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We suggest and analyze a predictor-corrector method for solving nonsmooth convex equilibrium problems based on the auxiliary
problem principle. In the main algorithm each stage of computation requires two proximal steps. One step serves to predict the
next point; the other helps to correct the new prediction. At the same time, we present convergence analysis under perfect foresight
and imperfect one. In particular, we introduce a stopping criterion which gives rise to Δ-stationary points. Moreover, we apply this
algorithm for solving the particular case: variational inequalities.

1. Introduction

Equilibrium problems theory provides us with a unified,
natural, innovative, and general framework to study a wide
class of problems arising in finance, economics, network
analysis, transportation, elasticity, and optimization. This
theory has witnessed an explosive growth in theoretical
advances and applications across all disciplines of pure and
applied sciences. As a result of this interaction, we have a
variety of techniques to study existence results for equilib-
riumproblems; see [1–4]. Equilibriumproblems include vari-
ational inequalities as special cases. In recent years, several
numerical techniques [5–12] including projection, resolv-
ent, and auxiliary principle have been developed and ana-
lyzed for solving equilibrium problems.

Let 𝐶 be a nonempty closed convex subset of 𝑅𝑛, and let
𝑓 : 𝐶×𝐶 → 𝑅 be a continuous function satisfying 𝑓(𝑥, 𝑥) =

0 for all 𝑥 ∈ 𝐶, 𝑓(𝑥, ⋅) is convex on 𝐶 for all 𝑥 ∈ 𝐶, and
𝑓(⋅, 𝑦) is lower semicontinuous (l.s.c.) on 𝐶 for all 𝑦 ∈ 𝐶.
The equilibrium problems (for short EP) proposed by Blum-
Oettli [1] are as follows:

finding 𝑥
∗

∈ 𝐶 such that 𝑓 (𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (EP)

Recently, much attention has been given to reformulate
the equilibrium problem as an optimization problem. This
problem is very general in the sense that it includes, as
particular cases, the optimization problem, the variational

inequality problem, the Nash equilibrium problem in non-
cooperative games, the fixed-point problem, the nonlinear
complementarity problem, and the vector optimization prob-
lem (see, e.g., [1, 13] and the references quoted therein).
Multiobjective optimization problems can also be obtained
by (EP), as shown by Iusem and Sosa [13]. The above
particular cases are usefulmodels ofmany practical problems
arising in game theory, physics, economics, and so forth.The
interest of this problem is that it unifies all these particular
problems in a convenientway. For example, thework of Brezis
et al. extended results concerning variational inequalities,
corresponding to the case where 𝑓(𝑥, 𝑦) = ⟨𝐴𝑥, 𝑦−𝑥⟩ and𝐴

is a monotone operator (see [14], pages 296-297). Moreover,
many methods devoted to solving one of these problems can
be extended, with suitable modifications, to solve the general
equilibrium problem. In this paper we suppose that there
exists at least one solution to problem (EP). In particular, it
is true when 𝐶 is compact. Other existence results for this
problem can be found, for instance, in [1, 15].

In this paper, one uses usually the auxiliary principle tech-
nique. This technique deals with finding a suitable auxiliary
problem and proving that the solution of the auxiliary prob-
lem is the solution of the original problem by using the
fixed-point approach. Glowinski et al. [6] used this technique
to study the existence of a solution of mixed variational
inequalities. Noor [8] has used this technique to suggest
and analyze a number of iterative methods for solving
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various classes of variational inequalities. It has been shown
that a substantial number of numerical methods can be
obtained as special cases from this technique. In this paper,
we use again the auxiliary principle technique to suggest
and analyze some predictor-corrector methods for solving
equilibrium problems. In this respect, our results represent
an improvement of previously known results. Noor [16] and
Noor et al. [17] have introduced inertial proximal methods
for variational inequalities using the auxiliary principle tech-
nique and proved that the convergence criteria of inertial
proximal methods require only pseudomonotonicity. Inertial
proximal methods include proximal methods as a special
case. For recent development and applications of the proximal
methods, see [5, 11, 18]. Our results can be considered as
novel and important applications of the auxiliary principle
technique. This paper is an extension over the related work
of [19, 20]; the main contributions can be summarized as
follows. First of all, we extend the coefficient of approximate
function from 𝜇 ∈ (0, 1] to 𝜇 ∈ 𝑅 \ {0}, which is a better
conclusion. Secondly, approximate function does not need to
satisfy the conditions (𝐶1)–(𝐶3) in [20]; that is to say, our
condition is weaker than therein.Moreover, we present a new
algorithm, predictor-corrector methods for solving (EP), and
give a stopping criterion. In this sense, our result represents
an improvement and refinement of the known results.

We recall the main notations and definitions that will be
used in the sequel.

A function𝑓 : 𝐶×𝐶 → 𝑅 is said to be stronglymonotone
on 𝐶 with modulus 𝛾 > 0, if and only if

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑥) ≤ −𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (1)

A function ℎ : 𝐶 → 𝑅 is said to be strongly convex on 𝐶

with modulus 𝛽 (𝛽 ≥ 0), if and only if

ℎ (𝜆𝑥 + (1 − 𝜆) 𝑦) ≤𝜆ℎ (𝑥) + (1 − 𝜆) ℎ (𝑦)

−
𝛽

2
[𝜆 (1 − 𝜆)]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑦 ∈ 𝐶, 𝜆 ∈ [0, 1] .

(2)

If ℎ is differentiable, then ℎ is strongly convex on 𝐶 with
modulus 𝛽 (𝛽 ≥ 0), if and only if

ℎ (𝑥) − ℎ (𝑦) ≥ ⟨∇ℎ (𝑦) , 𝑥 − 𝑦⟩ +
𝛽

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶.

(3)

A function ℎ : 𝐶 → 𝑅 is said to be Lipschitz continuous
on 𝐶 with modulus 𝐿 (𝐿 > 0), if and only if

󵄩󵄩󵄩󵄩ℎ (𝑦) − ℎ (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (4)

Usually, we need there to be at least one solution for
equilibrium problems. In particular, it is true when 𝐶 is
compact.

Proposition 1 (existence of equilibrium (see [19])). Suppose
𝐶 is nonempty compact convex and 𝑓(𝑥, 𝑦) is jointly lower

semicontinuous, separately continuous in 𝑥, and convex in 𝑦.
Then (EP) admits at least one solution.

This paper is organized as follows. In Section 2, we
introduce some algorithms. In particular, we will give a
predictor-corrector algorithmic frame. We present some
convergence analysis under perfect and imperfect foresight
in Section 3. Section 4 is devoted to an application: we focus
on the particular case variational inequalities problem (VIP)
of (EP) mentioned above and we apply our results in these
frameworks and the predictor-corrector algorithm is applied
to (VIP). The paper ends with some concluding remarks.

2. Main Algorithm

Most of the algorithms developed for solving EP can be
derived from equivalent formulations of the equilibrium
problem. We will focus our attention on fixed-point formu-
lations of EP: we will show that such formulations lead to
a generalization of the methods developed by Cohen for
variational inequalities and optimization problems.

Let us recall the following preliminary result which states
the above mentioned equivalent formulation of EP.

