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Overcoming the coupling among variables is greatly necessary to obtain accurate, rapid and independent control of the real
nonlinear systems. In this paper, the main methodology, on which the method is based, is dynamic neural networks (DNN)
and adaptive control with the Lyapunov methodology for the time-varying, coupling, uncertain, and nonlinear system. Under
the framework, the DNN is developed to accommodate the identification, and the weights of DNN are iteratively and adaptively
updated through the identification errors. Based on the neural network identifier, the adaptive controller of complex system is
designed in the latter. To guarantee the precision and generality of decoupling tracking performance, Lyapunov stability theory is
applied to prove the error between the reference inputs and the outputs of unknownnonlinear system which is uniformly ultimately
bounded (UUB). The simulation results verify that the proposed identification and control strategy can achieve favorable control
performance.

1. Introduction

Coupling is a widespread phenomenon existing in nonlinear
systems. Due to the existence of the coupling, the variables
among systems often suffer impact from each other’s fluc-
tuations. Besides, time-varying and time delay is frequently
encountered in many real control systems, and these may
be the root of instability in the performance of closed-
loop system. If the problems which have attracted many
researchers cannot be solved effectively, they would not only
delay achieving the steady states, but also realize the goal
of independent control at all. Thereby, in order to achieve
accurate, rapid, and independent control, it is essential to
decouple among these variables and take the relatedmethods.
However, how to select the proper methodology according to
the characteristics of control object is a thorny question.

In the open pieces of literature, the traditional decoupling
ways to a multi-input multioutput (MIMO) system are
primarily represented by frequency domain methods such
as state variable method, diagonal dominance matrix, char-
acteristic curve method, inverse Nyquist array, and relative
gain analysis method [1]. These methods, which are based

on rigorous transfer functions or state spaces, play a signif-
icant role in decoupling the linear time-invariant systems.
Nevertheless, these methods are hard to accomplish dynamic
decoupling for uncertain, nonlinear, and time-variantMIMO
systems because precise systemmodels are difficult to develop
for these systems. Hence, the above traditional decoupling
methods are limited to a certain extent.

With the development of decoupling control, many other
decoupling approaches, such as adaptive decoupling [2, 3],
energy decoupling [4, 5], disturbance decoupling [6, 7],
robust decoupling [8, 9], prediction decoupling, intelligent
decoupling methods mainly represented by fuzzy decou-
pling [10], and neural network (NN) decoupling [11], have
been proposed and applied in many real control practices.
Adaptive decoupling has merits in decoupling a system with
uncertain factors and can solve the system’s uncertainty to
some extent. However, the algorithm of adaptive controller
has a large amount of calculation and ismuch time consumed
[12] so that it is hard to be implemented in the processing
of real-time control. Energy decoupling can be applied in
linear uncertain systems, but, up to now, the method is also
confined to the research stage [13]. Disturbance decoupling
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[14, 15] tries to perfectly eliminate the external influences
on system outputs, but the feasibility of this method has
closer relationship with the development of nonlinear system
differential geometry theory which is too strict and complex,
so some researchers think this approach is very trouble
to be widely used in the real control processes. Robust
decoupling attempts to design a compensator with both
good dynamic performance and strong robustness, but it is
tough to deal well with the inner contradiction between the
dynamic performance and the optimal decoupling controller
parameters of robustness. Intelligent decoupling methods
have obvious advantages in decoupling nonlinear systems
and have received a lot of interest in decoupling control fields.
The representative of intelligent decoupling methods, NN
decoupling, has self-learning, adaptive, and fault tolerance
abilities and is an universal approximator which has the
capability of approximating any nonlinear function to any
desired degree of accuracy, making it a useful tool for
decoupling control in MIMO nonlinear systems. But NN
decoupling commonly requires to be combined with other
related algorithms to realize decoupling control [11, 16].
Fuzzy decoupling accomplishes the system decoupling by
defuzzification based on the fuzzy rules which are often
summarized by practical experiences. For the simple systems,
it can be achieved easily, but for more complex MIMO
nonlinear systems the accurate multidimensional fuzzy rules
are very difficult, even impossible, to be established [17].

In practice, allowing for a complicated MIMO nonlinear
system with uncertainty and strong coupling, the common
PID controller with fixed parameters can hardly achieve the
desired steady sate at all. At the same time, the physical system
is often difficult to obtain accurate and faithful mathemat-
ical model so that the conventional control schemes based
on precise mathematical model can hardly achieve good
performance in the real control process. Motivated by the
seminal paper [18], there is a continuously increasing interest
in applying neural network to identification and control
of nonlinear system. In structure, neural networks can be
classified as dynamic and feedforward ones.However,most of
practical applications use the feedforward structures [19, 20],
which are suitable for the approximation of complex static
functions. Nevertheless, the major shortcomings of such
structure of neural networks in describing dynamic functions
are that the weight updating does not utilize the information
on the local date structure and the function approximation
is sensitive to the purity of training data. On the other hand,
the dynamic neural networks [21–24] incorporate feedback
not merely having concise structure but more importantly
having adaptive mechanism incorporated to fine tune the
approximation accuracy and convergent speed. So dynamic
neural network (DNN) is being developed, which is superior
to the static neural network such as radial basis function
(RBF) and backpropagation (BP) neural network on the
dynamic characteristic [25, 26] recent years, and it is now
widely applied in the fields of system identification and
MIMO nonlinear control.

