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In order to obtain a more accurate description of the ecological system perturbed by human exploitation activities such as planting
and harvesting, we need to consider the impulsive differential equations. Therefore, by applying the comparison theorem and the
Lyapunov method of the impulsive differential equations, this paper gives some new sufficient conditions for the permanence and
existence of a unique uniformly asymptotically stable positive almost periodic solution in a food chain system with almost periodic
impulsive perturbations. The method used in this paper provides a possible method to study the permanence and existence of a
unique uniformly asymptotically stable positive almost periodic solution of the models with impulsive perturbations in biological
populations. Finally, an example and numerical simulations are given to illustrate that our results are feasible.

1. Introduction

Let R and Z denote the sets of real numbers and integers,
respectively. Related to a continuous function 𝑓, we use the
following notations:

𝑓𝑙 = inf
𝑠∈R

𝑓 (𝑠) , 𝑓𝑢 = sup
𝑠∈R

𝑓 (𝑠) . (1)

As was pointed out by Berryman [1], the dynamic
relationship between predators and their prey has long been
and will continue to be one of the dominant themes in
both ecology and mathematical ecology due to its universal
existence and importance. Food chain predator-prey system,
as one of themost important predator-prey systems, has been
extensively studied by many scholars; many excellent results
were concerned with the persistent property and positive
periodic solution of the system; see [2–8] and the references
cited therein. Recently, Shen considered the following three

species food chain predator-prey systemwithHolling type IV
functional response:

�̇�1 (𝑡) = 𝑥1 (𝑡) [𝑟1 (𝑡) − 𝑎1 (𝑡) 𝑥1 (𝑡) −
𝑏1 (𝑡) 𝑥2 (𝑡)

𝑚1 + 𝑥
2

1
(𝑡)
] ,

�̇�2 (𝑡) = 𝑥2 (𝑡) [−𝑟2 (𝑡) +
𝑏2 (𝑡) 𝑥1 (𝑡)

𝑚1 + 𝑥
2

1
(𝑡)

−𝑎2 (𝑡) 𝑥2 (𝑡) −
𝑏3 (𝑡) 𝑥3 (𝑡)

𝑚2 + 𝑥
2

2
(𝑡)
] ,

�̇�3 (𝑡) = 𝑥3 (𝑡) [−𝑟3 (𝑡) +
𝑏4 (𝑡) 𝑥2 (𝑡)

𝑚2 + 𝑥
2

2
(𝑡)

− 𝑎3 (𝑡) 𝑥3 (𝑡)] ,

(2)

where 𝑥𝑖(𝑡), 𝑖 = 1, 2, 3, denotes the density of species 𝑋𝑖 at
time 𝑡, 𝑋2 is the predator of the first species 𝑋1, and 𝑋3 is
the predator of the second species 𝑋2. By applying the com-
parison theorem of the differential equation and constructing
the suitable Lyapunov function, sufficient conditions which
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guarantee the permanence and the global attractivity of the
system are obtained.

Considering the exploited predator-prey system (harvest-
ing or stocking) is very valuable, for it involves the human
activities. It can be referred to [9], in which the human
activities always happen in a short time or instantaneously.
The continuous action of human is then removed from the
model and replaced with an impulsive perturbation. These
models are subject to short-term perturbations which are
often assumed to be in the form of impulsive in themodelling
process. Consequently, impulsive differential equations pro-
vide a natural description of such systems [10–13]. Then, in
[14], Zhang and Tan studied the following Holling II func-
tional responses food chain system with periodic constant
impulsive perturbation of predator:

�̇�1 (𝑡) = 𝑥1 (𝑡) [1 − 𝑥1 (𝑡) −
𝑏1𝑥2 (𝑡)

1 + 𝑥1 (𝑡)
] ,

�̇�2 (𝑡) = 𝑥2 (𝑡) [−𝑟2 +
𝑏2𝑥1 (𝑡)

1 + 𝑥1 (𝑡)
−

𝑏3𝑥3 (𝑡)

1 + 𝑥2 (𝑡)
] ,

�̇�3 (𝑡) = 𝑥3 (𝑡) [−𝑟3 +
𝑏4𝑥2 (𝑡)

1 + 𝑥2 (𝑡)
] , 𝑡 ̸= 𝑛𝑇,

Δ𝑥1 (𝑛𝑇) = 0,

Δ𝑥2 (𝑛𝑇) = ℎ,

Δ𝑥3 (𝑛𝑇) = 0, 𝑛 ∈ {0, 1, . . .} = Z
+,

(3)

where ℎ > 0 is the release amount of top predator at 𝑡 = 𝑛𝑇
and 𝑇 is the period of the impulsive effect. By using the
Floquet theory of impulsive differential equation and small
amplitude perturbation skills, we consider the local stability
of prey and top predator eradication periodic solution.

In real world phenomenon, the environment varies due to
the factors such as seasonal effects of weather, food supplies,
mating habits, and harvesting. So, it is usual to assume the
periodicity of parameters in system (2). However, if the
various constituent components of the temporally nonuni-
form environment are with incommensurable (nonintegral
multiples) periods, then one has to consider the environ-
ment to be almost periodic since the assumption of almost
periodicity is more realistic, more important, and more
general when we consider the effects of the environmental
factors. In recent years, there have been many mathematical
studies for the existence, uniqueness, and stability of positive
almost periodic solution of biological models governed by
differential equations in the literature (see [11, 15–25] and
the references cited therein). Therefore, Bai and wang in [15]
studied the following nonautonomous food chains system
with Holling’s type II functional response:

�̇�1 (𝑡) = 𝑥1 (𝑡) [𝑟1 (𝑡) − 𝑎1 (𝑡) 𝑥1 (𝑡) −
𝑏1 (𝑡) 𝑥2 (𝑡)

𝑚1 + 𝑥1 (𝑡)
] ,

�̇�2 (𝑡) = 𝑥2 (𝑡) [−𝑟2 (𝑡) +
𝑏2 (𝑡) 𝑥1 (𝑡)

𝑚1 + 𝑥1 (𝑡)
− 𝑎2 (𝑡) 𝑥2 (𝑡)

−
𝑏3 (𝑡) 𝑥3 (𝑡)

𝑚2 + 𝑥2 (𝑡)
] ,

�̇�3 (𝑡) = 𝑥3 (𝑡) [−𝑟3 (𝑡) +
𝑏4 (𝑡) 𝑥2 (𝑡)

𝑚2 + 𝑥2 (𝑡)
− 𝑎3 (𝑡) 𝑥3 (𝑡)] .

(4)

By applying the comparison theorem and the Lyapunov
method of ordinary differential equations, some sufficient
conditions which guarantee the permanence and existence
of a unique uniformly asymptotically stable positive almost
periodic solution of system (4) are obtained.