Lemma 2. Suppose that 𝑓(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶. Then the
following statements are equivalent:

(a) there exists 𝑥∗ ∈ 𝐶, s.t. 𝑓(𝑥
∗

, 𝑦) ≥ 0, for all 𝑦 ∈ 𝐶;
(b) 𝑥
∗

∈ 𝐶 is a solution of the problem

min
𝑥∈𝐶

𝑓 (𝑥
∗

, 𝑥) . (5)

We can define the following general iterative algorithm
framework.

Algorithm 3. Consider the following.

Step 1. Set 𝑘 = 0, 𝑥0 ∈ 𝐶.

Step 2. Denote by 𝑥
𝑘+1 the solution of the problem:

min
𝑦∈𝐶

𝑓(𝑥
𝑘

, 𝑦).

Step 3. If ‖𝑥𝑘 − 𝑥
𝑘+1

‖
2

< 𝛿, for some fixed 𝛿 > 0, then stop;
otherwise let 𝑘 = 𝑘 + 1 and go to Step 2.

Unfortunately, in most of the cases, it is not possible
to apply the previous algorithm directly to the equilibrium
problems, for the previous algorithm may cause instabilities
in the iterate process. So it is necessary to introduce an
auxiliary equilibrium problem, which is equivalent to the
equilibrium problem.

Proposition 4. Let 𝑓(𝑥, 𝑦) be a convex differentiable function
with respect to 𝑦 at 𝑥 = 𝑥

∗ and 𝜀 > 0. Let𝐻(𝑥, 𝑦) : 𝐶 × 𝐶 →

𝑅 be a nonnegative, differentiable function on the convex set 𝐶
with respect to 𝑦 and such that

(i) 𝐻(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(ii) 𝐻

󸀠

𝑦
(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶.



Abstract and Applied Analysis 3

Then 𝑥
∗ is a solution of EP if and only if it is a solution of the

auxiliary equilibrium problem (AEP):

𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑥
∗

∈ 𝐶, 𝑠.𝑡. 𝜀𝑓 (𝑥
∗

,𝑦) + 𝐻 (𝑥
∗

,𝑦) ≥ 0, ∀𝑦 ∈ 𝐶.

(AEP)

Proof. It is easy to know that if 𝑥∗ is a solution of EP, then it
is also a solution of AEP.

Vice versa, let 𝑥
∗ be a solution of AEP. Then 𝑥

∗ is a
minimum point of the problem

min
𝑥∈𝐾

[𝜀𝑓 (𝑥
∗

, 𝑦) + 𝐻 (𝑥
∗

, 𝑦)] . (6)

Because 𝐾 is convex then 𝑥
∗ is an optimal solution for (6) if

and only if

⟨𝜀𝑓
󸀠

𝑦
(𝑥
∗

, 𝑥
∗

) + 𝐻
󸀠

𝑦
(𝑥
∗

, 𝑥
∗

) , 𝑥
∗

− 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (7)

so that

⟨𝜀𝑓
󸀠

𝑦
(𝑥
∗

, 𝑥
∗

) , 𝑥
∗

− 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (8)

Dividing by 𝜀, we obtain that (8) implies, by the convexity of
𝑓(𝑥
∗

, ⋅), that

𝑓 (𝑥
∗

, 𝑦) ≥ 𝑓 (𝑥
∗

, 𝑥
∗

) = 0, ∀𝑦 ∈ 𝐾. (9)

Remark 5. Suppose ℎ : 𝐶 → 𝑅 is a strongly convex
differentiable function; denote 𝐻(𝑥, 𝑦) = ℎ(𝑦) − ℎ(𝑥) −

⟨∇ℎ(𝑥), 𝑦 − 𝑥⟩, for all 𝑥, 𝑦 ∈ 𝐶. We have

𝐻(𝑥, 𝑦) = ℎ (𝑦) − ℎ (𝑥) − ⟨∇ℎ (𝑥) , 𝑦 − 𝑥⟩

≥
𝛽

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≥ 0;

𝐻 (𝑥, 𝑥) = 0;

𝐻
󸀠

𝑦
(𝑥, 𝑥) = 0.

(10)

That is,𝐻(𝑥, 𝑦) satisfies Proposition 4.

Applying Algorithm 3 to the AEP, we obtain the following
iterative method.

Algorithm 6. Consider the following.

Step 1. Set 𝑘 = 0, 𝑥0 ∈ 𝐶.

Step 2. Denote by 𝑥
𝑘+1 the solution of the problem:

min
𝑦∈𝐶

{𝜀𝑓(𝑥
𝑘

, 𝑦) + 𝐻(𝑥
𝑘

, 𝑦)}.

Step 3. If ‖𝑥𝑘 − 𝑥
𝑘+1

‖
2

< 𝛿, for some fixed 𝛿 > 0, then stop;
otherwise let 𝑘 = 𝑘 + 1 and go to Step 2.

Most papers about EP only study the existence of EP’s
solution. In this paper, we will give a predictor-corrector
method to solve the equilibrium problems.

Definition 7. Let 𝜇 ∈ 𝑅 \ {0} and 𝑥 ∈ 𝐶. A convex function
𝑓(𝑥, ⋅) : 𝐶 → 𝑅 is a 𝜇-approximation of 𝑓(𝑥, ⋅) at 𝑥, if
𝑓(𝑥, ⋅) ≤ 𝑓(𝑥, ⋅) on 𝐶 and 𝑓(𝑥, 𝑦) ≤ 𝜇𝑓(𝑥, 𝑦), where 𝑦 =

min
𝑦∈𝐶

{𝜀𝑓(𝑥
𝑘

, 𝑦) + 𝐻(𝑥
𝑘

, 𝑦)}.

Remark 8. According to the above, we extend the coefficient
of approximate function from 𝜇 ∈ (0, 1] in [20] to 𝜇 ∈ 𝑅\ {0},
which is a more generic case.

Now, we describe the framework of predictor-corrector
algorithm as follows.

Algorithm 9. Let 𝛼
𝑘
≥ 𝛼 > 0, 𝜀

𝑘
> 0, for all 𝑘 ∈ 𝑁.

Step 1. Let 𝑘 = 0, 𝑥0 ∈ 𝐶.

Step 2. Find 𝜇-approximation of 𝑓(𝑥, ⋅) at 𝑥, 𝑓(𝑥, ⋅) by
predictor-corrector method. Let

𝑥
𝑘+

= min
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘

, 𝑦) + 𝐻(𝑥
𝑘

, 𝑦)} ;

𝑥
𝑘+1

∈ 𝜀
𝑘
−min
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑦) + 𝐻(𝑥
𝑘+

, 𝑦)} .

(11)

Step 3. If ‖𝑥𝑘 − 𝑥
𝑘+1

‖
2

< 𝛿, for some fixed 𝛿 > 0, then stop;
otherwise let 𝑘 = 𝑘 + 1 and go to Step 2.

Remark 10. In Algorithm 9, each stage of computation
requires two proximal steps. In Step 2, 𝑥

𝑘+ is served to
predict the next point; the other 𝑥𝑘+1 helps to correct the new
prediction.

3. Convergence Analysis

In this section, we will give some convergence results about
the algorithm.

Definition 11. In Algorithm 9, if 𝑥𝑘+1 = 𝑥
𝑘+, 𝑥𝑘+ is called a

perfect foresight point of 𝑥𝑘+1; otherwise 𝑥
𝑘+ is an imperfect

foresight point of 𝑥𝑘+1.

Next we give the convergence result under perfect fore-
sight, which has been stated in [20].