In this paper, we focus on developing an indirect adap-
tive NN controller for complex nonlinear systems includ-
ing strong coupling, unknown or uncertain models, and

disturbances simultaneously. The proposed method is the
combination of NN-based identifier and adaptive controller,
and the controller is designed based on the identified NN
model. The main merits of this paper can be summarized as
follows.

(1) A novel and generalized decoupling control strategy
based on indirect adaptive control is presented for
nonlinear systems. Firstly, we construct a dynamic
neural network (DNN) identifier without coupling to
replace the real coupled systems. Then, we design the
adaptive controller to deal with the nonlinear systems
based on DNN identifier models.

(2) According to the Lyapunov methodology, the online
weights updating laws of DNN are developed to
accommodate the identification and to guarantee that
the error between the DNN identifier and the real
unknown systems is UUB.

(3) According to the Lyapunov methodology, the adap-
tive control laws are designed to deal with model-
ing uncertainties, system nonlinearities, and external
disturbances and to guarantee stable tracking per-
formance of the real outputs related to the reference
inputs.

This paper is structured in the followingway. In Section 2,
the problem formulation and preliminaries are presented, in
which a general nonlinear dynamic systemmodel and its neu-
ral network approximator are presented to establish a basis
for designing and analyzing the system identification and
control. In Section 3, a DNN-based identification algorithm
is developed to approximate the nonlinear system. Section 4
proposed the adaptive decoupling control algorithm based
on the DNN identifier. In Section 5, the whole procedure
for the identification and control is described to provide a
step by step guide for potential users. The simulation results
demonstrate the effectiveness and generality of the proposed
algorithm in Section 6. Finally, in Section 7 the conclusion is
summarized.

2. Problem Formulation and Preliminaries

The equation of MIMO continuous-time-varying nonlinear
coupling system can be generally described as

𝑦 = 𝑔 (𝑥, 𝑢, 𝑡) , (1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇 is the state vector of nonlinear

system, 𝑢 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
]
𝑇 is the bounded control input

vector, 𝑦 = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇 is the output vector, and 𝑔(⋅) is

an unknown continuous nonlinear smooth function.
In this study, the following assumptions are imposed.

Assumption 1. The whole system can be decomposed as 𝑁
coupling subsystems. The architecture of the multi-input
multioutput nonlinear system is shown in Figure 1.

Assumption 2. All the states of system are bounded and
measurable at every instant.Thedesired output trajectory and
its first derivative are bounded.
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Figure 1: The architecture of the MIMO nonlinear system.
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Figure 2: The architecture of system identification based on DNN.

In order to analyze the dynamic characteristic of nonlin-
ear systemmore conveniently, we use the state-space equation
to describe system (1) as follows:

�̇�
1
= 𝑔
1
(𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

�̇�
2
= 𝑔
2
(𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

...

�̇�
𝑛
= 𝑔
𝑛
(𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

𝑦
1
= 𝑥
1

𝑦
2
= 𝑥
2

...

𝑦
𝑛
= 𝑥
𝑛
.

(2)

By qualitatively analyzing the above model (2), it can
be seen that the system is a coupling, time-varying, and
uncertain nonlinear system. It is difficult, even impossible,
to establish the accurate mathematical model and achieve
prefect performance by using traditional decoupling control
methods. In this paper, the dynamic neural network 𝑔

𝑛𝑛
(𝑥
𝑛𝑛
)

will be employed to approximate the continuous nonlinear
function 𝑔(𝑥), so that

𝑔 (𝑥) = 𝑔
𝑛𝑛
(𝑥
𝑛𝑛
) . (3)

To identify the coupling, uncertain, and nonlinear
dynamic system (2), we use dynamic neural network as the
identifier and construct the identification structure as shown
in Figure 2.
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Figure 3: The architecture of DNN-based identifier.