Stimulated by the above reason, this paper is concerned
with the following almost periodic food chain system with
almost periodic impulsive perturbations and general func-
tional responses:

�̇�1 (𝑡) = 𝑥1 (𝑡) [𝑟1 (𝑡) − 𝑎1 (𝑡) 𝑥1 (𝑡) −
𝑏1 (𝑡) 𝑥2 (𝑡)

𝑚1 + 𝑥
𝛼
1

1
(𝑡)
] ,

�̇�2 (𝑡) = 𝑥2 (𝑡) [−𝑟2 (𝑡) +
𝑏2 (𝑡) 𝑥1 (𝑡)

𝑚1 + 𝑥
𝛼
1

1
(𝑡)

− 𝑎2 (𝑡) 𝑥2 (𝑡)

−
𝑏3 (𝑡) 𝑥3 (𝑡)

𝑚2 + 𝑥
𝛼
2

2
(𝑡)
] ,

�̇�3 (𝑡) = 𝑥3 (𝑡) [−𝑟3 (𝑡) +
𝑏4 (𝑡) 𝑥2 (𝑡)

𝑚2 + 𝑥
𝛼
2

2
(𝑡)

− 𝑎3 (𝑡) 𝑥3 (𝑡)] ,

𝑡 ̸= 𝜏𝑘,

Δ𝑥1 (𝜏𝑘) = ℎ1𝑘𝑥1 (𝜏𝑘) ,

Δ𝑥2 (𝜏𝑘) = ℎ2𝑘𝑥2 (𝜏𝑘) ,

Δ𝑥3 (𝜏𝑘) = ℎ3𝑘𝑥3 (𝜏𝑘) , 𝑘 ∈ Z
+,

(5)

where 𝑟𝑖(𝑡), 𝑎𝑖(𝑡), and 𝑏𝑗(𝑡), 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, 4, are
all continuous almost periodic functions which are bounded
above and below by positive constants; 𝑚1, 𝑚2, 𝛼1, 𝛼2 are
positive constants; ℎ1𝑘, ℎ2𝑘, ℎ3𝑘 > −1 are constants; 0 = 𝜏0 <
𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑘 < 𝜏𝑘+1 < ⋅ ⋅ ⋅ are impulse points
with lim𝑘→+∞𝜏𝑘 = +∞; and the set of sequences {𝜏𝑗

𝑘
}, 𝜏
𝑗

𝑘
=

𝜏𝑘+𝑗 − 𝜏𝑘, 𝑘 ∈ Z+, 𝑗 ∈ Z, is uniformly almost periodic (see
Definition 1 in Section 2).

Obviously, system (2)–(4) is special case of system (5).
The main purpose of this paper is to establish some

new sufficient conditions which guarantee the permanence
and existence of a unique uniformly asymptotically stable
positive almost periodic solution of system (5) by using
the comparison theorem and the Lyapunov method of the
impulsive differential equations [10, 11] (see Theorems 11 and
14 in Sections 3 and 4).

The organization of this paper is as follows. In Section 2,
we give some basic definitions and necessary lemmas which
will be used in later sections. In Section 3, by using the
comparison theorem of the impulsive differential equations
[10], we give the permanence of system (5). In Section 4,
we study the existence of a unique uniformly asymptotically
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stable positive almost periodic solution of system (5) by
applying the Lyapunov method of the impulsive differential
equations [11].

2. Preliminaries

Now, let us state the following definitions and lemmas, which
will be useful in proving our main result.

By I, I = {{𝜏𝑘} ∈ R : 𝜏𝑘 < 𝜏𝑘+1, 𝑘 ∈ Z, lim𝑘→±∞𝜏𝑘 = ±∞},
we denote the set of all sequences that are unbounded and
strictly increasing. Introduce the following notations.

For 𝐽 ⊂ R3, 𝑃𝐶(𝐽,R3) is the space of all piecewise con-
tinuous functions from 𝐽 to R3 with points of discontinuity
of the first kind 𝜏𝑘, at which it is left continuous. By the basic
theories of impulsive differential equations in [10, 11], system
(5) has a unique solution𝑋(𝑡) = 𝑋(𝑡, 𝑋0) ∈ 𝑃𝐶([0, +∞),R3).

Since the solution of system (5) is a piecewise continuous
function with points of discontinuity of the first kind 𝜏𝑘, 𝑘 ∈
Z, we adopt the following definitions for almost periodicity.

Definition 1 (see [11]). The set of sequences {𝜏𝑗
𝑘
}, 𝜏
𝑗

𝑘
= 𝜏𝑘+𝑗 −

𝜏𝑘, 𝑘 ∈ Z, 𝑗 ∈ Z, {𝜏𝑘} ∈ I, is said to be uniformly almost
periodic if for arbitrary 𝜖 > 0 there exists a relatively dense
set of 𝜖-almost periods common for any sequences.

Definition 2 (see [11]). The function 𝜑 ∈ 𝑃𝐶(R,R) is said to
be almost periodic, if the following hold.

(1) The set of sequences {𝜏𝑗
𝑘
}, 𝜏
𝑗

𝑘
= 𝜏𝑘+𝑗 − 𝜏𝑘, 𝑘 ∈ Z, 𝑗 ∈

Z, {𝜏𝑘} ∈ I, is uniformly almost periodic.
(2) For any 𝜖 > 0, there exists a real number 𝛿 > 0 such

that if the points 𝑡 and 𝑡 belong to one and the same
interval of continuity of 𝜑(𝑡) and satisfy the inequality
|𝑡 − 𝑡| < 𝛿, then |𝜑(𝑡) − 𝜑(𝑡)| < 𝜖.

(3) For any 𝜖 > 0, there exists a relatively dense set𝑇 such
that if 𝜂 ∈ 𝑇, then |𝜑(𝑡 + 𝜂) − 𝜑(𝑡)| < 𝜖 for all 𝑡 ∈ R

satisfying condition |𝑡 − 𝜏𝑘| > 𝜖, 𝑘 ∈ Z. The elements
of 𝑇 are called 𝜖-almost periods.

Lemma 3 (see [11]). Let {𝜏𝑘} ∈ I. Then, there exists a positive
integer 𝐴 such that, on each interval of length 1, one has no
more than 𝐴 elements of the sequence {𝜏𝑘}; that is,

𝑖 (𝑠, 𝑡) ≤ 𝐴 (𝑡 − 𝑠) + 𝐴, (6)

where 𝑖(𝑠, 𝑡) is the number of the points 𝜏𝑘 in the interval (𝑠, 𝑡).

Theoretically, one can investigate the existence, unique-
ness, and stability of almost periodic solution for functional
differential equations by using Lyapunov functional as follows
[11, P109].

Consider the system of impulsive differential equations as
follows:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥 (𝜏𝑘) = 𝐼𝑘𝑥 (𝜏𝑘) ,
(7)

where 𝑡 ∈ R, {𝜏𝑘} ∈ I, 𝑓 : R×𝐷 → R𝑛, 𝐼𝑘 : 𝐷 → R𝑛, 𝑘 ∈ Z,
and𝐷 is an open set in R𝑛.

Introduce the following conditions.

(𝐶1) Function 𝑓(𝑡, 𝑥) is almost periodic in 𝑡 uniformly
with respect to 𝑥 ∈ 𝐷.