Proposition 12 (see [20]). Assume that there exist numbers
𝑟, 𝑐, 𝑑 > 0 and a nonnegative function 𝑔 : 𝐶 × 𝐶 → 𝑅 such
that, for all 𝑥, 𝑦, 𝑧 ∈ 𝐶,

(i) 𝑓(𝑥, 𝑦) ≥ 0 ⇒ 𝑓(𝑦, 𝑥) ≤ −𝑟𝑔(𝑦, 𝑥);
(ii) 𝑓(𝑥, 𝑧) − 𝑓(𝑦, 𝑧) − 𝑓(𝑥, 𝑦) ≤ 𝑐𝑔(𝑥, 𝑦) + 𝑑‖𝑧 − 𝑦‖

2.

If the sequence {𝛼
𝑘
}
𝑘∈𝑁

is nonincreasing and 𝛼
𝑘
≤ 𝛽𝜇/2𝑑 for

all 𝑘 ∈ 𝑁 and if 𝑐/𝜇 ≤ 𝜇 ≤ 1, then the sequence {𝑥
𝑘
}
𝑘∈𝑁

generated by the predictor-corrector algorithm is bounded and
lim
𝑘→∞

‖𝑥
𝑘

− 𝑥
𝑘+1

‖ = 0.

Proposition 13 (see [20]). Assume that 𝛼
𝑘
≥ 𝛼 > 0 for all 𝑘 ∈

𝑁. If the sequence {𝑥
𝑘
}
𝑘∈𝑁

generated by the predictor-corrector
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algorithm is bounded and lim
𝑘→∞

‖𝑥
𝑘

−𝑥
𝑘+1

‖ = 0, then every
limit point of {𝑥𝑘}

𝑘∈𝑁
is a solution of problem (EP).

At the same time, respective to convergence under imper-
fect foresight, we first give some denotations and results.

By the previous introduction, we have

𝑥
𝑘+

= argmin
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘

, 𝑦) + ℎ (𝑦)

− ℎ (𝑥
𝑘

) − ⟨∇ℎ (𝑥
𝑘

) , 𝑦⟩} ;

(12)

𝑥
𝑘+1

∈ 𝜀
𝑘
− argmin

𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑦)

+ ℎ (𝑦) − ℎ (𝑥
𝑘+

) − ⟨∇ℎ (𝑥
𝑘+

) , 𝑦⟩} .

(13)

Using (12) and (13), we get

⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑦 − 𝑥
𝑘+

⟩

≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘

, 𝑦) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)} , ∀𝑦 ∈ 𝐶,

(14)

⟨∇ℎ (𝑥
𝑘+

) − ∇ℎ (𝑥
𝑘+1

) , 𝑦 − 𝑥
𝑘+1

⟩

≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑦) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝜀
𝑘
} , ∀𝑦 ∈ 𝐶.

(15)

Arranging (15), we have

⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+1

) , 𝑦 − 𝑥
𝑘+1

⟩

≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑦) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝜀
𝑘
}

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑦 − 𝑥
𝑘+1

⟩ .

(16)

Let 𝑦 = 𝑥
∗ in (14) and (16); then, adding them, we can get

⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+1

) , 𝑥
∗

− 𝑥
𝑘+1

⟩

≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝑓 (𝑥
𝑘

, 𝑥
∗

)

− 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) + 𝜀
𝑘
}

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+

− 𝑥
𝑘+1

⟩

≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

)

+ 𝑓 (𝑥
𝑘

, 𝑥
∗

) −
1

𝜇
𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) + 𝜀
𝑘
}

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+

− 𝑥
𝑘+1

⟩ ,

(17)

(𝑓 (𝑥
𝑘

, ⋅) ≤ 𝑓 (𝑥
𝑘

, ⋅)

on 𝐶, 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) ≤ 𝜇𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) at 𝑥
𝑘+

) .

(18)

Assumption 14. Assume that there exist 𝑟, 𝑐, 𝑑 > 0 and 𝑟 ≥

max {𝑑 + (4𝑐/𝜇) + (2𝐿/𝛼); (5𝑐/𝜇) + (2𝐿/𝛼)}, for all 𝑥, 𝑦, 𝑧 ∈ 𝐶.
Consider the following:

(i) 𝑓(𝑥, 𝑦) ≥ 0 ⇒ 𝑓(𝑦, 𝑥) ≤ −𝑟‖𝑥 − 𝑦‖
2;

(ii) 𝑓(𝑥, 𝑧) − 𝑓(𝑦, 𝑧) − 𝑓(𝑥, 𝑦) ≤ 𝑐‖𝑥 − 𝑦‖
2

+ 𝑑‖𝑧 − 𝑦‖
2.

We denote

𝐴
𝑘
= 2𝜇𝛼

𝑘
𝑐 + 2𝛼

𝑘
𝑑 + 𝜇𝐿;

𝐵
𝑘
= 2𝜇𝛼

𝑘
𝑐 + 2𝛼

𝑘
𝑑 + 3𝜇𝐿 + 4𝛼

𝑘
𝑐;

𝐶
𝑘
=

2𝛼
𝑘
𝑑

𝜇
;

𝐸
𝑘
= min{

𝑟 − 𝑑

4
−

𝑐

𝜇
−

𝐿

2𝛼
𝑘

,
𝛽 − 𝐵
𝑘

4𝜇𝛼
𝑘

,
𝛼
𝑘
𝑟𝜇 − 5𝛼

𝑘
𝑐 − 2𝜇𝐿

4𝜇𝛼
𝑘

} .

(19)

It is convenient to prove the following theorem.

Theorem 15. Assume that the function 𝑓(𝑥, 𝑦) satisfies
Assumption 14 and𝛽 ≥ max {𝐴

𝑘
, 𝐵
𝑘
, 𝐶
𝑘
}, 𝜀
𝑘
≤ 𝐸
𝑘
‖𝑥
𝑘

− 𝑥
𝑘+

‖
2

;
then the sequence {𝑥𝑘}

𝑘∈𝑁
generated by the predictor-corrector

methods is bounded and lim
𝑘→∞

‖𝑥
𝑘

− 𝑥
𝑘+1

‖ = 0.

Proof. Let 𝑥∗ be a solution of (EP) and consider for each 𝑘 ∈

𝑁 the Lyapunov function Γ
𝑘

: 𝐶 × 𝐶 → 𝑅 defined for all
𝑦, 𝑧 ∈ 𝐶:

Γ
𝑘

(𝑦, 𝑧) = ℎ (𝑧) − ℎ (𝑦) − ⟨∇ℎ (𝑦) , 𝑧 − 𝑦⟩ +
𝛼
𝑘

𝜇
𝑓 (𝑧, 𝑦) .

