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We consider the nonlinear dynamics in a double-chain model of DNA which consists of two long elastic homogeneous strands
connectedwith each other by an elasticmembrane. By using themethodof dynamical systems, the bounded travelingwave solutions
such as bell-shaped solitary waves and periodic waves for the coupled nonlinear dynamical equations of DNA model are obtained
and simulated numerically. For the same wave speed, bell-shaped solitary waves of different heights are found to coexist.

1. Introduction

In 1953, Waston and Crick discovered the structure of
deoxyribonucleic acid (DNA) double helix [1], which opened
the area of molecular biology. The significance of the double
helix model not only means the proven structure of DNA,
but, more importantly, also helps to reveal the replication
mechanism of DNA. To further study the characteristics
of DNA, nonlinear science has been used to deal with
DNA system, because its properties can be investigated by
nonlinear models that combine the methods of physics with
biological tools [2]. The soliton theory especially which
pertains to nonlinear science has been widely applied in the
study of DNA [3–6].

To study DNA structure from the view of nonlinear
science, it is necessary to look for the right nonlinear
mathematical models. A number of researchers have tried to
establish mathematical models to describe DNA system. At
the beginning, it is difficult to use a specific mathematical
model to simulate DNA system due to its complex structure
and the presence of various movements [7]. So some simpli-
fiedmodels were used to study only some internal movement
in DNA [8–12]. Further, two movements which made the
main contribution to the DNA denaturation process were
taken into account together in one model. For example, a
two-dimensional discrete model was used to describe the

two movements in DNA [13]. Another new double-chain
model of DNA that consists of two long elastic homogeneous
strands was given to describe transverse movements along
the hydrogen bond and longitudinal movements along the
backbone direction [14, 15].

In [14, 15], the nonlinear dynamical equations were
derived and nonlinear dynamics of DNA were studied. The
exact solutions of the general nonlinear dynamic system
in the double-chain model of DNA were obtained and
discussed numerically and analytically under some special
approximate conditions. The nonlinear dynamical equations
for the double-chain model were given as follows:
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where 𝑢 denotes the difference of the longitudinal displace-
ments of the bottom and top strands, that is, the displace-
ments of the bases from their equilibrium positions along
the direction of the phosphodiester bridge that connects the
two bases of the same strands; V represents the difference of
the transverse displacements of the bottom and top strands,
that is, the displacements of the bases from their equilibrium
positions along the direction of the hydrogen bond that
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where 𝜌,𝜎,𝑌,𝐹, 𝜇, 𝑙
0
, and ℎ are, respectively, themass density,

the area of transverse cross-section, the Young modulus,
the tension density of the strand, the rigidity of the elastic
membrane, the distance of the two strands, and the height of
the membrane in the equilibrium position.

In [16], introducing the transformation V = 𝑎𝑢 + 𝑏 (𝑎 and
𝑏 are constants) in (1) yields
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Comparing (3) and using the physical quantities (2), it follows
that 𝑏 = ℎ/√2 and 𝐹 = 𝑌; (3) can be written as
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Reference [16] studied the traveling wave solutions of
(4) and obtained one particular family of solitary kink-
type solutions for different values of Riccati parameter of
(4). Unfortunately the results are not complete, because (4)
admits tanh-type, periodic-type, and bell-type solutions; [16]
only presented the tanh-type solutions.

In this paper, we use the bifurcationmethod of dynamical
systems [17–20] to study bell-type and periodic-type solu-
tions of (6), which can improve the results in [16]. We look
for solutions of (4) in the form of 𝑢(𝑥, 𝑡) = 𝜑(𝜉) with 𝜉 =
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we have
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which is equivalent to the following two-dimensional system:
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Obviously, system (6) has the first integral
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where𝑀 is the Hamiltonian constant.

In fact, system (6) is a planar dynamical system whose
phase orbits defined by the vector field of (6) determine
traveling wave solutions, so we first need to investigate some
different phase portraits of system (6) in different parameter
regions. Then, by using the theory of dynamical system, we
will identify some different wave profiles and compute exact
representations for solitary wave solutions and periodic wave
solutions.

This paper is organized as follows. In Section 2, we draw
bifurcation phase portraits of system (6), where explicit
parametric conditions will be derived. In Section 3, we give
exact representations of solitary wave and periodic wave
solutions of (6) in explicit form. A short conclusion will be
given in Section 4.

2. Properties of Singular Points and
Bifurcation Phase Portraits

Firstly, we compute the equilibrium points of system (6)
under different parametric conditions. It is clear that neither
the parameters 𝐵 nor 𝐶 takes value zero from the forms of
parameters 𝐴, 𝐵, and 𝐶; then 𝐴 equals zero if 𝑎 = ±√2/2.
So we give equilibrium points in different parametric cases as
follows.
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and (−𝐶/𝐵, 0).
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which are eigenvalues of linearized system of (6) at point
(𝜑, 0).

Secondly, we compute the intersection points of phase
portraits of (6) on the 𝜑-axis when the orbits pass through
the equilibrium point (0, 0), namely, when the Hamiltonian
constant𝑀 = ℎ(0, 0) = 0. Let 𝑓(𝜑) = (1/2)𝐴𝜑
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to draw bifurcation phase portraits of system (6), we need to
discuss the sign of parameters 𝐴, 𝐵, and 𝐶. The intersection
points of phase portraits of (6) on the 𝜑-axis are given as
follows.

(1) If 𝐴 = 0, there are two intersection points (0, 0) and
(𝜑
0
, 0) of (6) on the 𝜑-axis (see Figure 1).