(𝐶2) Sequence {𝐼𝑘(𝑥)}, 𝑘 ∈ Z, is almost periodic uniformly
with respect to 𝑥 ∈ 𝐷.

Lemma4 (see [11, P109]). Suppose that there exists a Lyapunov
functional 𝑉(𝑡, 𝑥, 𝑦) defined on R+ × 𝐷 × 𝐷 satisfying the
following conditions.

(1) 𝑢(‖𝑥 − 𝑦‖) ≤ 𝑉(𝑡, 𝑥, 𝑦) ≤ V(‖𝑥 − 𝑦‖), where 𝑢, V ∈ P
withP = {𝑢 : R+ → R+ | 𝑢 is continuous increasing
function and 𝑢(𝑠) → 0 as 𝑠 → 0}.

(2) |𝑉(𝑡, 𝑥, 𝑦) − 𝑉(𝑡, 𝑥, 𝑦)| ≤ 𝐾(‖𝑥 − 𝑥‖ + ‖𝑦 − 𝑦‖), where
𝐾 > 0 is a constant.

(3) For 𝑡 = 𝜏𝑘, 𝑉(𝑡+, 𝑥 + 𝐼𝑘(𝑥), 𝑦 + 𝐼𝑘(𝑦)) ≤ 𝑉(𝑡, 𝑥, 𝑦); for
𝑡 ̸= 𝜏𝑘, �̇�(2.2)(𝑡, 𝑥, 𝑦) ≤ −𝛾𝑉(𝑡, 𝑥, 𝑦), ∀𝑘 ∈ Z, where
𝛾 > 0 is a constant.

Moreover, one assumes that system (7) has a solution that
remains in a compact set 𝑆 ⊂ 𝐷. Then, system (7) has a unique
almost periodic solution which is uniformly asymptotically
stable.

3. Permanence

In this section, we establish a permanence result for system
(5).

Lemma 5 (see [10]). Assume that 𝑥 ∈ 𝑃𝐶(R) with points of
discontinuity at 𝑡 = 𝜏𝑘 and is left continuous at 𝑡 = 𝜏𝑘 for
𝑘 ∈ Z+ and

�̇� (𝑡) ≤ 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ̸= 𝜏𝑘,

𝑥 (𝜏+
𝑘
) ≤ 𝐼𝑘 (𝑥 (𝜏𝑘)) , 𝑘 ∈ Z

+,
(8)

where 𝑓 ∈ 𝐶(R × R,R), 𝐼𝑘 ∈ 𝐶(R,R), and 𝐼𝑘(𝑥) is
nondecreasing in 𝑥 for 𝑘 ∈ Z+. Let 𝑢∗(𝑡) be the maximal
solution of the scalar impulsive differential equation as

�̇� (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ̸= 𝜏𝑘,

𝑢 (𝜏+
𝑘
) = 𝐼𝑘 (𝑢 (𝜏𝑘)) ≥ 0, 𝑘 ∈ Z

+,

𝑢 (𝑡+
0
) = 𝑢0

(9)

existing on [𝑡0,∞). Then, 𝑥(𝑡+
0
) ≤ 𝑢0 implies 𝑥(𝑡) ≤ 𝑢∗(𝑡) for

𝑡 ≥ 𝑡0.

Remark 6. If inequalities (8) in Lemma 5 are reversed and
𝑢∗(𝑡) is theminimal solution of system (9) existing on [𝑡0,∞),
then 𝑥(𝑡+

0
) ≥ 𝑢0 implies 𝑥(𝑡) ≥ 𝑢∗(𝑡) for 𝑡 ≥ 𝑡0.

Lemma 7. Assume that 𝑎, 𝑏 > 0; then, the following impulsive
logistic equation

�̇� (𝑡) = 𝑥 (𝑡) [𝑎 − 𝑏𝑥 (𝑡)] , 𝑡 ̸= 𝜏𝑘,

Δ𝑥 (𝜏+
𝑘
) = ℎ𝑘𝑥 (𝜏𝑘) , 𝑘 ∈ Z

+
(10)
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has a unique globally asymptotically stable positive almost
periodic solution 𝑥∗ which can be expressed as follows:

𝛼

𝑒𝜉𝐴𝑏
≤ 𝑥∗ (𝑡) = [𝑏∫

𝑡

−∞

𝑊(𝑡, 𝑠) 𝑑𝑠]
−1

≤
𝑎

𝜂𝑏 (1 − 𝑒−𝑎𝜃)
,

(11)

where 𝐴 is defined as that in Lemma 3, 𝜉 := ln sup
𝑘∈Z(1/(1 +

ℎ𝑘)), 𝛼 := 𝑎−𝜉𝐴, 𝜃 := inf𝑘∈Z𝜏
1

𝑘
, 𝜂 := inf𝑘∈Z∏

2

𝑗=1
(1/(1+ℎ𝑗+𝑘)),

and

𝑊(𝑡, 𝑠)

=

{{{{{
{{{{{
{

𝑒−𝑎(𝑡−𝑠), 𝜏𝑘−1 < 𝑠 < 𝑡 < 𝜏𝑘;
𝑘+1

∏
𝑗=𝑚

1

1 + ℎ𝑗
𝑒−𝑎(𝑡−𝑠), 𝜏𝑚−1 < 𝑠 ≤ 𝜏𝑚

< 𝜏𝑘 < 𝑡 ≤ 𝜏𝑘+1.

(12)

Proof. Let 𝑢 = 1/𝑥; then, system (10) changes to

𝑑𝑢 (𝑡)

𝑑𝑡
= −𝑎𝑢 (𝑡) + 𝑏, 𝑡 ̸= 𝜏𝑘,

Δ𝑢 (𝜏+
𝑘
) = −

ℎ𝑘
1 + ℎ𝑘

𝑢 (𝜏𝑘) , 𝑘 ∈ Z
+.

(13)

We can easily obtain that system (13) has a unique almost
periodic solution which can be expressed as follows:

𝑢∗ (𝑡) = 𝑏∫
𝑡

−∞

𝑊(𝑡, 𝑠) 𝑑𝑠. (14)

Then, system (10) has a unique almost periodic solution 𝑥∗
which can be expressed by (11). By Lemma 3, we have

𝑥∗ (𝑡) ≥ [𝑏∫
𝑡

−∞

𝑒𝜉𝐴𝑒−𝛼(𝑡−𝑠) 𝑑𝑠]
−1

=
𝛼

𝑒𝜉𝐴𝑏
. (15)

On the other hand,

𝑥∗ (𝑡) ≤ [𝑏∫
𝑡

𝑡−𝜃

𝜂𝑒−𝑎(𝑡−𝑠) 𝑑𝑠]
−1

=
𝑎

𝜂𝑏 (1 − 𝑒−𝑎𝜃)
. (16)

Suppose that 𝑥(𝑡) is another positive solution of system
(10). Define a Lyapunov function as

𝑉 (𝑡) =
ln𝑥
∗
(𝑡) − ln𝑥 (𝑡) , ∀𝑡 ∈ R. (17)

For 𝑡 ̸= 𝜏𝑘, 𝑘 ∈ Z+, calculating the upper right derivative of
𝑉(𝑡) along the solution of system (10), we have

𝐷+𝑉 (𝑡) = −𝑏
𝑥
∗
(𝑡) − 𝑥 (𝑡)

 . (18)

For 𝑡 = 𝜏𝑘, 𝑘 ∈ Z+, we have

𝑉 (𝜏+
𝑘
) =

ln𝑥
∗ (𝜏+
𝑘
) − ln𝑥 (𝜏+

𝑘
)


=

ln
(1 + ℎ𝑘) 𝑥

∗ (𝜏𝑘)

(1 + ℎ𝑘) 𝑥 (𝜏𝑘)



=
ln𝑥
∗ (𝜏𝑘) − ln𝑥 (𝜏𝑘)

 = 𝑉 (𝜏𝑘) .