(20)

Since ℎ is strongly convex on 𝐶 with modulus 𝛽, we can
easily obtain that, for all 𝑥𝑘 ∈ 𝐶,

Γ
𝑘

(𝑥
𝑘

, 𝑥
∗

) ≥
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

. (21)

Consider the following relation:

Γ
𝑘+1

(𝑥
𝑘+1

, 𝑥
∗

) − Γ
𝑘

(𝑥
𝑘

, 𝑥
∗

)

≤ ℎ (𝑥
𝑘

) − ℎ (𝑥
𝑘+1

) + ⟨∇ℎ (𝑥
𝑘

) , 𝑥
𝑘+1

− 𝑥
𝑘

⟩

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+1

) , 𝑥
∗

− 𝑥
𝑘+1

⟩

+
𝛼
𝑘

𝜇
{𝑓 (𝑥

∗

, 𝑥
𝑘+1

) − 𝑓 (𝑥
∗

, 𝑥
𝑘

)}

= 𝑆
1
+ 𝑆
2
+ 𝑆
3
,

(22)

where

𝑆
1
= ℎ (𝑥

𝑘

) − ℎ (𝑥
𝑘+1

) + ⟨∇ℎ (𝑥
𝑘

) , 𝑥
𝑘+1

− 𝑥
𝑘

⟩ ;

𝑆
2
= ⟨∇ℎ (𝑥

𝑘

) − ∇ℎ (𝑥
𝑘+1

) , 𝑥
∗

− 𝑥
𝑘+1

⟩ ;

𝑆
3
=

𝛼
𝑘

𝜇
{𝑓 (𝑥

∗

, 𝑥
𝑘+1

) − 𝑓 (𝑥
∗

, 𝑥
𝑘

)} .

(23)
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For 𝑆
1
, we can easily get the following from the strong

convexity of ℎ:

𝑆
1
≤ −

𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

. (24)

For 𝑆
2
, we derive the following from (17):

𝑆
2
≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝑓 (𝑥
𝑘

, 𝑥
∗

)

−
1

𝜇
𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) + 𝜀
𝑘
}

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+

− 𝑥
𝑘+1

⟩ .

(25)

Then

𝑆
2
+ 𝑆
3
≤ 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝑓 (𝑥
𝑘

, 𝑥
∗

)

−
1

𝜇
𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) + 𝜀
𝑘
}

+
𝛼
𝑘

𝜇
{𝑓 (𝑥

∗

, 𝑥
𝑘+1

) − 𝑓 (𝑥
∗

, 𝑥
𝑘

)}

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+

− 𝑥
𝑘+1

⟩

= 𝛼
𝑘
{𝑓 (𝑥

𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝑓 (𝑥
𝑘

, 𝑥
∗

) + 𝜀
𝑘
}

+
𝛼
𝑘

𝜇
{𝑓 (𝑥

𝑘

, 𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)}

+
𝛼
𝑘

𝜇
{𝑓 (𝑥

∗

, 𝑥
𝑘+1

) − 𝑓 (𝑥
∗

, 𝑥
𝑘

) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

)}

+ ⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+

− 𝑥
𝑘+1

⟩ .

(26)

For the last term on the right of the above equality, we
have

⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+

− 𝑥
𝑘+1

⟩

≤
𝐿

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+
𝐿

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

.

(27)

We can obtain the following from assumption (ii):

𝑓 (𝑥
𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

)

= 𝑓 (𝑥
𝑘+

, 𝑥
∗

) − 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘+1

, 𝑥
∗

) + 𝑓 (𝑥
𝑘+1

, 𝑥
∗

)

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑑 − 𝑟)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

.

(28)

Similarly,

𝑓 (𝑥
∗

, 𝑥
𝑘+1

) − 𝑓 (𝑥
∗

, 𝑥
𝑘

) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

)

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
∗

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

;

𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

= 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

− 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

)

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) .

(29)

Because of 𝛼
𝑘
𝑓(𝑥
𝑘+

, 𝑥
𝑘+1

) ≤ −(𝛽/2)‖𝑥
𝑘+1

− 𝑥
𝑘+

‖
2

, we
derive the following from (13):

𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + ℎ (𝑥
𝑘+1

) − ℎ (𝑥
𝑘+

)

− ⟨∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+1

− 𝑥
𝑘+

⟩

≤ 𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑦) + ℎ (𝑦) − ℎ (𝑥
𝑘+

) − ⟨∇ℎ (𝑥
𝑘+

) , 𝑦 − 𝑥
𝑘+

⟩ ,

∀𝑦 ∈ 𝐶.

(30)

In particular, let 𝑦 = 𝑥
𝑘+; we have

𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + ℎ (𝑥
𝑘+1

) − ℎ (𝑥
𝑘+

)

− ⟨∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+1

− 𝑥
𝑘+

⟩ ≤ 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+

) = 0.

(31)

That is,

𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) + ℎ (𝑥
𝑘+1

) − ℎ (𝑥
𝑘+

)

− ⟨∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+1

− 𝑥
𝑘+

⟩ ≤ 0

⇐⇒ 𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) ≤ −ℎ (𝑥
𝑘+1

) + ℎ (𝑥
𝑘+

)

+ ⟨∇ℎ (𝑥
𝑘+

) , 𝑥
𝑘+1

− 𝑥
𝑘+

⟩

≤ −
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

.

(32)

Hence,

𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

) ≤ −
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

. (33)

Finally, we obtain

𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

≤ 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

−
𝛽

2𝛼
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

.

(34)
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So

𝑆
1
+ 𝑆
2
+ 𝑆
3

≤ 𝛼
𝑘
{𝑐

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑑 − 𝑟)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

− 𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
𝑘
}

+
𝛼
𝑘

𝜇
{𝑐

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

−
𝛽

2𝛼
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

}

+
𝛼
𝑘

𝜇
{𝑐

󵄩󵄩󵄩󵄩󵄩
𝑥
∗

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

}

+
𝐿

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+
𝐿

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

−
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(35)

Arrange the previous inequality relation; we can get

𝑆
1
+ 𝑆
2
+ 𝑆
3

≤ −(
𝛽

2
−

𝛼
𝑘
𝑑

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ (𝛼
𝑘
𝑐 +

𝛼
𝑘
𝑑

𝜇
+

𝐿

2
−

𝛽

2𝜇
)

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(𝑑 − 𝑟)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(
𝑐

𝜇
− 𝑟)

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ (
𝛼
𝑘
𝑐

𝜇
+

𝐿

2
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
𝜀
𝑘
.

(36)

Under the condition of (𝛽/2) − (𝛼
𝑘
𝑑/𝜇) > 0, in order to

obtain 𝑆
1
+ 𝑆
2
+ 𝑆
3
≤ 0, we only need to prove the following

result:

(𝛼
𝑘
𝑐 +

𝛼
𝑘
𝑑

𝜇
+

𝐿

2
−

𝛽

2𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(𝑑 − 𝑟)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(
𝑐

𝜇
− 𝑟)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ (
𝛼
𝑘
𝑐

𝜇
+

𝐿

2
)

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
𝜀
𝑘
≤ 0.

(37)

That is,

(
𝛼
𝑘
𝑐

𝜇
+

𝐿

2
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑘
(𝑟 − 𝑑)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(𝑟 −

𝑐

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ (
𝛽

2𝜇
− 𝛼
𝑘
𝑐 −

𝛼
𝑘
𝑑

𝜇
−

𝐿

2
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

.

(38)

(1)When 𝜇𝑑 ≥ 𝑐,

𝛼
𝑘
(𝑟 − 𝑑)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(𝑟 −

𝑐

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

≥ 𝛼
𝑘
(𝑟 − 𝑑) {

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

}

≥
𝛼
𝑘
(𝑟 − 𝑑)

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(39)

Then

𝛼
𝑘
(𝑟 − 𝑑)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(𝑟 −

𝑐

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ (
𝛽

2𝜇
− 𝛼
𝑘
𝑐 −

𝛼
𝑘
𝑑

𝜇
−

𝐿

2
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

≥
𝛼
𝑘
(𝑟 − 𝑑)

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+
𝛽 − 𝐴

𝑘

2𝜇

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

.

