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We introduce two new types of fixed point theorems in the collection ofmultivalued and single-valuedmappings in completemetric
spaces.

1. Introduction

Let 𝑇 be a mapping on a complete (or compact) metric space
(𝑋, 𝑑). We do not assume richer structure such as convex
metric spaces and Banach spaces. There are thousands of
theorems which assure the existence of a fixed point of 𝑇. We
can categorize these theorems into the following four types.

(T1) Leader type [1]: 𝑇 has a unique fixed point and {𝑇𝑛𝑥}
converges to the fixed point for all 𝑥 ∈ 𝑋. Such a
mapping is called a Picard operator in [2].

(T2) Unnamed type: 𝑇 has a unique fixed point and {𝑇𝑛𝑥}
does not necessarily converge to the fixed point.

(T3) Subrahmanyam type [3]: 𝑇 may have more than one
fixed point and {𝑇𝑛𝑥} converges to a fixed point for
all 𝑥 ∈ 𝑋. Such a mapping is called a weakly Picard
operator in [3, 4].

(T4) Caristi type [5, 6]: 𝑇 may have more than one fixed
point and {𝑇𝑛𝑥} does not necessarily converge to a
fixed point.

We know that most of the theorems such as Banach’s
[7], Ćirić’s [8], Kannan’s [9], Kirk’s [10], Matkowski’s [11],
Meir and Keeler’s [12], and Suzuki’s [13, 14] belong to
(𝑇1). Also, very recently, Suzuki [15] characterized (𝑇1).
Subrahmanyam’s theorem [3] belongs to (𝑇3), and Caristi’s
theorem [5, 6] and its generalizations [15–17] belong to (𝑇4).

On the other hand, as far as the authors do know, there are
no theorems belonging to (𝑇2); see Kirk’s survey [18]. Also,
recently many interesting fixed point theorems are proved
in the framework of ordered metric spaces; see [18–35] and
others.

In this paper, motivated by the above, we introduce
two new types of fixed point theorems in the collection of
multivalued and single-valuedmappings andwill prove them,
which belong to (𝑇3).

Let (𝑋, 𝑑) be a metric space, and let 𝑃cl,bd(𝑋) denote the
class of all nonempty, closed, and bounded subsets of 𝑋. Let
𝑇 : 𝑋 → 𝑃cl,bd(𝑋) be a multivalued mapping on 𝑋. A point
𝑥 ∈ 𝑋 is called a fixed point of 𝑇 if 𝑥 ∈ 𝑇𝑥. Set Fix(𝑇) = {𝑥 ∈
𝑋 : 𝑥 ∈ 𝑇𝑥}.

A famous theorem on multivalued mappings is due to
Nadler [36], which extended the Banach contraction princi-
ple to multivalued mappings. Many authors have studied the
existence anduniqueness of strict fixed points formultivalued
mappings in metric spaces; see, for example, [37–44] and
references therein.

Let𝐻 be the Hausdorff metric on 𝑃cl,bd(𝑋) induced by 𝑑;
that is,

𝐻(𝐴, 𝐵) := max{sup
𝑥∈𝐵

𝑑 (𝑥, 𝐴) , sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵)} ,

𝐴, 𝐵 ∈ 𝑃cl,bd (𝑋) .

(1)
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Denote 𝛿(𝑥, 𝐴) = sup{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝐴} and 𝐷(𝑥, 𝐴) =
inf {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐴}, where 𝐴 ∈ 𝑃cl,bd(𝑋).

2. Main Results

The following is the first our main results.

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a mapping from 𝑋 into itself. Suppose that 𝑇 satisfies the
following condition:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ (
𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦) + 1
)𝑑 (𝑥, 𝑦) , (2)

for all 𝑥, 𝑦 ∈ 𝑋. Then

(a) 𝑇 has at least one fixed point �̇� ∈ 𝑋;
(b) {𝑇𝑛𝑥} converges to a fixed point, for all 𝑥 ∈ 𝑋;
(c) if �̇�, ̇𝑦 are two distinct fixed points of 𝑇, then 𝑑(�̇�, ̇𝑦) ≥
1/2.

Proof. Let 𝑥
0
∈ 𝑋 be arbitrary and choose a sequence {𝑥

𝑛
}

such that 𝑥
𝑛+1
= 𝑇𝑥
𝑛
. We have

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1
)

≤ (
𝑑 (𝑥
𝑛
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛+1
)

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 1

)𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
)

= (
𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
)

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 1

)𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
)

≤(
𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 1

)𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
) .