(19)

Therefore, 𝑉 is nonincreasing. Integrating (18) from 0 to 𝑡
leads to

𝑉 (𝑡) + 𝑏∫
𝑡

0

𝑥 (𝑠) − 𝑥
∗
(𝑠)
 𝑑𝑠 ≤ 𝑉 (0) < +∞, ∀𝑡 ≥ 0;

(20)

that is,

∫
+∞

0

𝑥 (𝑠) − 𝑥
∗
(𝑠)
 𝑑𝑠 < +∞, (21)

which implies that

lim
𝑠→+∞

𝑥 (𝑠) − 𝑥
∗
(𝑠)
 = 0. (22)

Thus, the almost periodic solution of system (10) is globally
asymptotically stable. This completes the proof.

Let

𝜂𝑖 := inf
𝑘∈Z

2

∏
𝑗=1

1

1 + ℎ𝑖(𝑗+𝑘)
, 𝜉𝑖 := ln sup

𝑘∈Z

1

1 + ℎ𝑖𝑘
,

𝑖 = 1, 2, 3.

(23)

Proposition 8. Every solution (𝑥1, 𝑥2, 𝑥2)
𝑇 of system (5)

satisfies

lim sup
𝑡→∞

𝑥𝑖 (𝑡) ≤ 𝑀𝑖, 𝑖 = 1, 2, 3, (24)

where𝑀1,𝑀2, and𝑀3 are defined as those in (27), (32), and
(35), respectively.

Proof. From the first equation of system (5), we have

�̇�1 (𝑡) ≤ 𝑥1 (𝑡) [𝑟
𝑢

1
− 𝑎𝑙
1
𝑥1 (𝑡)] , 𝑡 ̸= 𝜏𝑘,

𝑥1 (𝜏
+

𝑘
) = (1 + ℎ1𝑘) 𝑥1 (𝜏𝑘) , 𝑘 ∈ Z

+.
(25)

Consider the following auxiliary system:

�̇�1 (𝑡) = 𝑧1 (𝑡) [𝑟
𝑢

1
− 𝑎𝑙
1
𝑧1 (𝑡)] , 𝑡 ̸= 𝜏𝑘,

𝑧1 (𝜏
+

𝑘
) = (1 + ℎ1𝑘) 𝑧1 (𝜏𝑘) , 𝑘 ∈ Z

+.
(26)

By Lemma 5, 𝑥1(𝑡) ≤ 𝑧1(𝑡), where 𝑧1(𝑡) is the solution of
system (26) with 𝑧1(0

+) = 𝑥1(0
+). By Lemma 7, system (26)

has a unique globally asymptotically stable positive almost
periodic solution 𝑧∗

1
which can be expressed as follows:

𝑧∗
1
(𝑡) = [𝑎

𝑙

1
∫
𝑡

−∞

𝑊1 (𝑡, 𝑠) 𝑑𝑠]
−1

≤ [𝑎𝑙
1
∫
𝑡

𝑡−𝜃

𝑊1 (𝑡, 𝑠) 𝑑𝑠]
−1

≤
𝑟𝑢
1

𝜂1𝑎
𝑙

1
(1 − 𝑒−𝑟

𝑢

1
𝜃)

:= 𝑀1,

(27)
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where

𝑊1 (𝑡, 𝑠)

=

{{{{{
{{{{{
{

𝑒−𝑟
𝑢

1
(𝑡−𝑠), 𝜏𝑘−1 < 𝑠 < 𝑡 < 𝜏𝑘;

𝑘+1

∏
𝑗=𝑚

1

1 + ℎ1𝑗
𝑒−𝑟
𝑢

1
(𝑡−𝑠), 𝜏𝑚−1 < 𝑠 ≤ 𝜏𝑚

< 𝜏𝑘 < 𝑡 ≤ 𝜏𝑘+1.

(28)

Then, for any constant 𝜖 > 0, there exists 𝑇1 > 0 such that
𝑥1(𝑡) ≤ 𝑧1(𝑡) < 𝑧

∗

1
(𝑡) + 𝜖 ≤ 𝑀1 + 𝜖 for 𝑡 > 𝑇1. So,

lim sup
𝑡→∞

𝑥1 (𝑡) ≤ 𝑀1. (29)

For any 𝜖 > 0, there exists 𝑇2 > 0 such that

𝑥1 (𝑡) ≤ 𝑀1 + 𝜖 for 𝑡 ≥ 𝑇2. (30)

From the second equation of system (5), we have

�̇�2 (𝑡) ≤ 𝑥2 (𝑡) [−𝑟
𝑙

2
+
𝑏𝑢
2
(𝑀1 + 𝜖)

𝑚1
− 𝑎𝑙
2
𝑥2 (𝑡)] ,

𝑡 ̸= 𝜏𝑘, 𝑡 > 𝑇2,

𝑥2 (𝜏
+

𝑘
) = (1 + ℎ2𝑘) 𝑥2 (𝜏𝑘) , 𝑘 ∈ Z

+.

(31)

Similar to the above argument as that in (29), one has

lim sup
𝑡→∞

𝑥2 (𝑡) ≤
𝑚−1
1
𝑏𝑢
2
𝑀1 − 𝑟

𝑙

2

𝜂2𝑎
𝑙

2
[1 − 𝑒(𝑟

𝑙

2
−𝑚
−1

1
𝑏𝑢
2
𝑀
1
)𝜃]

:= 𝑀2. (32)

Then, there exists 𝑇3 > 𝑇2 such that

𝑥2 (𝑡) ≤ 𝑀2 + 𝜖 for 𝑡 ≥ 𝑇3. (33)

By the third equation of system (5), we have

�̇�3 (𝑡) ≤ 𝑥3 (𝑡) [−𝑟
𝑙

3
+
𝑏𝑢
4
(𝑀2 + 𝜖)

𝑚2
− 𝑎𝑙
3
𝑥3 (𝑡)] ,

𝑡 ̸= 𝜏𝑘, 𝑡 > 𝑇3,

𝑥3 (𝜏
+

𝑘
) = (1 + ℎ3𝑘) 𝑥3 (𝜏𝑘) , 𝑘 ∈ Z

+.