We consider a single-layer, fully interconnected DNN as
follows [25, 27]:

𝑔
𝑛𝑛
(𝑥
𝑛𝑛
) = �̇�
𝑛𝑛
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢, (4)

where 𝑥
𝑛𝑛
∈ R𝑛 is the state variables of DNN, 𝐴 =

diag[−𝑎
1
, . . . , −𝑎

𝑛
] ∈ R𝑛×𝑛, 𝑎

𝑖
> 0, 𝑖 = 1, . . . , 𝑛 is the

unknown matrix for the linear part of NN model, 𝐵 ∈

R𝑛×𝑛 is the matrix of synaptic weights for nonlinear system
feedback, 𝑓(𝑥

𝑛𝑛
) = [𝑓(𝑥

𝑛𝑛1
), . . . , 𝑓(𝑥

𝑛𝑛𝑛
)]
𝑇 is the vector

of network feedback, 𝑓(⋅) represents the neuron activation
function, and 𝑢 = [𝑢

1
, . . . , 𝑢

𝑛
]
𝑇 is the control force vector of

adaptive controller, which will be designed subsequently. In
this work, the architecture of DNN-based identifier is shown
in Figure 3.

Remark 1. The real system is a coupling, time-varying,
and uncertain nonlinear system. Since neural network is a
universal approximator which is capable of approximating
any nonlinear function to any desired degree of accuracy,
we can use DNN model without coupling to replace the real
coupled system. This idea motivates a novel and generalized
decoupling control strategy based on indirect adaptive con-
trol as described in what follows. Using this basic idea, the
specific design for DNN-based identifier can be developed in
the next section.

3. System Identification Based on
Neural Networks

The nonlinear system (2) can be approximated by the follow-
ing continuous dynamic neural networks:

�̇� = 𝐴
∗
𝑥 + 𝐵
∗
𝑓 (𝑥) + 𝑢, (5)

where𝐴∗ and 𝐵∗ are ideal nominal constant matrices and the
state and output variables are physically bounded.

In the process of approximating the time-varying, cou-
pling, nonlinear system, DNN model (4) can be rewritten as
follows:

�̇�
𝑛𝑛
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢, (6)
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where the activation function is specified as a monotonically
increased function and bounded with

0 ≤ 𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝑘 ⋅ (𝑥 − 𝑦) (7)

for any 𝑥, 𝑦, 𝑘 ∈ R and 𝑥 ≤ 𝑦, 𝑘 > 0, such as 𝑓(𝑥) = tanh(𝑥).
The identification errors are defined as

𝐸 = 𝑥
𝑛𝑛
− 𝑥. (8)

From (5) and (6), we can obtain the error dynamics
equation as follows:

�̇� = �̇�
𝑛𝑛
− �̇�

= {𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢} − {𝐴

∗
𝑥 + 𝐵
∗
𝑓 (𝑥) + 𝑢}

= (𝐴𝑥
𝑛𝑛
− 𝐴
∗
𝑥) + (𝐵𝑓 (𝑥

𝑛𝑛
) − 𝐵
∗
𝑓 (𝑥))

= 𝐴𝑥
𝑛𝑛
+ 𝐴
∗
𝐸 + 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝐵
∗
𝑓 (𝐸) ,

(9)

where 𝐴 = 𝐴 − 𝐴∗, 𝐵 = 𝐵 − 𝐵∗, and 𝑓(𝐸) = 𝑓(𝑥
𝑛𝑛
) − 𝑓(𝑥).

Remark 2. In model (6), we use a DNN model without
coupling to approximate the real coupled system (2). If
we could develop effective weights updating laws of DNN
model (6) to make the error (8) become zero or uniformly
ultimately bounded, it is indicated that the DNN-based
identifier without coupling has the ability of approximating
the coupled, nonlinear systems, namely, instead of the real
systems. Using this idea, the objective of decoupling among
the subsystems would be realized.

Lemma 3. If𝑀 ∈ R𝑛×𝑛 is a positive define symmetric matrix
and 𝑞 ∈ R𝑛 is a vector arbitrarily, then there exist positive
constants 𝜆min and 𝜆max such that

𝜆min
𝑞

2

≤ 𝑞
𝑇
𝑀𝑞 ≤ 𝜆max

𝑞

2

, (10)

where 0 < 𝜆min ≤ 𝜆max denotes the minimum and maximum
eigenvalues of𝑀, respectively.

Lemma 4. If 𝐿 ∈ R1×𝑚,𝑀 ∈ R𝑚×𝑛, and 𝑄 ∈ R𝑛×1 are any
real matrix, there is the following property:

tr (𝐿𝑀𝑄) = tr (𝑀𝑄𝐿) = tr (𝑄𝐿𝑀) = 𝐿𝑀𝑄. (11)

Theorem 5. Considering the identification model (6), the
identification error (8) will be uniformly ultimately bounded
(UUB) if the weights updating laws are as follows:

̇̂
𝐴 = −Λ

1
[𝐸𝑥
𝑛𝑛

𝑇
+ 𝜎
1
𝐴] ,

̇̂
𝐵 = −Λ

2
[𝐸𝑓
𝑇
(𝑥
𝑛𝑛
) + 𝜎
2
𝐵] ,

(12)

where Λ
𝑖
is a free positive define symmetric constant matrix

picked arbitrarily which is related to the approximation preci-
sion and 𝜎

𝑖
> 0 is a design parameter introduced to ensure the

boundedness of ̇̂𝐴, ̇̂𝐵 (the term 𝜎
1
𝐴 or 𝜎

2
𝐵 in (12) is to make

suitable corrections to prevent parameter drift).