(3)

Given

𝛽
𝑛
=

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 1

, (4)

we have

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝛽
𝑛
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
)

≤ (𝛽
𝑛
𝛽
𝑛−1
) 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛−2
)

...

≤ (𝛽
𝑛
𝛽
𝑛−1
⋅ ⋅ ⋅ 𝛽
1
) 𝑑 (𝑥
1
, 𝑥
0
) .

(5)

Observe that (𝛽
𝑛
) is nonincreasing, with positive terms.

So 𝛽
1
⋅ ⋅ ⋅ 𝛽
𝑛
≤ 𝛽
𝑛

1
and 𝛽𝑛

1
→ 0. It follows that

lim
𝑛→∞

(𝛽
1
𝛽
2
⋅ ⋅ ⋅ 𝛽
𝑛
) = 0. (6)

Thus, it is verified that

lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) = 0. (7)

Now for all𝑚, 𝑛 ∈ N we have

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑚−1
, 𝑥
𝑚
)

≤ [(𝛽
𝑛
𝛽
𝑛−1
⋅ ⋅ ⋅ 𝛽
1
) + (𝛽

𝑛+1
𝛽
𝑛
⋅ ⋅ ⋅ 𝛽
1
)

+ ⋅ ⋅ ⋅ + (𝛽
𝑚−1
𝛽
𝑚−2

⋅ ⋅ ⋅ 𝛽
1
)] 𝑑 (𝑥

1
, 𝑥
0
)

=

𝑚−1

∑

𝑘=𝑛

(𝛽
𝑘
𝛽
𝑘−1
⋅ ⋅ ⋅ 𝛽
1
) 𝑑 (𝑥
1
, 𝑥
0
) .

(8)

Suppose that 𝑎
𝑘
= (𝛽
𝑘
𝛽
𝑘−1
⋅ ⋅ ⋅ 𝛽
1
). Since

lim
𝑘→∞

𝑎
𝑘+1

𝑎
𝑘

= 0 (9)

∑
∞

𝑘=1
𝑎
𝑘
< ∞. It means that

𝑚−1

∑

𝑘=𝑛

(𝛽
𝑘
𝛽
𝑘−1
⋅ ⋅ ⋅ 𝛽
1
) → 0, (10)

as𝑚, 𝑛 → ∞. In other words, {𝑥
𝑛
} is a Cauchy sequence and

so converges to �̇� ∈ 𝑋.
We claim that �̇� is a fixed point.
Note that

𝑑 (𝑥
𝑛+1
, 𝑇�̇�) ≤ (

𝑑 (𝑥
𝑛
, 𝑇�̇�) + 𝑑 (�̇�, 𝑇𝑥

𝑛
)

𝑑 (�̇�, 𝑇�̇�) + 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) + 1

)𝑑 (𝑥
𝑛
, �̇�) .

(11)

On taking limit on both sides of (11), we have 𝑑(�̇�, 𝑇�̇�) = 0.
Thus, 𝑇�̇� = �̇�.

If there exist two distinct fixed points �̇�, ̇𝑦 ∈ 𝑋, then

𝑑 (�̇�, ̇𝑦) = 𝑑 (𝑇�̇�, 𝑇 ̇𝑦)

≤ [𝑑 (�̇�, 𝑇 ̇𝑦) + 𝑑 (𝑇�̇�, ̇𝑦)] 𝑑 (�̇�, ̇𝑦)

= 2[𝑑 (�̇�, ̇𝑦)]
2

.

(12)

Therefore, 𝑑(�̇�, ̇𝑦) ≥ 1/2 and we find the desired results.

In the following, two examples of such type of mappings,
which satisfy (2), are given.

Example 2. Let 𝑋 = {0, 1/2, 1} and let 𝑑 : 𝑋 × 𝑋 → [0,∞)

be defined by

𝑑(0,
1

2
) = 2, 𝑑 (1,

1

2
) =

5

2
, 𝑑 (0, 1) = 3,

𝑑 (0, 0) = 𝑑 (
1

2
,
1

2
) = 𝑑 (1, 1) = 0,

𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎) , ∀ 𝑎, 𝑏 ∈ 𝑋.