(34)

Similar to the above argument as that in (32), we have

lim sup
𝑡→∞

𝑥3 (𝑡) ≤
𝑚−1
2
𝑏𝑢
4
𝑀2 − 𝑟

𝑙

3

𝜂3𝑎
𝑙

3
[1 − 𝑒(𝑟

𝑙

3
−𝑚
−1

2
𝑏𝑢
4
𝑀
2
)𝜃]

:= 𝑀3. (35)

This completes the proof.

Proposition9. Let𝑁1,𝑁2, and𝑁3 be defined as those in (42)–
(48), respectively. Then, every solution (𝑥1, 𝑥2, 𝑥3)

𝑇 of system
(5) satisfies

lim inf
𝑡→∞

𝑥𝑖 (𝑡) ≥ 𝑁𝑖, 𝑖 = 1, 2, 3, (36)

if the following condition holds:

(𝐻1) 𝑟
𝑙

1
> 𝑚−1
1
𝑏𝑢
1
𝑀2 + 𝜉1𝐴, 𝑏𝑙2𝑁1/(𝑚1 + 𝑀

𝛼
1

1
) > 𝑟𝑢

2
+

(𝑏𝑢
3
𝑀3/𝑚2) + 𝜉2𝐴, and 𝑏𝑙4𝑁2/(𝑚2 +𝑀

𝛼
2

2
) > 𝑟𝑢
3
+ 𝜉3𝐴.

Proof. According to Proposition 8, there exist 𝜖 > 0 and 𝑇4 >
0 such that

𝑟𝑙
1
− 𝑚−1
1
𝑏𝑢
1
(𝑀2 + 𝜖) − 𝜉1𝐴 ≥ 0,

𝑥𝑖 (𝑡) ≤ 𝑀𝑖 + 𝜖 for 𝑡 ≥ 𝑇4, 𝑖 = 1, 2, 3.
(37)

From the first equation of system (5), we have

�̇�1 (𝑡) ≥ 𝑥1 (𝑡) [𝑟
𝑙

1
− 𝑎𝑢
1
𝑥1 (𝑡) −

𝑏𝑢
1
(𝑀2 + 𝜖)

𝑚1
] ,

𝑡 ̸= 𝜏𝑘, 𝑡 > 𝑇4,

𝑥1 (𝜏
+

𝑘
) = (1 + ℎ1𝑘) 𝑥1 (𝜏𝑘) , 𝑘 ∈ Z

+.

(38)

Consider the following auxiliary system:

�̇�1 (𝑡) = 𝑝1 (𝑡) [𝑟
𝑙

1
− 𝑚−1
1
𝑏𝑢
1
(𝑀2 + 𝜖) − 𝑎

𝑢

1
𝑥1 (𝑡)] ,

𝑡 ̸= 𝜏𝑘, 𝑡 > 𝑇4,

𝑝1 (𝜏
+

𝑘
) = (1 + ℎ1𝑘) 𝑝1 (𝜏𝑘) , 𝑘 ∈ Z

+.

(39)

By Remark 15, 𝑥1(𝑡) ≥ 𝑝1(𝑡) for 𝑡 > 𝑇4, where 𝑝1(𝑡)
is the solution of system (39) with 𝑝1(𝑇

+

4
) = 𝑥1(𝑇

+

4
). By

Lemma 7, system (39) has a unique globally asymptotically
stable positive almost periodic solution 𝑝∗

1
which can be

expressed as follows:

𝑝∗
1
(𝑡) = [𝑎

𝑢

1
∫
𝑡

−∞

𝑊2 (𝑡, 𝑠) 𝑑𝑠]
−1

≥
𝑟𝑙
1
− 𝑚−1
1
𝑏𝑢
1
(𝑀2 + 𝜖) − 𝜉1𝐴

𝑒𝜉1𝐴𝑎𝑢
1

:= 𝑁1 (𝜖) ,

(40)

𝑊2 (𝑡, 𝑠)

=

{{{{{{{{
{{{{{{{{
{

𝑒−[𝑟
𝑙

1
−𝑚
−1

1
𝑏
𝑢

1
(𝑀
2
+𝜖)−𝜉

1
𝐴](𝑡−𝑠), 𝜏𝑘−1 < 𝑠 < 𝑡 < 𝜏𝑘;

𝑘+1

∏
𝑗=𝑚

1

1 + ℎ1𝑗

×𝑒−[𝑟
𝑙

1
−𝑚
−1

1
𝑏
𝑢

1
(𝑀
2
+𝜖)−𝜉

1
𝐴](𝑡−𝑠), 𝜏𝑚−1 < 𝑠 ≤ 𝜏𝑚

< 𝜏𝑘 < 𝑡 ≤ 𝜏𝑘+1.

(41)

Similar to the above argument as that in (29), we have
lim inf 𝑡→∞𝑥1(𝑡) ≥ 𝑁1(𝜖). By the arbitrariness of 𝜖, it leads
to

lim inf
𝑡→∞

𝑥1 (𝑡) ≥ 𝑁1 :=
𝑟𝑙
1
− 𝑚−1
1
𝑏𝑢
1
𝑀2 − 𝜉1𝐴

𝑒𝜉1𝐴𝑎𝑢
1

. (42)

Then, there exist 0 < 𝜖1 ≤ 𝜖 and 𝑇5 > 𝑇4 such that

𝑏𝑙
2
(𝑁1 − 𝜖1)

𝑚1 + (𝑀1 + 𝜖1)
𝛼
1

− 𝑟𝑢
2
−
𝑏𝑢
3
(𝑀3 + 𝜖1)

𝑚2
− 𝜉2𝐴 ≥ 0,

𝑥1 (𝑡) ≥ 𝑁1 − 𝜖1 for 𝑡 ≥ 𝑇5.

(43)
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By the second equation of system (5), we have

�̇�2 (𝑡)

≥ 𝑥2 (𝑡) [
𝑏𝑙
2
(𝑁1 − 𝜖1)

𝑚1 + (𝑀1 + 𝜖1)
𝛼
1

− 𝑟𝑢
2
−
𝑏𝑢
3
(𝑀3 + 𝜖1)

𝑚2

− 𝑎𝑙
2
𝑥2 (𝑡) ] 𝑡 ̸= 𝜏𝑘, 𝑡 > 𝑇2,

𝑥2 (𝜏
+

𝑘
) = (1 + ℎ2𝑘) 𝑥2 (𝜏𝑘) , 𝑘 ∈ Z

+.

(44)

Similar to the above argument as that in (42), one has

lim inf
𝑡→∞

𝑥2 (𝑡)

≥
[(𝑏𝑙
2
𝑁1/ (𝑚1 +𝑀

𝛼
1

1
)) − 𝑟𝑢
2
− (𝑏𝑢
3
𝑀3/𝑚2) − 𝜉2𝐴]

𝑒𝜉2𝐴𝑎𝑢
2

:= 𝑁2.

(45)

Then, there exist 0 < 𝜖2 ≤ 𝜖1 and 𝑇6 > 𝑇5 such that

𝑏𝑙
4
(𝑁2 − 𝜖2)

𝑚2 + (𝑀2 + 𝜖2)
𝛼
2

− 𝑟𝑢
3
− 𝜉3𝐴 ≥ 0,

𝑥2 (𝑡) ≥ 𝑁2 − 𝜖2 for 𝑡 ≥ 𝑇6.