(40)

We discuss in two cases.
(1
∘

) If (𝛽 − 𝐴
𝑘
)/2𝜇 ≥ 𝛼

𝑘
(𝑟 − 𝑑)/2,

𝛼
𝑘
(𝑟 − 𝑑)

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+
𝛽 − 𝐴

𝑘

2𝜇

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

≥
𝛼
𝑘
(𝑟 − 𝑑)

2
{
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

}

≥
𝛼
𝑘
(𝑟 − 𝑑)

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(41)

So

𝑆
1
+ 𝑆
2
+ 𝑆
3

≤ −(
𝛽

2
−

𝛼
𝑘
𝑑

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

− [
𝛼
𝑘
(𝑟 − 𝑑)

4
−

𝛼
𝑘
𝑐

𝜇
−

𝐿

2
]

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
𝜀
𝑘
.

(42)

We know that

𝛽

2
−

𝛼
𝑘
𝑑

𝜇
> 0,

𝛼
𝑘
(𝑟 − 𝑑)

4
−

𝛼
𝑘
𝑐

𝜇
−

𝐿

2
> 0,

𝛼
𝑘
𝜀
𝑘
≤ [

𝛼
𝑘
(𝑟 − 𝑑)

4
−

𝛼
𝑘
𝑐

𝜇
−

𝐿

2
]
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
𝜀
𝑘
.

(43)

Finally, we get 𝑆
1

+ 𝑆
2

+ 𝑆
3

≤ 0; it follows that
{Γ
𝑘

(𝑥
𝑘

, 𝑥
∗

)}
𝑘∈𝑁

is a nonincreasing sequence. By (21), we
know that {Γ

𝑘

(𝑥
𝑘

, 𝑥
∗

)}
𝑘∈𝑁

is bounded below by 0. Hence,
{Γ
𝑘

(𝑥
𝑘

, 𝑥
∗

)}
𝑘∈𝑁

converges in 𝑅 and {𝑥
𝑘

}
𝑘∈𝑁

is bounded.
Passing to the limit in (42), then ‖𝑥

𝑘

− 𝑥
𝑘+1

‖
2

→ 0 (𝑘 →

∞).
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(2
∘

) If (𝛽 − 𝐴
𝑘
)/2𝜇 < 𝛼

𝑘
(𝑟 − 𝑑)/2,

𝑆
1
+ 𝑆
2
+ 𝑆
3

≤ −(
𝛽

2
−

𝛼
𝑘
𝑑

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

− [
𝛽 − 𝐴

𝑘

4𝜇
−

𝛼
𝑘
𝑐

𝜇
−

𝐿

2
]
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
𝜀
𝑘
.

(44)

Similarly to (1
∘

), we can obtain the result.
(2) When 𝜇𝑑 < 𝑐,

𝛼
𝑘
(𝑟 − 𝑑)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
(𝑟 −

𝑐

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

≥ 𝛼
𝑘
(𝑟 −

𝑐

𝜇
) {

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

}

≥
𝛼
𝑘
(𝑟 − 𝑐/𝜇)

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(45)

Likewise, we also discuss in two cases.
(1
∘

) When (𝛽 − 𝐴
𝑘
)/2𝜇 ≥ 𝛼

𝑘
(𝑟 − 𝑐/𝜇)/2,

𝑆
1
+ 𝑆
2
+ 𝑆
3

≤ −(
𝛽

2
−

𝛼
𝑘
𝑑

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

− [
𝛼
𝑘
(𝑟 − 𝑐/𝜇)

4
−

𝛼
𝑘
𝑐

𝜇
−

𝐿

2
]

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑘
𝜀
𝑘
.

(46)

Similarly to the proof of (1), we omit the process and get
the conclusion.

(2
∘

) When (𝛽 − 𝐴
𝑘
)/2𝜇 < 𝛼

𝑘
(𝑟 − 𝑐/𝜇)/2.

Similar to the proof of (1), we omit the process and get the
conclusion.

Theorem 16. Assume that 𝛼
𝑘

≥ 𝛼 > 0 for all 𝑘 ∈ 𝑁.
If the sequence {𝑥

𝑘
}
𝑘∈𝑁

generated by the predictor-corrector
algorithm is bounded and lim

𝑘→∞
‖𝑥
𝑘

−𝑥
𝑘+1

‖ = 0, then every
limit point of {𝑥𝑘}

𝑘∈𝑁
is a solution of equilibrium problem.

Proof. Let 𝑥∗ be the limiting point of {𝑥𝑘}
𝑘∈𝑁

and denote by
{𝑥
𝑘

}
𝑘∈𝐾⊂𝑁

some subsequence converging to 𝑥
∗. According to

𝑥
𝑘+

= argmin
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘

, 𝑦) + ℎ (𝑦) − ℎ (𝑥
𝑘

) − ⟨∇ℎ (𝑥
𝑘

) , 𝑦⟩}

= argmin
𝑦∈𝐶

𝛼
𝑘
𝑓 (𝑥
𝑘

, 𝑦) ,

(47)

we obtain

0 ≤ 𝑓 (𝑥
𝑘

, 𝑦) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

≤ 𝑓 (𝑥
𝑘

, 𝑦) −
1

𝜇
𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) ⇐⇒

0 ≤ (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑦) + 𝑓 (𝑥
𝑘

, 𝑦) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

= (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑦) + 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑓 (𝑥
𝑘+

, 𝑦) , ∀𝑦 ∈ 𝐶.

(48)

In particular, we set 𝑦 = 𝑥
𝑘+1; then

0 ≤ (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) + 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑓 (𝑥
𝑘+

, 𝑥
𝑘+1

)

≤ (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) + 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

−
𝛽

2𝛼
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

= (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) + 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑑 −
𝛽

2𝛼
𝑘

)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

≤ (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) +
𝑐

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+
𝑐

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑑 −
𝛽

2𝛼
𝑘

)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

= (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) +
𝑐

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

+ (𝑑 −
𝛽

2𝛼
𝑘

+
𝑐

2
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

.

(49)

That is,

(
𝛽

2𝛼
𝑘

− 𝑑 −
𝑐

2
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

≤ (𝜇 − 1) 𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) +
𝑐

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(50)

Passing to the limit in (50) as 𝑘 → ∞, then

𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) 󳨀→ 𝑓 (𝑥
∗

, 𝑥
∗

) = 0,
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

󳨀→ 0.