Proof. Consider a Lyapunov function candidate as

𝑉
𝐼1
=
1

2
𝐸
𝑇
𝐸. (13)

The time derivative of 𝑉
𝐼1
is given by

�̇�
𝐼1
= 𝐸
𝑇 ̇𝐸. (14)

Now applying the error dynamics equation (9) leads to

�̇�
𝐼1
= 𝐸
𝑇
{𝐴𝑥
𝑛𝑛
+ 𝐴
∗
𝐸 + 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝐵
∗
𝑓 (𝐸)}

= 𝐸
𝑇
𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇
𝐴
∗
𝐸 + 𝐸

𝑇
𝐵𝑓 (𝑥

𝑛𝑛
) + 𝐸
𝑇
𝐵
∗
𝑓 (𝐸) .

(15)

According to the properties (7) of the active function,

𝐸
𝑇
𝐵
∗
𝑓 (𝐸) = 𝐸

𝑇
𝐵
∗
[𝑓 (𝑥
𝑛𝑛
) − 𝑓 (𝑥)]

≤ 𝐸
𝑇
𝐵
∗
𝑘 (𝑥
𝑛𝑛
− 𝑥) = 𝐸

𝑇
𝐵
∗
𝑘𝐸.

(16)

In the view of Lemma 4, (16) can be rewritten as

𝐸
𝑇
𝐵
∗
𝑓 (𝐸) ≤

1

2
𝑘
2
𝐸
𝑇
𝐸 +
1

2
𝐸
𝑇
𝐵
∗
(𝐵
∗
)
𝑇

𝐸. (17)

Then, substituting (17) into (15) yields the following:

�̇�
𝐼1
≤ 𝐸
𝑇
𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇
𝐴
∗
𝐸 + 𝐸

𝑇
𝐵𝑓 (𝑥

𝑛𝑛
)

+
1

2
𝑘
2
𝐸
𝑇
𝐸 +
1

2
𝐸
𝑇
𝐵
∗
(𝐵
∗
)
𝑇

𝐸.

(18)

Namely,

�̇�
𝐼1
≤ 𝐸
𝑇
𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇
𝐴
∗
𝐸 + 𝐸

𝑇
𝐵𝑓 (𝑥

𝑛𝑛
)

+
1

2
𝑘
2
𝐸
𝑇
𝐸 +
1

2
𝐸
𝑇
𝐵
∗
(𝐵
∗
)
𝑇

𝐸 − 𝜂
1
𝑉
𝐼1
+
𝜂
1

2
𝐸
𝑇
𝐸

= −𝜂
1
𝑉
𝐼1
+ 𝐸
𝑇
{
𝜂
1

2
+ 𝐴
∗
+
1

2
𝑘
2
+
1

2
𝐵
∗
(𝐵
∗
)
𝑇

}𝐸

+ 𝐸
𝑇
𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇
𝐵𝑓 (𝑥

𝑛𝑛
) ,

(19)

where 𝜂
1
is a positive real number which is picked arbitrarily.

As 𝐴, 𝐵 contain the ideal weight matrices, we will cancel
them in the following step:

𝑉
𝐼2
=
1

2
tr (𝐴𝑇Λ−1

1
𝐴 + 𝐵

𝑇
Λ
−1

2
𝐵) . (20)

The time derivative of 𝑉
𝐼2
is given by

�̇�
𝐼2
= tr (𝐴𝑇Λ−1

1

̇̃
𝐴 + 𝐵

𝑇
Λ
−1

2

̇̃
𝐵) = tr (𝐴𝑇Λ−1

1

̇̂
𝐴 + 𝐵

𝑇
Λ
−1

2

̇̂
𝐵) .

(21)

Using the updating laws (12) and Lemma 4 yields

�̇�
𝐼2
= − tr [𝐴𝑇𝐸𝑥

𝑛𝑛

𝑇
] − 𝜎
1
tr (𝐴𝑇𝐴)

− tr [𝐵𝑇𝐸𝑓𝑇 (𝑥
𝑛𝑛
)] − 𝜎

2
tr (𝐵𝑇𝐵)

= −𝐸
𝑇
𝐴𝑥
𝑛𝑛
− 𝐸
𝑇
𝐵𝑓 (𝑥

𝑛𝑛
) − 𝜎
1
tr (𝐴𝑇𝐴) − 𝜎

2
tr (𝐵𝑇𝐵) .