(46)

In view of the third equation of system (5), we have

�̇�3 (𝑡) ≥ 𝑥3 (𝑡) [
𝑏𝑙
4
(𝑁2 − 𝜖2)

𝑚2 + (𝑀2 + 𝜖2)
𝛼
2

− 𝑟𝑢
3
− 𝑎𝑢
3
𝑥3 (𝑡)] ,

𝑡 ̸= 𝜏𝑘, 𝑡 > 𝑇2,

𝑥3 (𝜏
+

𝑘
) = (1 + ℎ3𝑘) 𝑥3 (𝜏𝑘) , 𝑘 ∈ Z

+.

(47)

Similar to the above argument as that in (45), one has

lim inf
𝑡→∞

𝑥3 (𝑡) ≥
[(𝑏𝑙
4
𝑁2/ (𝑚2 +𝑀

𝛼
2

2
)) − 𝑟𝑢
3
− 𝜉3𝐴]

𝑒𝜉3𝐴𝑎𝑢
3

:= 𝑁3.

(48)

This completes the proof.

Remark 10. In view of (𝐻1) in Proposition 9, the values of
impulse coefficients ℎ𝑖𝑘 (𝑖 = 1, 2, 3) and the number of the
impulse points 𝜏𝑘 in each interval of length 1 have negative
effect on the permanence of system (5).

By Propositions 8 and 9, we have the following theorem.

Theorem 11. Assume that (𝐻1) holds; then, system (5) is
permanent.

Remark 12. When ℎ𝑖𝑘 (𝑖 = 1, 2, 3) ≡ 0 in system (5), then
Theorem 11 changes to the corresponding permanence result

in Bai and Wang [15]. So, Theorem 11 extends the corre-
sponding result in Bai and Wang [15]. Further, Theorem 11
gives the sufficient conditions for the permanence of system
(5) with almost periodic impulsive perturbations. There-
fore, Theorem 11 provides a possible method to study the
permanence of the models with impulsive perturbations in
biological populations.

Remark 13. From the proof of Propositions 8 and 9, we
know that, under the conditions of Theorem 11, set 𝑆 =
{(𝑥1, 𝑥2, 𝑥3)

𝑇 ∈ R3 : 𝑁𝑖 ≤ 𝑥𝑖 ≤ 𝑀𝑖, 𝑖 = 1, 2, 3} is an invariant
set of system (5).

4. Almost Periodic Solution

Themain result of this paper is concerned with the existence
of a unique uniformly asymptotically stable positive almost
periodic solution for system (5).

Let

𝑐1 (𝑡) := max
𝑁
1
≤𝑥≤𝑀

1

𝛼1𝑥
𝛼
1
−1𝑀2𝑏1 (𝑡)

(𝑚1 + 𝑥
𝛼
1)
2

,

𝑐2 (𝑡) := max
𝑁
1
≤𝑥≤𝑀

1

𝑚1 + (1 − 𝛼1) 𝑥
𝛼
1
 𝑏2 (𝑡)

(𝑚1 + 𝑥
𝛼
1)
2

,

𝑑1 (𝑡) :=
𝑏1 (𝑡)

𝑚1 + 𝑁
𝛼
1

1

,

𝑑2 (𝑡) := max
𝑁
2
≤𝑥≤𝑀

2

𝛼2𝑥
𝛼
2
−1𝑀3𝑏3 (𝑡)

(𝑚2 + 𝑥
𝛼
2)
2

,

𝑑3 (𝑡) := max
𝑁
2
≤𝑥≤𝑀

2

𝑚2 + (1 − 𝛼2) 𝑥
𝛼
2
 𝑏4 (𝑡)

(𝑚2 + 𝑥
𝛼
2)
2

,

𝑒 (𝑡) :=
𝑏3 (𝑡)

𝑚2 + 𝑁
𝛼
2

2

, ∀𝑡 ∈ R.

(49)

Theorem 14. Assume that (𝐻1) holds; suppose further that

(𝐻2) there exist positive constants 𝜆1, 𝜆2, 𝜆3, and 𝜇 such that

inf
𝑡∈R

[𝜆1𝑎1 (𝑡) − 𝜆1𝑐1 (𝑡) − 𝜆2𝑐2 (𝑡)] > 𝜇,

inf
𝑡∈R

[𝜆3𝑎3 (𝑡) − 𝜆2𝑒1 (𝑡)] > 𝜇,

inf
𝑡∈R

[𝜆2𝑎2 (𝑡) − 𝜆1𝑑1 (𝑡) − 𝜆2𝑑2 (𝑡) − 𝜆3𝑑3 (𝑡)] > 𝜇;

(50)

then, system (5) admits a unique positive almost periodic
solution, which is uniformly asymptotically stable.
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Proof. Suppose that 𝑍(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡))
𝑇 and 𝑍∗(𝑡) =

(𝑧∗
1
(𝑡), 𝑧∗
2
(𝑡), 𝑧∗
3
(𝑡))𝑇 are any two solutions of system (5).

Consider the product system of system (5) as

�̇�1 (𝑡) = 𝑧1 (𝑡) [𝑟1 (𝑡) − 𝑎1 (𝑡) 𝑧1 (𝑡) −
𝑏1 (𝑡) 𝑧2 (𝑡)

𝑚1 + 𝑧
𝛼
1

1
(𝑡)
] ,

�̇�2 (𝑡) = 𝑧2 (𝑡) [−𝑟2 (𝑡) +
𝑏2 (𝑡) 𝑧1 (𝑡)

𝑚1 + 𝑧
𝛼
1

1
(𝑡)

−𝑎2 (𝑡) 𝑧2 (𝑡) −
𝑏3 (𝑡) 𝑧3 (𝑡)

𝑚2 + 𝑧
𝛼
2

2
(𝑡)
] ,

�̇�3 (𝑡) = 𝑧3 (𝑡) [−𝑟3 (𝑡) +
𝑏4 (𝑡) 𝑧2 (𝑡)

𝑚2 + 𝑧
𝛼
2

2
(𝑡)

− 𝑎3 (𝑡) 𝑧3 (𝑡)] ,

�̇�∗
1
(𝑡) = 𝑧

∗

1
(𝑡) [𝑟1 (𝑡) − 𝑎1 (𝑡) 𝑧

∗

1
(𝑡) −

𝑏1 (𝑡) 𝑧
∗

2
(𝑡)

𝑚1 + 𝑧
∗𝛼
1

1
(𝑡)
] ,

�̇�∗
2
(𝑡) = 𝑧

∗

2
(𝑡) [−𝑟2 (𝑡) +

𝑏2 (𝑡) 𝑧
∗

1
(𝑡)

𝑚1 + 𝑧
∗𝛼
1

1
(𝑡)

− 𝑎2 (𝑡) 𝑧
∗

2
(𝑡)

−
𝑏3 (𝑡) 𝑧

∗

3
(𝑡)