(13)
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(𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋 be defined
by

𝑇 (0) = 0, 𝑇 (
1

2
) =

1

2
, 𝑇 (1) = 0

𝑑 (𝑇0, 𝑇1) = 𝑑 (0, 0) = 0,

𝑑 (𝑇0, 𝑇 (
1

2
)) = 𝑑(0,

1

2
) = 2,

𝑑 (𝑇1, 𝑇 (
1

2
)) = 𝑑(0,

1

2
) = 2,

(14)

and we have

𝑑 (𝑇0, 𝑇 (
1

2
)) = 𝑑(0,

1

2
) = 2

≤ (
𝑑 (0, 𝑇 (1/2)) + 𝑑 (1/2, 𝑇 (0))

𝑑 (0, 𝑇0) + 𝑑 (1/2, 𝑇 (1/2)) + 1
)

× 𝑑(0,
1

2
) = 8

(15)

and also

𝑑 (𝑇1, 𝑇 (
1

2
)) = 𝑑(0,

1

2
) = 2

≤ (
𝑑 (1, 𝑇 (1/2)) + 𝑑 (1/2, 𝑇 (1))

𝑑 (1, 𝑇1) + 𝑑 (1/2, 𝑇 (1/2)) + 1
)

× 𝑑(1,
1

2
)

= (
5/2 + 2

4
) ×

5

2
=
45

16
.

(16)

Therefore, 𝑇 satisfies all the conditions of Theorem 1. Also, 𝑇
has two distinct fixed points {0, 1/2} and 𝑑(0, 1/2) = 2 ≥ 1/2.

Example 3. Let 𝑋 = [0, 2 − √3] be endowed with Euclidean
metric and let 𝑇 : 𝑋 → 𝑋 be defined by

𝑇𝑥 = {
0 0 ≤ 𝑥 < 2 − √3

2 − √3 𝑥 = 2 − √3.
(17)

Thenwe claim that𝑇 satisfies all the conditions ofTheorem 1.
If 𝑥 = 2 − √3 and 0 ≤ 𝑦 < 2 − √3, we have

𝑇𝑥 − 𝑇𝑦
 (|𝑥 − 𝑇𝑥| +

𝑦 − 𝑇𝑦
 + 1)

= (2 − √3) (
𝑦
 + 1) = (2 −

√3) (𝑦 + 1)

≤ (2 − √3 − 𝑦)
2

− (2 − √3) (2 − √3 − 𝑦)

= (
𝑥 − 𝑇𝑦

 +
𝑦 − 𝑇𝑥

)
𝑥 − 𝑦

 .

(18)

Thus,

𝑇𝑥 − 𝑇𝑦
 ≤ (

𝑥 − 𝑇𝑦
 +
𝑦 − 𝑇𝑥



|𝑥 − 𝑇𝑥| +
𝑦 − 𝑇𝑦

 + 1
)
𝑥 − 𝑦

 . (19)

Similar argument holds for the other conditions.

Remark 4. Note that in (2) the ratio

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦) + 1
(20)

might be greater or less than 1 and has not introduced an
upper bound. Note that if, for every 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) < 1/2,
then we have

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

≤ 2𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

< 𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦) + 1.

(21)

It means that

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦) + 1
< 1, (22)

and thus Theorem 1 is a special case of Banach contraction
principle. Therefore, when (𝑋, 𝑑) is a complete metric space
such that, for all 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) ≥ 1/2, Theorem 1 is
valuable because (20) might be greater than 1. Example 2
shows this note precisely.

The following is the second in our main results.

Theorem 5. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 be
a multivalued mapping from𝑋 into 𝑃

𝑐𝑙,𝑏𝑑
(𝑋). Let 𝑇 satisfy the

following:

𝐻(𝑇𝑥, 𝑇𝑦) ≤ (
𝐷 (𝑥, 𝑇𝑦) + 𝐷 (𝑦, 𝑇𝑥)

𝛿 (𝑥, 𝑇𝑥) + 𝛿 (𝑦, 𝑇𝑦) + 1
)𝑑 (𝑥, 𝑦) , (23)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a fixed point �̇� ∈ 𝑋.

Proof. Let 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇𝑥
0
. For each 0 < ℎ

1
< 1 one can

choose 𝑥
2
∈ 𝑇𝑥
1
such that

𝑑 (𝑥
1
, 𝑥
2
) < 𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + (1 −

1

ℎ
1

)𝐻(𝑇𝑥
0
, 𝑇𝑥
1
)

=
1

ℎ
1

𝐻(𝑇𝑥
0
, 𝑇𝑥
1
) .