(22)
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At the same time, it is clear that

𝐴
𝑇
𝐴 = 𝐴

𝑇
(𝐴 + 𝐴

∗
) = 𝐴

𝑇
𝐴 + 𝐴

𝑇
𝐴
∗

≥
1

2
𝐴
𝑇
𝐴 −
1

2
(𝐴
∗
)
𝑇

𝐴
∗
,

𝐵
𝑇
𝐵 = 𝐵

𝑇
(𝐵 + 𝐵

∗
) ≥
1

2
𝐵
𝑇
𝐵 −
1

2
(𝐵
∗
)
𝑇

𝐵
∗
.

(23)

Substituting (23) into (22), we can obtain that

�̇�
𝐼2
≤ −𝐸
𝑇
𝐴𝑥
𝑛𝑛
− 𝐸
𝑇
𝐵𝑓 (𝑥

𝑛𝑛
)

−
𝜎
1

2
tr (𝐴𝑇𝐴) + 𝜎1

2
tr ((𝐴∗)𝑇𝐴∗)

−
𝜎
2

2
tr (𝐵𝑇𝐵) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗) .

(24)

In the view of Lemma 3, we can obtain the following
property:

𝐴
𝑇
Λ
−1

1
𝐴 ≤ 𝜆max(Λ−1

1

)
𝐴
𝑇
𝐴,

𝐵
𝑇
Λ
−1

2
𝐵 ≤ 𝜆max(Λ−1

2

)
𝐵
𝑇
𝐵.

(25)

Using the characteristics of the positive define matrices
(25), (24) can be rewritten as

�̇�
𝐼2
≤ −𝐸
𝑇
𝐴𝑥
𝑛𝑛
− 𝐸
𝑇
𝐵𝑓 (𝑥

𝑛𝑛
) +
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗)

+
𝜎
2

2
tr ((𝐵∗)𝑇𝐵∗) − 𝜎

1

2𝜆max(Λ−1
1

)

tr (𝐴𝑇Λ−1
1
𝐴)

−
𝜎
2

2𝜆max(Λ−1
2

)

tr (𝐵𝑇Λ−1
2
𝐵)

≤ −𝜂
2
𝑉
𝐼2
− 𝐸
𝑇
𝐴𝑥
𝑛𝑛
− 𝐸
𝑇
𝐵𝑓 (𝑥

𝑛𝑛
)

+
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗) ,

(26)

where 𝜂
2
= min(𝜎

𝑖
/𝜆max(Λ−1

𝑖

)
), 𝑖 = 1, 2.

We choose the following Lyapunov function 𝑉
𝐼
= 𝑉
𝐼1
+

𝑉
𝐼2
, and its time derivative is

�̇�
𝐼
= �̇�
𝐼1
+ �̇�
𝐼2

≤ −𝜂
1
𝑉
𝐼1
+ 𝐸
𝑇
{
𝜂
1

2
+ 𝐴
∗
+
1

2
𝑘
2
+
1

2
𝐵
∗
(𝐵
∗
)
𝑇

}𝐸

− 𝜂
2
𝑉
𝐼2
+
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗)

≤ −𝜂𝑉
𝐼
+ 𝐸
𝑇
Ψ𝐸 + Ω,

(27)

where

Ω =
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗) > 0,

Ψ =
𝜂
1

2
+ 𝐴
∗
+
1

2
𝑘
2
+
1

2
𝐵
∗
(𝐵
∗
)
𝑇

,

𝜂 = min (𝜂
1
, 𝜂
2
) > 0.

(28)

Make Ψ < 0 to specify 𝐴∗ as follows:

𝐴
∗
< −(

𝜂
1

2
+
1

2
𝑘
2
+
1

2
𝐵
∗
(𝐵
∗
)
𝑇

) . (29)

Therefore we arrive at

�̇�
𝐼
< −𝜂𝑉

𝐼
+ Ω (30)

and it can be concluded that

𝑉
𝐼
< (𝑉
𝐼
(0) −

Ω

𝜂
) exp (−𝜂𝑡) + Ω

𝜂
. (31)

We assume that 𝑉
𝐼
(0) = 0; then

𝑉
𝐼
< (−

Ω

𝜂
) exp (−𝜂𝑡) + Ω

𝜂
. (32)

As 𝑉
𝐼
> (1/2)𝐸

𝑇
𝐸, then

lim
𝑡→∞

‖𝐸‖ = √
2Ω

𝜂
. (33)

According to the Boundedness Theorem [5], we can get
the error using dynamic neural network to approximate the
nonlinear system which is uniformly ultimately bounded
(UUB) and converges to a set containing origin with a rate
at least as fast as 𝑒−𝜂𝑡/2 .