(51)

At the same time, 𝛽 > 𝛼
𝑘
(2𝑑 + 𝑐), so ‖𝑥

𝑘+

− 𝑥
𝑘+1

‖
2

→ 0.
From ‖𝑥

𝑘

− 𝑥
𝑘+1

‖
2

→ 0, we have ‖𝑥
𝑘+

− 𝑥
𝑘

‖
2

→ 0.
Moreover, ‖𝑥∗ − 𝑥

𝑘

‖
2

→ 0; we get ‖𝑥𝑘+ − 𝑥
∗

‖
2

→ 0.
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Due to 𝑓(𝑥
𝑘

, 𝑥
𝑘+

) ≤ 𝑓(𝑥
𝑘

, 𝑥
𝑘+

) at 𝑥𝑘 and 𝜇𝑓(𝑥
𝑘

, 𝑥
𝑘+

) ≥

𝑓(𝑥
𝑘

, 𝑥
𝑘+

), then

1

𝜇
𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) ≤ 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) ≤ 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) . (52)

For all 𝑘 ∈ 𝐾, when 𝑘 → ∞, we have

𝑥
𝑘

󳨀→ 𝑥
∗

, 𝑥
𝑘+

󳨀→ 𝑥
∗

. (53)

In addition, 𝑓 is continuous; we have

𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) 󳨀→ 𝑓 (𝑥
∗

, 𝑥
∗

) = 0, (𝑘 󳨀→ ∞) . (54)

Hence

𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) 󳨀→ 0, (𝑘 󳨀→ ∞) . (55)

Since 𝑥
𝑘+

= argmin
𝑦∈𝐶

{𝛼
𝑘
𝑓(𝑥
𝑘

, 𝑦) + ℎ(𝑦) − ℎ(𝑥
𝑘

) −

⟨∇ℎ(𝑥
𝑘

), 𝑦⟩}, we have

0 ∈ 𝜕 {𝛼
𝑘
𝑓 (𝑥
𝑘

, ⋅) + 𝜓
𝐶
} (𝑥
𝑘+

) − ∇ℎ (𝑥
𝑘

) + ∇ℎ (𝑥
𝑘+

) . (56)

That is,

∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) ∈ 𝜕 {𝛼
𝑘
𝑓 (𝑥
𝑘

, ⋅) + 𝜓
𝐶
} (𝑥
𝑘+

) , (57)

where 𝜑
𝐶
denotes the indicate function of the set𝐶. Using the

definition of subdifferential, we get

𝑓 (𝑥
𝑘

, 𝑦) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

≥
1

𝛼
𝑘

⟨∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

) , 𝑦 − 𝑥
𝑘+

⟩ , ∀𝑦 ∈ 𝐶.

(58)

Applying the Cauchy-Schwarz inequality and the proper-
ties 𝑓(𝑥

𝑘

, ⋅) ≤ 𝑓(𝑥
𝑘

, ⋅) and that ∇ℎ is Lipschitz continuous on
𝐶 with constant 𝐿, we have, for all 𝑦 ∈ 𝐶,

𝑓 (𝑥
𝑘

, 𝑦) − 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

)

≥ −
1

𝛼
𝑘

󵄩󵄩󵄩󵄩󵄩
∇ℎ (𝑥

𝑘

) − ∇ℎ (𝑥
𝑘+

)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

≥ −
𝐿

𝛼
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩
, ∀𝑦 ∈ 𝐶.

(59)

Take the limit about 𝑘 ∈ 𝑁; we deduce

𝑓 (𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (60)

Because 𝑓 is continuous, when 𝑘 → ∞,

𝑓 (𝑥
𝑘

, 𝑦) 󳨀→ 𝑓 (𝑥
∗

, 𝑦) ,
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0,

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩
󳨀→

󵄩󵄩󵄩󵄩𝑦 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(61)

We finish the proof.

For practical implementation, it is necessary to give a
stopping criterion.

Definition 17. Let Δ ≥ 0. A point 𝑥∗ is called a Δ-stationary
point of problem (EP) if 𝑥∗ ∈ 𝐶 and

∃𝛾 ∈ 𝜕
Δ
(𝑓 (𝑥
∗

, ⋅) + 𝜑
𝐶
) (𝑥
∗

) , s.t. 󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩 ≤ Δ. (62)

Proposition 18 (see [20]). Let 𝑥
𝑘+

= argmin
𝑦∈𝐶

{𝛼
𝑘
𝑓(𝑥
𝑘

,

𝑦) + ℎ(𝑦) − ℎ(𝑥
𝑘

) − ⟨∇ℎ(𝑥
𝑘

), 𝑦 − 𝑥
𝑘

⟩}; 𝛾𝑘 = (1/𝛼
𝑘
)[∇ℎ(𝑥

𝑘

) −

∇ℎ(𝑥
𝑘+

)] = (1/𝛼
𝑘
)[∇ℎ(𝑥

𝑘

) − ∇ℎ(𝑥
𝑘+1

)]; 𝛿𝑘 = ⟨𝛾
𝑖

𝑘
, 𝑥
𝑘+

− 𝑥
𝑘

⟩ −

𝑓(𝑥
𝑘

, 𝑥
𝑘+

).
Then 𝛿

𝑘

≥ 0 and 𝛾
𝑘

∈ 𝜕
𝛿
𝑘(𝑓(𝑥

𝑘

, ⋅) + 𝜓
𝑐
)(𝑥
𝑘

).

Theorem 19. Assume that 𝛼
𝑘

≥ 𝛼 > 0 for all 𝑘 ∈ 𝑁

and that the assumptions of Theorem 15 hold. Let {𝑥
𝑘

}
𝑘∈𝑁

be generated by the predictor-corrector algorithm, then the
sequences {𝛾𝑘}

𝑘∈𝑁
and {𝛿

𝑘

}
𝑘∈𝑁

converge to zero.

Proof. Here we still discuss in two cases.
(1) Under perfect foresight.
Under perfect foresight, it is easy to get 𝑥𝑘+ = 𝑥

𝑘+1.
Since {𝑥

𝑘

}
𝑘∈𝑁

is infinite, it follows from Theorem 16 that
the sequence converges to some solution 𝑥

∗ of problem (EP).
On the other hand, for all 𝑘, we have

0 ≤
󵄩󵄩󵄩󵄩󵄩
𝛾
𝑘
󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∇ℎ (𝑥
𝑘

) − ∇ℎ (𝑥
𝑘+

)

𝛼
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝐿

𝛼

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩
=

𝐿

𝛼

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩
.

(63)

Because ∇ℎ is Lipschitz-continuous with constant 𝐿, 𝛼
𝑘
≥

𝛼 > 0.
Since lim

𝑘→∞
‖𝑥
𝑘

− 𝑥
𝑘+1

‖ = 0, we obtain that the
sequence {𝛾

𝑘

}
𝑘∈𝑁

converges to zero.
Moreover,

󵄨󵄨󵄨󵄨󵄨
⟨𝛾
𝑘

, 𝑥
𝑘+

− 𝑥
𝑘

⟩
󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝛾
𝑘
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝛾
𝑘
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

󳨐⇒ ⟨𝛾
𝑘

, 𝑥
𝑘+

− 𝑥
𝑘

⟩ 󳨀→ 0, as 𝑘 󳨀→ ∞.

(64)

Finally, by continuity of 𝑓, so that when 𝑘 → ∞,

𝑓 (𝑥
𝑘

, 𝑥
𝑘+1

) 󳨀→ 𝑓 (𝑥
∗

, 𝑥
∗

) = 0; (65)

𝑓(𝑥
𝑘

, 𝑥
𝑘+1

) = 𝑓(𝑥
𝑘

, 𝑥
𝑘+1

) → 0 (𝑘 → ∞); that is, 𝛿𝑘 → 0

(𝑘 → ∞).
(2) Under imperfect foresight.
We derive that lim

𝑘→∞
‖𝑥
𝑘

− 𝑥
𝑘+

‖ = 0 in the process of
provingTheorem 16.