(24)

For each 0 < ℎ
𝑛
< 1 we can choose 𝑥

𝑛+1
∈ 𝑇𝑥
𝑛
such that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) < 𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) + (1 −

1

ℎ
𝑛

)𝐻(𝑇𝑥
0
, 𝑇𝑥
1
)

=
1

ℎ
𝑛

𝐻(𝑇𝑥
0
, 𝑇𝑥
1
) .

(25)

Specifically if

ℎ
𝑛
= √

𝑑 (𝑥
𝑛−1
+ 𝑥
𝑛+1
)

𝑑 (𝑥
𝑛−1
+ 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
+ 𝑥
𝑛+1
) + 1

= √𝛽
𝑛
,

(26)
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then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ √𝛽

𝑛
𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) ≤ 𝛽
𝑛
𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) . (27)

Therefore,
𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝛽
𝑛
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1
)

≤ (𝛽
𝑛
𝛽
𝑛−1
) 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛−2
)

...

≤ (𝛽
𝑛
𝛽
𝑛−1
⋅ ⋅ ⋅ 𝛽
1
) 𝑑 (𝑥
1
, 𝑥
0
) .

(28)

It can easily be seen that

lim
𝑛→∞

(𝛽
1
𝛽
2
⋅ ⋅ ⋅ 𝛽
𝑛
) = 0. (29)

Thus, it is easily verified that

lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) = 0. (30)

Now for all𝑚, 𝑛 ∈ N we have
𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) + ⋅ ⋅ ⋅ + 𝑑 (𝑥

𝑚−1
, 𝑥
𝑚
)

≤ [(𝛽
𝑛
𝛽
𝑛−1
⋅ ⋅ ⋅ 𝛽
1
) + (𝛽

𝑛+1
𝛽
𝑛
⋅ ⋅ ⋅ 𝛽
1
)

+ ⋅ ⋅ ⋅ + (𝛽
𝑚−1
𝛽
𝑚−2

⋅ ⋅ ⋅ 𝛽
1
)] 𝑑 (𝑥

1
, 𝑥
0
)

=

𝑚−1

∑

𝑘=𝑛

(𝛽
𝑘
𝛽
𝑘−1
⋅ ⋅ ⋅ 𝛽
1
) 𝑑 (𝑥
1
, 𝑥
0
) .

(31)

Suppose that 𝑎
𝑘
= (𝛽
𝑘
𝛽
𝑘−1
⋅ ⋅ ⋅ 𝛽
1
). Since

lim
𝑘→∞

𝑎
𝑘+1

𝑎
𝑘

= 0, (32)

∑
∞

𝑘=1
𝑎
𝑘
< ∞. It means that

𝑚−1

∑

𝑘=𝑛

(𝛽
𝑘
𝛽
𝑘−1
⋅ ⋅ ⋅ 𝛽
1
) → 0, (33)

as 𝑚, 𝑛 → ∞. In other words, {𝑥
𝑛
} is a Cauchy sequence

and so converges to �̇� ∈ 𝑋. We claim that �̇� is a fixed point.
Consider

𝐷 (�̇�, 𝑇�̇�) ≤ 𝑑 (�̇�, 𝑥
𝑛+1
) + 𝐷 (𝑥

𝑛+1
, 𝑇�̇�)

≤ 𝐻 (𝑇𝑥
𝑛
, 𝑇�̇�) + 𝑑 (�̇�, 𝑥

𝑛+1
)

≤ (
𝐷 (�̇�, 𝑇𝑥

𝑛
) + 𝐷 (𝑥

𝑛
, 𝑇�̇�)

𝛿 (�̇�, 𝑇�̇�) + 𝛿 (𝑥
𝑛
, 𝑇𝑥
𝑛
) + 1

)

× 𝑑 (𝑥
𝑛
, �̇�) + 𝑑 (�̇�, 𝑥

𝑛+1
)

≤ [𝐷 (�̇�, 𝑥
𝑛+1
) + 𝐷 (𝑥

𝑛
, 𝑇�̇�)]

× 𝑑 (𝑥
𝑛
, �̇�) + 𝑑 (�̇�, 𝑥

𝑛+1
) .

(34)

On taking limit on both sides of (31) we have 𝐷(�̇�, 𝑇�̇�) = 0.
It means that �̇� ∈ 𝑇�̇�.

Remark 6. Note that Theorem 5 is a generalization of
Theorem 1 because by taking 𝐹𝑥 = {𝑇𝑥} and applying
Theorem 5 for 𝐹 we obtainTheorem 1.
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