𝑚2 + 𝑧
∗𝛼
2

2
(𝑡)
] ,

�̇�∗
3
(𝑡) = 𝑧

∗

3
(𝑡) [−𝑟3 (𝑡) +

𝑏4 (𝑡) 𝑧
∗

2
(𝑡)

𝑚2 + 𝑧
∗𝛼
2

2
(𝑡)

− 𝑎3 (𝑡) 𝑧
∗

3
(𝑡)] ,

𝑡 ̸= 𝜏𝑘,

Δ𝑧1 (𝜏𝑘) = ℎ1𝑘𝑧1 (𝜏𝑘) ,

Δ𝑧2 (𝜏𝑘) = ℎ2𝑘𝑧2 (𝜏𝑘) ,

Δ𝑧3 (𝜏𝑘) = ℎ3𝑘𝑧3 (𝜏𝑘) ,

Δ𝑧∗
1
(𝜏𝑘) = ℎ1𝑘𝑧

∗

1
(𝜏𝑘) ,

Δ𝑧∗
2
(𝜏𝑘) = ℎ2𝑘𝑧

∗

2
(𝜏𝑘) ,

Δ𝑧∗
3
(𝜏𝑘) = ℎ3𝑘𝑧

∗

3
(𝜏𝑘) , 𝑘 ∈ Z.

(51)

Set 𝑆1 = {(𝑧1, 𝑧2, 𝑧3)
𝑇 ∈ R3 : 𝑁𝑖 ≤ 𝑧𝑖 ≤ 𝑀𝑖, 𝑖 =

1, 2, 3}, which is an invariant set of system (51) directly from
Remark 13.

Construct a Lyapunov functional 𝑉(𝑡, 𝑍, 𝑍∗) =

𝑉(𝑡, (𝑧1, 𝑧2, 𝑧3)
𝑇, (𝑧∗
1
, 𝑧∗
2
, 𝑧∗
3
)𝑇) defined on R+ × 𝑆1 × 𝑆1 × 𝑆1

as follows:

𝑉 (𝑡, 𝑍, 𝑍∗) =
3

∑
𝑖=1

𝜆𝑖
ln 𝑧𝑖 (𝑡) − ln 𝑧∗

𝑖
(𝑡)
 . (52)

It is obvious that

𝑉 (𝑡, 𝑍, 𝑍∗)

≥ min {𝜆1, 𝜆2, 𝜆3}
3

∑
𝑖=1

ln 𝑧𝑖 (𝑡) − ln 𝑧∗
𝑖
(𝑡)


≥ min {𝜆1, 𝜆2, 𝜆3}
3

∑
𝑖=1

1

𝑀𝑖

𝑧𝑖 (𝑡) − 𝑧
∗

𝑖
(𝑡)
 ≥ 𝜆

𝑍 − 𝑍∗
 ,

(53)

where 𝜆 := min{𝜆1, 𝜆2, 𝜆3}min{𝑀−1
1
,𝑀−1
2
,𝑀−1
3
}. Further,

we have

𝑉 (𝑡, 𝑍, 𝑍∗)

≤ max {𝜆1, 𝜆2, 𝜆3}
3

∑
𝑖=1

ln 𝑧𝑖 (𝑡) − ln 𝑧∗
𝑖
(𝑡)


≤ max {𝜆1, 𝜆2, 𝜆3}
3

∑
𝑖=1

1

𝑁𝑖

𝑧𝑖 (𝑡) − 𝑧
∗

𝑖
(𝑡)
 ≤ 𝜆

𝑍 − 𝑍∗
 ,

(54)

where 𝜆 := max{𝜆1, 𝜆2, 𝜆3}max{𝑁−1
1
, 𝑁−1
2
, 𝑁−1
3
}; thus, (1) in

Lemma 4 is satisfied.
Since

𝑉 (𝑡, 𝑍, 𝑍
∗) − 𝑉 (𝑡, 𝑍, 𝑍

∗

)


=
3

∑
𝑖=1

𝜆𝑖
ln 𝑧𝑖 (𝑡) − ln 𝑧∗

𝑖
(𝑡)


−
3

∑
𝑖=1

𝜆𝑖
ln 𝑧𝑖 (𝑡) − ln 𝑧∗

𝑖
(𝑡)


≤ 𝜆
3

∑
𝑖=1

[
𝑧𝑖 (𝑡) − 𝑧

∗

𝑖
(𝑡)
 +

𝑧𝑖 (𝑡) − 𝑧
∗

𝑖
(𝑡)
]

= 𝜆 [
𝑍 (𝑡) − 𝑍

∗
(𝑡)
 +

𝑍 (𝑡) − 𝑍
∗

(𝑡)
] ,

(55)

(2) in Lemma 4 holds.
For 𝑡 ̸= 𝜏𝑘, 𝑘 ∈ Z+, calculating the upper right derivative

of 𝑉(𝑡) along the solution of system (51), we have

𝐷+𝑉 (𝑡) =
3

∑
𝑖=1

𝜆𝑖 [
�̇�𝑖 (𝑡)

𝑧𝑖 (𝑡)
−
�̇�∗
𝑖
(𝑡)

𝑧∗
𝑖
(𝑡)
] sgn (𝑧𝑖 (𝑡) − 𝑧

∗

𝑖
(𝑡))

= 𝜆1 sgn (𝑧1 (𝑡)

−𝑧∗
1
(𝑡)) {−𝑎1 (𝑡) [𝑧1 (𝑡) − 𝑧

∗

1
(𝑡)]

−
𝑏1 (𝑡) 𝑧2 (𝑡)

𝑚1 + 𝑧
𝛼
1

1
(𝑡)

+
𝑏1 (𝑡) 𝑧

∗

2
(𝑡)

𝑚1 + 𝑧
∗𝛼
1

1
(𝑡)
}

+ 𝜆2 sgn (𝑧2 (𝑡) − 𝑧
∗

2
(𝑡))

× {−𝑎2 (𝑡) [𝑧2 (𝑡) − 𝑧
∗

2
(𝑡)]

+
𝑏2 (𝑡) 𝑧1 (𝑡)

𝑚1 + 𝑧
𝛼
1

1
(𝑡)

−
𝑏2 (𝑡) 𝑧

∗

1
(𝑡)

𝑚1 + 𝑧
∗𝛼
1

1
(𝑡)

−
𝑏3 (𝑡) 𝑧3 (𝑡)

𝑚2 + 𝑧
𝛼
2

2
(𝑡)

+
𝑏3 (𝑡) 𝑧

∗

3
(𝑡)

𝑚2 + 𝑧
∗𝛼
2

2
(𝑡)
}

+ 𝜆3 sgn (𝑧3 (𝑡) − 𝑧
∗

3
(𝑡))
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× {−𝑎3 (𝑡) [𝑧3 (𝑡) − 𝑧
∗

3
(𝑡)]

+
𝑏4 (𝑡) 𝑧2 (𝑡)

𝑚2 + 𝑧
𝛼
2

2
(𝑡)

−
𝑏4 (𝑡) 𝑧

∗

2
(𝑡)