Hence, the sequence {𝛾
𝑘

}
𝑘∈𝑁

converges to zero.
Moreover,

󵄨󵄨󵄨󵄨󵄨
⟨𝛾
𝑘

, 𝑥
𝑘+

− 𝑥
𝑘

⟩
󵄨󵄨󵄨󵄨󵄨
≤

󵄩󵄩󵄩󵄩󵄩
𝛾
𝑘
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+

− 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

󳨐⇒ ⟨𝛾
𝑘

, 𝑥
𝑘+

− 𝑥
𝑘

⟩ 󳨀→ 0,

(66)
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because 𝑓 is continuous, so, when 𝑘 → ∞, 𝑓(𝑥
𝑘

, 𝑥
𝑘+

) →

𝑓(𝑥
∗

, 𝑥
∗

) = 0.
At the same time,

𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) ≤ 𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) ≤ 𝜇𝑓 (𝑥
𝑘

, 𝑥
𝑘+

) . (67)

Hence, 𝑓(𝑥
𝑘

, 𝑥
𝑘+

) → 0; that is, 𝛿𝑘 → 0 (𝑘 → ∞).

Next, we give the predictor-corrector algorithm about the
(EP) with stopping criterion.

Algorithm 20 (the predictor-corrector algorithms for (EP)).
Let 𝛼
𝑘
≥ 𝛼 > 0, 𝜀

𝑘
> 0, for all 𝑘 ∈ 𝑁.

Step 1. Let 𝑘 = 0, 𝑥0 ∈ 𝐶, and 𝛿 > 0.

Step 2. Finding a 𝜇-approximation 𝑓(𝑥, ⋅) of 𝑓(𝑥, ⋅) at 𝑥 by
predictor-corrector method, let

𝑥
𝑘+

= min
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘

, 𝑦) + 𝐻(𝑥
𝑘

, 𝑦)} ;

𝜀
𝑘
≤ 𝐸
𝐾

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

;

𝑥
𝑘+1

∈ 𝜀
𝑘
−min
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑦) + 𝐻(𝑥
𝑘+

, 𝑦)} .

(68)

Step 3. If ‖𝑥𝑘 − 𝑥
𝑘+1

‖
2

< 𝛿, then stop; otherwise put 𝑘 = 𝑘 + 1

and go to Step 2.

4. Application to Variational
Inequality Problems

Variational inequalities theory, which was introduced by
Stampacchia [21], provides us with a simple, direct, natural,
general, efficient, and unified framework to study a wide
class of problems arising in pure and applied sciences. It has
been extended and generalized in several directions using
innovative and novel techniques for studying a wide class of
equilibrium problems arising in financial, economics, trans-
portation, elasticity, and optimization. During the last three
decades, there has been considerable activity in the develop-
ment for solving variational inequalities. For the applications,
physical formulation, numerical methods, and other aspects
of variational inequalities, see [21–27] and the references
therein.

Let 𝐹 : 𝐶 → 𝐶
∗ be a given mapping; variational ine-

quality problems are as follows:

finding an 𝑥
∗

∈ 𝐶,

s.t. ⟨𝐹 (𝑥
∗

) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(VIP)

Wedenote𝑓(𝑥, 𝑦) = ⟨𝐹(𝑥), 𝑦−𝑥⟩; then the problem (EP)
is equivalent to the problem (VIP).

Similarly to Assumption 14, we have the following.

Assumption 21. Suppose that there exist 𝑟, 𝑐, 𝑑 > 0 and 𝑟 ≥

max {𝑑, 𝑐/𝜇}, for all 𝑥, 𝑦, 𝑧 ∈ 𝐶:

(i) ⟨𝐹(𝑥), 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝐹(𝑦), 𝑥 − 𝑦⟩ ≤ −𝑟‖𝑥 − 𝑦‖
2;

(ii) ⟨𝐹(𝑦) − 𝐹(𝑧), 𝑥 − 𝑦⟩ ≤ 𝑐‖𝑦 − 𝑧‖
2

+ 𝑑‖𝑥 − 𝑦‖
2.

In the same way, we consider the following two cases:
perfect foresight and unperfect foresight cases.

First case is under perfect foresight.
Similar to Propositions 12 and 13, we have the following.

Proposition 22. Assume that there exist 𝑟, 𝑐, 𝑑 > 0 and a
nonnegative function 𝑔 : 𝐶 × 𝐶 → 𝑅 such that, for all
𝑥, 𝑦, 𝑧 ∈ 𝐶,

(i) ⟨𝐹(𝑥), 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝐹(𝑦), 𝑥 − 𝑦⟩ ≤ −𝑟𝑔(𝑦, 𝑥);
(ii) ⟨𝐹(𝑦) − 𝐹(𝑧), 𝑥 − 𝑦⟩ ≤ 𝑐𝑔(𝑥, 𝑦) + 𝑑‖𝑧 − 𝑦‖

2.

If the sequence {𝛼
𝑘
}
𝑘∈𝑁

is nonincreasing and the 𝛼
𝑘
≤ 𝛽𝜇/2𝑑

for all 𝑘 ∈ 𝑁 and if 𝑐/𝜇 ≤ 𝜇 ≤ 1, then the sequence {𝑥
𝑘
}
𝑘∈𝑁

generated by the predictor-corrector algorithm is bounded and
lim
𝑘→∞

‖𝑥
𝑘

− 𝑥
𝑘+1

‖ = 0.

Proposition 23. Assume that 𝛼
𝑘

≥ 𝛼 > 0 for all 𝑘 ∈ 𝑁.
If the sequence {𝑥

𝑘
}
𝑘∈𝑁

generated by the predictor-corrector
algorithm is bounded and lim

𝑘→∞
‖𝑥
𝑘

−𝑥
𝑘+1

‖ = 0, then every
limit point of {𝑥𝑘}

𝑘∈𝑁
is a solution of (VIP).

Second case is under imperfect foresight.

Assumption 24. Assume that there exist 𝑟, 𝑐, 𝑑 > 0 and 𝑟 ≥

max {𝑑, 𝑐/𝜇}, for all 𝑥, 𝑦, 𝑧 ∈ 𝐶:

(i) ⟨𝐹(𝑥), 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝐹(𝑦), 𝑥 − 𝑦⟩ ≤ −𝑟‖𝑥 − 𝑦‖
2;

(ii) ⟨𝐹(𝑦) − 𝐹(𝑧), 𝑥 − 𝑦⟩ ≤ 𝑐‖𝑦 − 𝑧‖
2

+ 𝑑‖𝑥 − 𝑦‖
2.

We denote

𝐴
𝑘
=

𝛼
𝑘
𝑑

𝜇
+

𝜇

2
;

𝐵
𝑘
= 2𝜇𝛼

𝑘
𝑐 + 2𝛼

𝑘
𝑑 + 𝐿𝜇;

𝐶
𝑘
=

𝛼
𝑘
𝑑

𝜇
+

𝜇

2
+

𝑑 − 𝑟

4
+

𝑐

2𝜇
;

𝐷
𝑘
= 2𝜇𝛼

𝑘
𝑐 + 2𝛼

𝑘
𝑑 + 𝐿𝜇 + 4𝑐𝛼

𝑘
;

𝐸
𝑘
= min{

𝛽 − 𝐵
𝑘

𝛼
𝑘

+
𝑟𝜇 − 𝑐

2𝜇
;
𝛽 − 𝐶

𝑘

𝛼
𝑘

;

(1 + 8𝜇) 𝛽 − 𝐷
𝑘
− 8𝜇𝐵

𝑘

8𝜇𝛼
𝑘

} .