4. Adaptive Decoupling Control Based on
System Identification

In this section, the aim of controller design is to drive
outputs of systemproperly following a prespecified trajectory.
In addition, model errors of DNN-based identifier and
external disturbances should be considered. The architecture
of indirect adaptive control for the time-varying, coupling,
and nonlinear system is shown in Figure 4, which combines
the dynamic neural network and the adaptive controller.

In Figure 4, 𝑥 represents the real outputs, and 𝑥
𝑛𝑛

is the
identification outputs of dynamic neural network. According
to the errors 𝐸, the identification model of dynamic neural
network is used to approximate the unknown nonlinear
system. 𝑥

𝑑
is the reference inputs, 𝐸

𝑑
is the errors between

the given value 𝑥
𝑑
and real output 𝑥 in every instant, and 𝑢 is

the manipulated variables.
In Section 3, we know that the nonlinear system can be

modeled by DNN-based identifier with the weights updating
laws (12). In this section,we should considermodel errors and
external disturbances. If

𝑔
𝑛𝑛
(𝑥
𝑛𝑛
) = 𝑔 (𝑥) − 𝑔, (34)

the nonlinear system can be represented as follows:

�̇� = 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 + 𝑔, (35)

where 𝑔 is the lump model errors and external disturbances,
which is assumed to be bounded and |𝑔| < 𝑑∗, 𝑑∗ is an
unknown constant.
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Figure 4: The architecture of indirect adaptive decoupling control.

The desired reference inputs 𝑥
𝑑
are defined as follows:

�̇�
𝑑
= ℎ
𝑑
(𝑡) . (36)

The states errors 𝐸
𝑑
are defined as follows:

𝐸
𝑑
= 𝑥 − 𝑥

𝑑
. (37)

So we can obtain the errors dynamics equation as follows:

�̇�
𝑑
= �̇� − �̇�

𝑑
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 + 𝑔 − ℎ

𝑑
. (38)

Then, we design the control action 𝑢 as follows:

𝑢 = 𝑢
𝑐
+ 𝑢
𝑟
, (39)

where 𝑢
𝑐
is a compensation action for the nonlinearity and

𝑢
𝑟
is dedicated to deal with the model errors and external

disturbances.

Remark 6. If model errors and external disturbances are zero
or negligible, 𝑢

𝑟
can be chosen to be zero and will drive the

error dynamics to converge to the origin. From the control
point of view, the system stability will not be affected. How-
ever, even if the DNN-based identifier has superb learning
ability to represent the dynamic process of nonlinear system,
model errors and environment disturbances are sometimes
inevitable or even may affect the system stability. So the
following controller design will consider this factor and will
be suitable for general situations.

Theorem7. Thestates errors (37) between referencemodel and
real output will asymptotically converge to zero, if the adaptive
control laws are as follows:

𝑢
𝑐
= −𝐴𝑥

𝑛𝑛
− 𝐵𝑓 (𝑥

𝑛𝑛
) + ℎ
𝑑
,

𝑢
𝑟
= −𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑

̇̂
𝑑 =
𝐸𝑑
 .

(40)

Proof. Substituting (40) into (38), we can obtain the equation
as follows:

�̇�
𝑑
= �̇� − �̇�

𝑑

= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) − 𝐴𝑥

𝑛𝑛
− 𝐵𝑓 (𝑥

𝑛𝑛
) + ℎ
𝑑

− 𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔 − ℎ

𝑑

= −𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔.

(41)

Consider the Lyapunov function candidate of controller
design as follows:

𝑉
𝐶
=
1

2
𝐸
𝑑

𝑇
𝐸
𝑑
+
1

2
𝑑
𝑇
𝑑. (42)

We can obtain the time derivative of the Lyapunov
function candidate (42) as follows:

�̇�
𝐶
= 𝐸
𝑑

𝑇
�̇�
𝑑
+ 𝑑
𝑇 ̇̃
𝑑. (43)

Then, substituting (41) into (43),

�̇�
𝐶

= 𝐸
𝑑

𝑇
[−𝑘
0
𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔] + 𝑑

𝑇 ̇̃
𝑑

= 𝐸
𝑑

𝑇
[−𝑘
0
𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔] + 𝑑

𝑇 ̇̂
𝑑

= −𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑
−

𝐸
𝑑

𝑇
𝑑 + 𝐸
𝑑

𝑇
𝑔 + 𝑑
𝑇 ̇̂
𝑑

≤ −𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑
−

𝐸
𝑑

𝑇
𝑑 +

𝐸
𝑑

𝑇

𝑔
 + 𝑑
𝑇 ̇̂
𝑑

≤ −𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑
−

𝐸
𝑑

𝑇
𝑑 +

𝐸
𝑑

𝑇
𝑑
∗
+ 𝑑
𝑇 ̇̂
𝑑

= −𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑
−

𝐸
𝑑

𝑇
𝑑 + 𝑑
𝑇 ̇̂
𝑑

= −𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑

≤ 0,

(44)