𝑚2 + 𝑧
∗𝛼
2

2
(𝑡)
}

≤ − [𝜆1𝑎1 (𝑡) − 𝜆1𝑐1 (𝑡) − 𝜆2𝑐2 (𝑡)]
𝑧1 (𝑡) − 𝑧

∗

1
(𝑡)


− [𝜆2𝑎2 (𝑡) − 𝜆1𝑑1 (𝑡) − 𝜆2𝑑2 (𝑡) − 𝜆3𝑑3 (𝑡)]

×
𝑧2 (𝑡) − 𝑧

∗

2
(𝑡)


− [𝜆3𝑎3 (𝑡) − 𝜆2𝑒1 (𝑡)]
𝑧3 (𝑡) − 𝑧

∗

3
(𝑡)


≤ −
3

∑
𝑖=1

𝜇

𝜆𝑖𝑁𝑖
𝜆𝑖
ln 𝑧𝑖 (𝑡) − ln 𝑧∗

𝑖
(𝑡)


≤ −min{
𝜇

𝜆1𝑁1
,

𝜇

𝜆2𝑁2
,

𝜇

𝜆3𝑁3
}𝑉 (𝑡, 𝑍, 𝑍∗) .

(56)

For 𝑡 = 𝜏𝑘, 𝑘 ∈ Z+, we have

𝑉 (𝜏+
𝑘
, 𝑍 (𝜏+
𝑘
) , 𝑍∗ (𝜏+

𝑘
)) =

3

∑
𝑖=1

𝜆𝑖
ln 𝑧𝑖 (𝜏

+

𝑘
) − ln 𝑧∗

𝑖
(𝜏+
𝑘
)


=
3

∑
𝑖=1

𝜆𝑖


ln

(1 + ℎ𝑖𝑘) 𝑧𝑖 (𝜏𝑘)

(1 + ℎ𝑖𝑘) 𝑧
∗

𝑖
(𝜏𝑘)



=
3

∑
𝑖=1

𝜆𝑖
ln 𝑧𝑖 (𝜏𝑘) − ln 𝑧∗

𝑖
(𝜏𝑘)



= 𝑉 (𝜏𝑘, 𝑍 (𝜏𝑘) , 𝑍
∗ (𝜏𝑘)) .

(57)

In view of (56)-(57), (3) in Lemma 4 is satisfied.
By Lemma 4, system (5) admits a unique uniformly

asymptotically stable positive almost periodic solution
(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡))

𝑇. This completes the proof.

Remark 15. When ℎ𝑖𝑘 (𝑖 = 1, 2, 3) ≡ 0 in system (5), then
Theorem 14 changes to the corresponding permanence result
in Bai and Wang [15]. So, Theorem 14 extends the corre-
sponding result in Bai and Wang [15]. Further, Theorem 14
gives the sufficient conditions for the uniform asymptotical
stability of a unique positive almost periodic solution of
system (5), in which 𝛼1 and 𝛼2 are allowed to be any real-
valued positive number. Therefore, Theorem 14 provides a
possible method to study the existence, uniqueness, and
stability of positive almost periodic solution of the models
with impulsive perturbations in biological populations.

5. An Example and Numerical Simulations

Example 1. Consider the following food chain system with
impulsive perturbations:

�̇�1 (𝑡) = 𝑥1 (𝑡) [2 + cos (√2𝑡) − 10𝑥1 (𝑡)

−
0.1 cos (√3𝑡) 𝑥2 (𝑡)

1 + 𝑥1 (𝑡)
] ,

�̇�2 (𝑡) = 𝑥2 (𝑡) [ − 0.1 sin (√2𝑡)

+
(5 + cos (√2𝑡)) 𝑥1 (𝑡)

𝑚1 + 𝑥1 (𝑡)

−10𝑥2 (𝑡) −
0.1𝑥3 (𝑡)

1 + 𝑥2 (𝑡)
] ,

�̇�3 (𝑡) = 𝑥3 (𝑡) [ − 0.1 cos (√5𝑡)

+
(6 + sin (√3𝑡)) 𝑥2 (𝑡)

1 + 𝑥2 (𝑡)
−10𝑥3 (𝑡) ] ,

𝑡 ̸= 𝜏𝑘,

Δ𝑥1 (𝜏𝑘) = 0.1𝑥1 (𝜏𝑘) ,

Δ𝑥2 (𝜏𝑘) = 0.2𝑥2 (𝜏𝑘) ,

Δ𝑥3 (𝜏𝑘) = 0.3𝑥3 (𝜏𝑘) , 𝑘 ∈ {0, 1, . . .} = Z
+,

𝜃 = inf
𝑘∈Z

𝜏1
𝑘
= 1;

(58)

then, system (58) is permanent and admits a unique uni-
formly asymptotically stable positive almost periodic solu-
tion.

Proof. Corresponding to system (2), 𝑟1(𝑡) = 2 + cos(√2𝑡),
𝑟2(𝑡) = 0.1 sin(√2𝑡), 𝑟3(𝑡) = 0.1 cos(√5𝑡), 𝑎1 = 𝑎2 = 𝑎3 ≡

10, 𝑏1(𝑡) = 0.1 cos(√3𝑡), 𝑏2(𝑡) = 5 + cos(√2𝑡), 𝑏3(𝑡) = 0.1,
𝑏4(𝑡) = 6 + sin(√3𝑡), 𝑚1 = 𝑚2 = 𝛼1 = 𝛼2 = 1, ℎ1𝑘 ≡ 0.1,
ℎ2𝑘 ≡ 0.2, ℎ3𝑘 ≡ 0.3, 𝑘 ∈ Z+. Taking 𝜆1 = 𝜆2 = 𝜆3 = 1, the
result is easy to obtain from Theorems 11 and 14; we would
omit it (see Figures 1, 2, 3, 4, 5, and 6). This completes the
proof.

6. Conclusion

By using the comparison theorem and the Lyapunov method
of the impulsive differential equations, sufficient conditions
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Figure 1: State variable 𝑥1 of Example 1.
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Figure 2: State variable 𝑥2 of Example 1.
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Figure 3: State variable 𝑥3 of Example 1.
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Figure 4: Stability of state variable 𝑥1 of Example 1.
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Figure 5: Stability of state variable 𝑥2 of Example 1.
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Figure 6: Stability of state variable 𝑥
3
of Example 1.

are obtained which guarantee the permanence and existence
of a unique uniformly asymptotically stable positive almost
periodic solution of a food chain system with almost peri-
odic impulsive perturbations. Proposition 9 and Theorem 14
imply that the values of impulse coefficients ℎ𝑖𝑘 (𝑖 = 1, 2, 3)
and the number of the impulse points 𝜏𝑘 in each interval
of length 1 are harm for the permanence and existence
of a unique uniformly asymptotically stable positive almost
periodic solution of the model. The main results obtained in
this paper are completely new and the method used in this
paper provides a possible method to study the permanence
and existence of a unique uniformly asymptotically stable
positive almost periodic solution of the models with impul-
sive perturbations in biological populations.
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