(69)

Theorem 25. Suppose that 𝐹(𝑥) satisfies Assumption 24 and
𝛽 ≥ max{𝐴

𝑘
, 𝐵
𝑘
, 𝐶
𝑘
, 𝐷
𝑘
}, 𝜀
𝑘

≤ 𝐸
𝑘
‖𝑥
𝑘

− 𝑥
𝑘+

‖
2

; then the
sequence {𝑥𝑘}

𝑘∈𝑁
generated by the predictor-corrector methods

is bounded and lim
𝑘→∞

‖𝑥
𝑘

− 𝑥
𝑘+1

‖ = 0.

Theorem 26. Assume that 𝛼
𝑘

≥ 𝛼 > 0 for all 𝑘 ∈ 𝑁.
If the sequence {𝑥

𝑘
}
𝑘∈𝑁

generated by the predictor-corrector
algorithm is bounded and lim

𝑘→∞
‖𝑥
𝑘

−𝑥
𝑘+1

‖ = 0, then every
limit point of {𝑥𝑘}

𝑘∈𝑁
is a solution of (VIP).
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Similar toTheorems 15 and 16, we can proveTheorems 25
and 26. Here, we will omit their details.

Moreover, we can also give a stopping criterion.

Definition 27. Let Δ ≥ 0. A point 𝑥∗ is called a Δ-stationary
point of problem (VIP) if 𝑥∗ ∈ 𝐶 and

∃𝛾 ∈ 𝜕
Δ
(⟨𝐹 (𝑥

∗

) , ⋅ − 𝑥
∗

⟩ + 𝜑
𝐶
) (𝑥
∗

) , s.t. 󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩 ≤ Δ. (70)

Proposition 28 (see [20]). Let 𝑥
𝑘+

= argmin
𝑦∈𝐶

{𝛼
𝑘
𝑓(𝑥
𝑘

,

𝑦) + ℎ(𝑦) − ℎ(𝑥
𝑘

) − ⟨∇ℎ(𝑥
𝑘

), 𝑦 − 𝑥
𝑘

⟩}; 𝛾𝑘 = (1/𝛼
𝑘
)[∇ℎ(𝑥

𝑘

) −

∇ℎ(𝑥
𝑘+

)] = (1/𝛼
𝑘
)[∇ℎ(𝑥

𝑘

) − ∇ℎ(𝑥
𝑘+1

)]; 𝛿𝑘 = ⟨𝛾
𝑖

𝑘
, 𝑥
𝑘+

− 𝑥
𝑘

⟩ −

𝑓(𝑥
𝑘

, 𝑥
𝑘+

).
Then 𝛿

𝑘

≥ 0 and 𝛾
𝑘

∈ 𝜕
𝛿
𝑘(⟨𝐹(𝑥

𝑘

), ⋅ − 𝑥
𝑘

⟩ + 𝜓
𝑐
)(𝑥
𝑘

).

Theorem 29. Assume that 𝛼
𝑘

≥ 𝛼 > 0 for all 𝑘 ∈ 𝑁

and that the assumptions of Theorem 25 hold. Let {𝑥
𝑘

}
𝑘∈𝑁

be generated by the predictor-corrector algorithm, then the
sequences {𝛾𝑘}

𝑘∈𝑁
and {𝛿

𝑘

}
𝑘∈𝑁

converge to zero.

Likewise, we omit the proof.
Finally, we have the predictor-corrector algorithm for

variational inequalities problems as follows.

Algorithm 30 (the predictor-corrector algorithms for (VIP)).
Let 𝛼
𝑘
≥ 𝛼 > 0, 𝜀

𝑘
> 0, for all 𝑘 ∈ 𝑁.

Step 1. Let 𝑘 = 0, 𝑥0 ∈ 𝐶, and 𝛿 > 0.

Step 2. Find a 𝜇-approximation 𝑓(𝑥, ⋅) of 𝑓(𝑥, ⋅) = ⟨𝐹(𝑥), ⋅ −

𝑥⟩ at 𝑥 by predictor-corrector method. Let

𝑥
𝑘+

= min
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘

, 𝑦) + 𝐻(𝑥
𝑘

, 𝑦)} ;

𝜀
𝑘
≤ 𝐸
𝐾

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+

󵄩󵄩󵄩󵄩󵄩

2

;

𝑥
𝑘+1

∈ 𝜀
𝑘
−min
𝑦∈𝐶

{𝛼
𝑘
𝑓 (𝑥
𝑘+

, 𝑦) + 𝐻(𝑥
𝑘+

, 𝑦)} .

(71)

Step 3. If ‖𝑥𝑘 − 𝑥
𝑘+1

‖
2

< 𝛿, then stop; otherwise put 𝑘 = 𝑘 + 1

and go to Step 2.

5. Conclusions

In this paper, wemainly present a predictor-correctormethod
for solving nonsmooth convex equilibrium problems based
on the auxiliary problem principle. In the main algorithm
each stage of computation requires two proximal steps. One
step serves to predict the next point; the other helps to
correct the new prediction. This method can operate well in
practice. At the same time, we present convergence analysis
under perfect foresight and imperfect one. In particular,
we introduce a stopping criterion which gives rise to Δ-
stationary points. Moreover, we apply this algorithm for
solving the particular case: variational inequalities.

For further work, the need can be anticipated: here we
only give the conceptual algorithmic framework to solve this
class of (EP), we will continue to study its rapidly convergent
executable algorithm, andwe will consider how to use bundle

techniques to approximate proximal points and other related
quantities. Moreover, we will strive to extend the nonsmooth
convex equilibrium problems to nonconvex cases, where its
related theory will be researched in later papers.
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[19] S. D. Flåm and A. S. Antipin, “Equilibrium programming using
proximal-like algorithms,”Mathematical Programming, vol. 78,
no. 1, pp. 29–41, 1997.

[20] T. T. V. Nguyen, J. J. Strodiot, and V. H. Nguyen, “A bundle
method for solving equilibrium problems,” Mathematical Pro-
gramming B, vol. 116, no. 1-2, pp. 529–552, 2009.

[21] G. Stampacchia, “Formes bilineaires coercitives sur les ensem-
bles convexes,” Comptes Rendus de l’Académie des Sciences, vol.
258, pp. 4413–4416, 1964.

[22] M. Bounkhel, L. Tadj, and A. Hamdi, “Iterative schemes to solve
nonconvex variational problems,” Journal of Inequalities in Pure
and Applied Mathematics, vol. 4, pp. 1–14, 2003.

[23] F. H. Clarke, Y. S. Ledyaev, and P. R.Wolenski,Nonsmooth Ana-
lysis and Control Theory, Springer, Berlin, Germany, 1998.

[24] D. Kinderlehrer and G. Stampacchia, An Introduction to Vari-
ational Inequalities andTheir Applications, SIAM, Philadelphia,
Pa, USA, 2000.

[25] M. A. Noor, “General variational inequalities,” Applied Mathe-
matics Letters, vol. 1, no. 2, pp. 119–122, 1988.

[26] M. A. Noor, “Some developments in general variational ine-
qualities,” Applied Mathematics and Computation, vol. 152, no.
1, pp. 199–277, 2004.

[27] M. A. Noor, Principles of Variational Inequalities, Lap-Lambert
Academic, Saarbrucken, Germany, 2009.