(2) If 𝐴 > 0, there are three intersection points (0, 0),
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(see Figure 2).
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(𝜑
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, 0), and (𝜑
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, 0) of (6) on the 𝜑-axis and 𝜑
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(see Figure 3).



Abstract and Applied Analysis 3

y

0 𝜑𝜑0

(a) 𝐵 > 0, 𝐶 > 0

y

0 𝜑𝜑0

(b) 𝐵 > 0, 𝐶 < 0

y

0 𝜑𝜑0

(c) 𝐵 < 0, 𝐶 > 0

y

0 𝜑𝜑0

(d) 𝐵 < 0, 𝐶 < 0

Figure 1: The bifurcation phase portraits of system (6) with 𝐴 = 0.
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Figure 2: The bifurcation phase portraits of system (6) with 𝐴 > 0.
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Figure 3: The bifurcation phase portraits of system (6) with 𝐴 < 0.

Finally, from the above analysis about system (6), we give
twelve different phase portraits of (6) which are shown in
Figures 1–3.There exist homoclinic orbits and periodic orbits
in some phase portraits of Figures 1–3, which correspond to
bell-type and periodic-type waves and are of special interest
to us.

3. Exact Explicit Representations of
Solitary Wave Solutions

(1) The case 𝐴 = 0, 𝐵 > 0, and 𝐶 > 0 (see Figure 1(a)).

Corresponding to the homoclinic orbit of (6) passing
through points (𝜑

0
, 0) and (0, 0) on the𝜑−𝑦 plane, there exists

a smooth solitary wave solution. Now, (7) becomes
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Solving (9) yields
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(2) The case 𝐴 = 0, 𝐵 < 0, and 𝐶 > 0 (see Figure 1(c)).

Similarly, in Figure 1(c) the homoclinic orbit has the
following expression:
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2
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3
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2
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0
) . (11)

Thus the corresponding smooth solitary wave solution is
obtained as (10) and its profile is shown in Figure 4(b).

(3) The case 𝐴 > 0, 𝐵 > 0, and 𝐶 > 0 (see Figure 2(a)).

In this case, on the 𝜑 − 𝑦 plane the homoclinic orbit of
(6) passing through points (𝜑

2
, 0) and (0, 0) has the following
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Figure 4: Smooth solitary wave and periodic wave solutions.

Choosing 𝜑(0) = 𝜑
2
, substituting (12) into the first equation

of (6), and integrating along the homoclinic orbit, we have
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Solving (13), it follows that
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figure caption Figure 4(a).

(4) The case 𝐴 > 0, 𝐵 < 0, and 𝐶 > 0 (see Figure 2(c)).

In this case, on the 𝜑 − 𝑦 plane the homoclinic orbit of
(6) passing through points (𝜑

1
, 0) and (0, 0) has the following
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, substituting (15) into the first equation

of (6), and integrating along the homoclinic orbit, we have
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Solving (16), we get
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(5) The case 𝐴 < 0, 𝐵 > 0, and 𝐶 > 0 and 𝐴 < 0, 𝐵 < 0,
and 𝐶 > 0 (see Figures 3(a) and 3(c)).

In this case, there exist two homoclinic orbits and their
expressions are (12) and (15), respectively. Similarly we get
the corresponding solitary wave solutions as 𝑢

2
and 𝑢
3
, which

coexist for the same speed.The plane graphs of the coexisting
solitary wave solutions are shown in Figure 4(c), when𝐴 < 0,
𝐵 > 0, and 𝐶 > 0, and Figure 4(d), when 𝐴 < 0, 𝐵 < 0, and
𝐶 > 0.

(6) The case 𝐴 < 0, 𝐵 > 0, and 𝐶 < 0 (see Figure 3(b)).

In this case, on the𝜑−𝑦plane the orbit of (6)which passes
through points (𝜑

1
, 0) and (𝜑
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, 0) is a periodic orbit; it has the

following expression:
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Choosing 𝜑(0) = 𝜑
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of (6), and integrating along the periodic orbit, we have
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Solving (19) we obtain the following periodic wave solution:
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The profile of 𝑢
4
is shown in Figure 4(e).
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(7) The case 𝐴 < 0, 𝐵 < 0, and 𝐶 < 0 (see Figure 3(d)).

Similarly, corresponding to the periodic orbit of (6)
which passes through points (𝜑

1
, 0) and (𝜑

2
, 0), there exists

a periodic wave solution. Now, the expression of the periodic
orbit is
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1
< 0) . (21)

Choosing 𝜑(0) = 𝜑
2
, substituting (21) into the first equation

of (6), and integrating along the periodic orbit, we have

∫

𝜑

𝜑2

1

𝑠√(1/2) 𝐴𝑠
2
+ (2/3) 𝐵𝑠 + 𝐶

𝑑𝑠 =




𝜉




. (22)

Solving (22), it follows that

𝑢
5
=

6𝐶

−√4𝐵
2
− 18𝐴𝐶 cos (√−𝐶𝜉) − 2𝐵

. (23)

The profile of 𝑢
5
is shown in Figure 4(f).

4. Conclusion

In this paper, we employ the method of dynamical systems
to study the nonlinear dynamical equations of DNA model.
The bifurcation phase portraits of the DNA under some para-
metric conditions are drawn, and explicit exact expressions of
bell-shaped solitary waves and periodic waves are obtained
via some special homoclinic and periodic orbits; their planar
graphs are simulated. These solutions are new and different
from those in [14–16]; some existing results are improved.
Furthermore, in general, the larger the wave speed, the higher
the wave crest. So for the same wave speed, it is interesting
that the bell-shaped solitary waves of different heights are
found to coexist.
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