where 𝑑 = 𝑑 − 𝑑∗.
Thus, we have 𝑉

𝐶
∈ ℓ
∞
, implying that 𝐸

𝑑
∈ ℓ
2
∩ ℓ
∞
, 𝑑 ∈

ℓ
∞
. From (38), it is readily shown that �̇�

𝑑
∈ ℓ
∞
; namely, 𝐸

𝑑
is

uniformly continuous. According to �̇�
𝐶
≤ −𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑
≤ 0, we

can obtain ∫𝑡
0
𝑘
0
𝐸
𝑑

𝑇
𝐸
𝑑
𝑑𝜏 ≤ 𝑉

𝐶
(0) < ∞. By Barbalat’s lemma,

it can be concluded that 𝐸
𝑑
→ 0 and 𝑥 → 𝑥

𝑑
as 𝑡 → ∞.

The online computational algorithm for the system iden-
tification and controller design will be described in next
section.

Remark 8. If considering the identification and control as a
whole process, we can prove the system stability by defining
the final Lyapunov function candidate as 𝑉 = 𝑉

𝐼
+ 𝑉
𝐶
. Since

the stability of system identification and adaptive control
has already been proven in Theorems 5 and 7, respectively,
we can make a conclusion that the errors between the real
system states and the desired reference inputs are uniformly
ultimately bounded (UUB).

5. Algorithm for Implement

In this section, a step by step procedure is listed to implement
the identification and control strategy.

Step 1. Assign the initial values of gain matrices Λ
𝑖
and 𝜎

𝑖
in

weight updating laws, and the initial values of the estimated
parameters 𝐴, 𝐵.
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Step 2. Based on the initial states 𝑥(0) and system inputs 𝑢,
calculate the states of neural network 𝑥

𝑛𝑛
according to (6).

Step 3. Calculate the new parameter values of 𝐴, 𝐵 by weight
updating laws (12) and then calculate the state variables 𝑥

𝑛𝑛

once again.

Step 4. Choose the suitable control gain 𝑘 and calculate the
values of 𝑢

𝑐
and 𝑢

𝑟
according toTheorem 7.

Step 5. Go to Step 2.

This is the algorithm of online identification and control
scheme for the MIMO system with time varying, coupling,
and nonlinearity.

6. Simulation Example

In this section, in order to verify the effectiveness of indirect
adaptive controller based on DNN, we choose a coupled
two-input two-output, time-varying, nonlinear system as the
simulation model

�̇�
1
= −2𝑥

1
+ 5 sign (𝑥

2
) + 𝑢
1
+ 𝑢
2
,

�̇�
2
= −0.8𝑥

1
− 3𝑥
2
+ 5 sign (𝑥

2
) − 1.2𝑢

1
+ 0.8𝑢

2
,

(45)

where 𝑥
1
and 𝑥

2
are state variables and 𝑢

1
and 𝑢

2
are control

inputs. As a coupled system, 𝑢
1
and 𝑢

2
can impact every

subsystem, respectively.

6.1. Nonlinear System Identification. It is assumed that the
structure of two-input two-output system is a black box sys-
tem. In this experiment, this test was to validate the feasibility
of the proposed DNN-based identifier to approximate the
unknown, coupled, and nonlinear system.

In this study, 𝑢
1
= 4 sin(0.2𝑡), 𝑢

2
= 4 cos(0.6𝑡). The DNN

model was selected as follows:

�̇�
𝑛𝑛
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 (46)

which was structured with single layer, 2 neurons and the
activation functions were selected as hyperbolic tangent;
namely, tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥). Assigned the
initials 𝐴(0) and 𝐵(0) as null matrices, Λ

𝑖
= [ 6000 50
50 6000

], 𝜎
1

= 0.1, and 𝜎
2
= 0.02. Then run the online identification

procedure and the whole process was run for 50s. The
identification results are shown in Figures 5 and 6.

The real system (45) is a coupled nonlinear system, and
the DNN model (46) is constructed without coupling. We
use the DNN (46) to approximate the real system (45) on
the basis of the weights updating laws (12) which is derived
by the Lyapunov method. In Figures 5 and 6, 𝑥

1
and 𝑥

2
are

the state variables of the real system, 𝑥
𝑛𝑛1

and 𝑥
𝑛𝑛2

are the
state variables of the DNN model, and 𝐸

1
and 𝐸

2
stand for

the errors of state variables between the real system and the
DNN model. We can explicitly see that the errors are small
enough and the effectiveness of the DNN model according
to the relevant algorithm although the DNN model has no
coupling features.
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Figure 5: Identification result for system state 𝑥
1
.
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Figure 6: Identification result for system state 𝑥
2
.

