

{

{

{

{

1, if s𝑇y ≥ 0.2s𝑇Bs
0.8s𝑇Bs

s𝑇Bs − s𝑇y
, otherwise,

(17a)

r = 𝜃y + (1 − 𝜃)Bs, (17b)

̂B = B −

Bss𝑇B
s𝑇Bs

+

rr𝑇

s𝑇r
.

(17c)

This update scheme preserves positive definiteness, which is
mandatory if a line-search globalisation is used. In a trust-
region framework, indefinite approaches such as the safe-
guarded SR1 update [14, Section 6.2] could be advantageous
since they can approximate the generally indefinite Hessian
of the full or element Lagrangian more accurately.

The Hessian block B
𝑙
corresponding to the element

Lagrangian (12) at collocation point 𝑙 is approximated as
follows. In the difference of the gradients, all linear terms
cancel. Thus, (16) becomes

y𝑇
𝑙
= ∇

𝜔
L
𝑙
(�̂�, ̂𝜆) − ∇

𝜔
L
𝑙
(𝜔, ̂𝜆)

= 𝑊

𝑙
⋅ (

𝜕𝐿 (�̂�
𝑙
)

𝜕𝜔
−

𝜕𝐿 (𝜔
𝑙
)

𝜕𝜔
)

+ 𝜆
𝑇

𝑑,𝑙
⋅ (

𝜕f (𝜔
𝑙
)

𝜕𝜔
−

𝜕f (�̂�
𝑙
)

𝜕𝜔
)

+𝑊

𝑙
⋅ 𝜆
𝑇

𝑔
⋅ (

𝜕g (�̂�
𝑙
)

𝜕𝜔
−

𝜕g (𝜔
𝑙
)

𝜕𝜔
)

+ 𝜆
𝑇

𝑐,𝑙
⋅ (

𝜕c
𝑙
(�̂�
𝑙
)

𝜕𝜔
−

𝜕c
𝑙
(𝜔
𝑙
)

𝜕𝜔
) .

(18)

Recall that the linear index 𝑙 is defined such that 𝜆
𝑑,𝑙

= 𝜆
(𝑘)

𝑑,𝑖
.

The QN update (17a)–(17c) is applied to each diagonal block
B
𝑙
individually, with s𝑇

𝑙
= �̂�
𝑙
− 𝜔
𝑙
and y

𝑙
given by (18). As

initialisation, one of the approaches described in [14, Chapter
6] can be used.

2.5. Engineering Test Problem. As a real-world engineering
problem, we consider the minimisation of the fuel consump-
tion of a turbocharged diesel engine. The statutory limits for
the cumulative NO

𝑥
and soot emissions are imposed as 𝑛

𝑔
=

2 integral inequality constraints. The 𝑛
𝑢
= 4 control inputs

are the position of the variable-geometry turbine, the start of
the main injection, the common-rail pressure, and the fuel
mass injected per cylinder and combustion cycle. The model
is described and its experimental validation is provided in
[16]. It features a dynamic mean-value model for the air path
with 𝑛

𝑥
= 5 state variables, and physics-based models for

the combustion and for the pollutant emissions.The resulting
OCP is stated in [17, 18]. The desired load torque, the bounds
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Figure 1: Convergence behaviour of IPOPT on the two test cases.

on the actuator ranges, andmechanical and thermal limits are
imposed as nonlinear and linear path constraints (3d).

The model evaluations are expensive. Therefore, QN
updates are preferable over exact Newtonmethods to achieve
a fast solution process. The main drawback is the slow local
convergence rate of QN methods when applied to the large
NLPs resulting from the consideration of long time horizons
in the OCP [18].

3. Results and Discussion

The results presented here are generated using the NLP solver
IPOPT [19, 20] with the linear solver MUMPS [21] and the
fill-reducing preordering implemented inMETIS [22]. Either
the exact Hessian, calculated using central finite differences
on the model functions, or a full or the partitioned QN
update just described is supplied to the solver as user-defined
Hessian. In all cases, the first derivatives are calculated by
forward finite differences.

Radau collocation at flipped Legendre nodes is applied.
These collocation points are the roots of the orthogonal Leg-
endre polynomials and have to be computed numerically [23,
Section 2.3]. The resulting scheme, sometimes termed Radau
IIA, exhibits a combination of advantageous properties [24],
[25, Section 3.5].

Two test cases for the engineering problem outlined in
Section 2.5 are considered. Case (a) is a mild driving pattern
of 6 s duration which is discretised by first-order collocation
with a uniform step length of 0.5 s. This discretisation results
in 𝑀 = 13 total collocation points and 117 NLP variables.
Test case (b) considers a more demanding driving pattern of
58 s duration and uses third-order collocation with a step size
of 0.8 s, resulting in 𝑀 = 217 collocation points and 1,953
NLP variables.

The performance is assessed in terms of the number
of iterations required to achieve the requested tolerance.
Figure 1 shows the convergence behaviour of the exact-
Newton method and of the two QN methods. Starting with
iteration 5, the full Newton step is always accepted. Thus,
the difference between the local quadratic convergence of the
exact Newton method and the local superlinear convergence
of the full BFGS update becomes obvious. The partitioned
update performs substantially better than the full update.
Moreover, the advantage becomes more pronounced when
the size (longer time horizon) and the complexity (more
transient driving profile, higher-order collocation) of the
problem are increased from the simple test case (a) to the
more meaningful case (b).

The Hessian approximation is initialised by a multiple of
the identity matrix; B

0
= 𝛽I. A factor of 𝛽 = 0.05 is found to

be a good choice for the problem at hand. Table 1 shows the
number of iterations required as𝛽 is changed.Thepartitioned
update is robust against a poor initialisation, whereas the full
update requires a significant number of iterations to recover.
This finding confirms that an accurate approximation is
obtained in fewer iterations when the partitioned QN update
is applied.

4. Conclusion

We illustrated the separability of the nonlinear program
resulting from the application of direct collocation to an
optimal control problem. Subsequently, we presented how
this structure can be exploited to apply a partitioned quasi-
Newton update to the Hessian of the Lagrangian. This
sparsity-preserving update yields a more accurate approxi-
mation of the Hessian in fewer iterations and thus increases
the convergence rate of the NLP solver.
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Table 1: Effect of the initialisation of the Hessian approximation on
the number of NLP iterations until convergence, test case (a).

Method 𝛽 = 0.01 𝛽 = 0.05 𝛽 = 0.1

Full BFGS 36 28 38
Partitioned BFGS 22 20 21

A more accurate approximation of the second derivatives
from first order information is especially beneficial for highly
nonlinear problems forwhich the exact secondderivatives are
expensive to evaluate. In fact, for the real-world engineering
problem used as a test case here, symbolic or algorithmic dif-
ferentiation is not an expedient option due to the complexity
and the structure of themodel. In this situation, using a quasi-
Newton approximation based on first derivatives calculated
by finite differences is a valuable alternative. The numerical
tests presented in this paper indicate that a convergence rate
close to that of an exact Newton method can be reclaimed by
the application of a partitioned BFGS update.

A self-contained implementation of the partitioned
update in the framework of an NLP solver itself could fully
exploit the advantages of themethod proposed. Furthermore,
it should be assessed whether a trust-region globalisation is
able to take advantage of an indefinite but possibly more
accurate quasi-Newton approximation of the diagonal blocks
of the Hessian of the Lagrangian.
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