6.2. Nonlinear System Control. Although the DNN has the
ability to approximate any nonlinear systems, however,
the DNN model errors and environment disturbances are
inevitable in the real systems. In the control point of view, we
should consider these factors which include neural network
model errors and uncertain disturbance forces acting on the
real nonlinear systems.

The control objective is to make the real outputs of the
unknown, coupled, and MIMO nonlinear systems tracking
the perspecified inputs; namely, the system states 𝑥 =

[𝑥
1
, 𝑥
2
]
𝑇 to follow the prespecified inputs 𝑥

𝑑
= [𝑥
𝑑1
, 𝑥
𝑑2
]
𝑇.

So a comprehensive control scheme was shown in Section 4,
and the controller designed could deal with the compensation
of the nonlinearity, the uncertain model errors, and environ-
ment disturbances.
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Figure 7: Trajectory tracking result for system state 𝑥
1
.

In the view of this paper, the real systems can be
formulated as

�̇� = 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 + 𝑔 (𝑡) , (47)

where 𝑔 = (𝑔
1
, 𝑔
2
)
𝑇 represents the lump model errors and

disturbances.
In this study, first we simply define 𝑔

1
= 0.8 sin(𝑡), 𝑔

2
=

1.5 cos(𝑡) and the reference model inputs are defined as

�̇�
𝑑1
= �̇�
𝑑2
=

{{

{{

{

0.2 0 ≤ 𝑡 ≤ 10

sin (0.7𝑡) 10 ≤ 𝑡 ≤ 20
0 20 ≤ 𝑡.

(48)

In fact, the desired inputs 𝑥
𝑑1

and 𝑥
𝑑2

are the piecewise
functions of ramp signal, cosine signal, and step signal.

By using the DNN-based identifier to approximate the
real systems, the adaptive controller is designed as follows:

𝑢
𝑐
= −𝐴𝑥

𝑛𝑛
− 𝐵𝑓 (𝑥

𝑛𝑛
) + ℎ
𝑑
,

𝑢
𝑟
= −𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑

̇̂
𝑑 =
𝐸𝑑
 .

(49)

Assigned the initials 𝐴(0) and 𝐵(0) as null matri-
ces, Λ

𝑖
= [ 6000 50
50 6000

], 𝜎
1
= 0.1, 𝜎

2
= 0.02, and 𝑘

0
= 25. Then

run the proposed controller design procedure and the whole
process was run for 30 s. The response curves of trajectory
tracking are shown in Figures 7 and 8.

In Figures 7 and 8, 𝑥
1
and 𝑥

2
are the state variables

identified by DNNmodel, 𝑥
𝑑1
and 𝑥

𝑑2
are the reference input

signals, and 𝐸
𝑑1

and 𝐸
𝑑2

stand for the errors of trajectory
tracking. We can see no matter how the reference input
signals change;𝐸

𝑑1
and𝐸

𝑑2
are bounded as time goes bywhen

considering the model errors and environment disturbances.
At the same time, there is no large magnitude of overshoot
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Figure 8: Trajectory tracking result for system state 𝑥
2
.

in the response curves. It is concluded that the proposed
adaptive controller is able to achieve excellent dynamic per-
formance and high antidisturbance capability in trajectory
tracking, which agrees with our theoretic prediction.

For the purpose of verifying the generality and effective-
ness of the proposed method for more complex nonlinear
signal, we choose another reference input signal as follows:

�̇�
𝑑1
= sin 𝑡,

�̇�
𝑑2
= cos 𝑡.

(50)

The lump model errors and disturbances 𝑔
𝑖
are defined

as the square signals

𝑔
1
= 4 square (0.5, 𝑡) ,

𝑔
2
= 3 square (1, 𝑡) .

(51)

And the other conditions are the samewith the above.The
response curves of trajectory tracking are shown in Figures 9
and 10.

From Figures 9 and 10, there is explicitly fluctuation
in the first 20 s, but the errors are always bounded and
become smaller and smaller as time goes on. And the
simulation results once again demonstrate the effectiveness
of the proposed control scheme, and it can be observed with
the excellent performance of the system states following the
prespecified inputs.

7. Conclusion

In this paper, we present the DNN identification and adaptive
control strategy for the real systems which is of nonlinearity,
coupling, and uncertain environment disturbances. Accord-
ing to the Lyapunov methodology, the weights updating laws
of DNN-based identifier and the control laws of indirect
adaptive controller have been derived to ensure the stability
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Figure 9: Trajectory tracking result for system state 𝑥
1
.
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Figure 10: Trajectory tracking result for system state 𝑥
2
.

of decoupling control and to achieve favorable tracking
performance for the real system. The simulation results have
indicated that the success of decoupling and the proper
dynamic response of the plant states to follow the desired
input trajectories.
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