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The paper addresses the problem of track-to-track association in the presence of sensor biases. In some challenging scenarios, it may
be infeasible to implement bias estimation and compensation in time due to the computational intractability or weak observability
about sensor biases. In this paper, we introduce the structural feature for each local track, which describes the spatial relationship
with its neighboring targets. Although the absolute coordinates of local tracks from the same target are severely different in the
presence of sensor biases, their structural features may be similar. As a result, instead of using the absolute kinematic states only,
we employee the structural similarity to define the association cost. When there are missed detections, the structural similarity
between local tracks is evaluated by solving another 2D assignment subproblem. Simulation results demonstrated the power of the
proposed approach.

1. Introduction

The potential advantages of fusing information from dis-
parate sensor systems to achieve better surveillance have been
recognized. Track-to-track association [1, 2] is a crucial step
in the distributed estimation fusion system, which seeks to
determine the correspondence between local tracks from
different sensors. Unfortunately, sensor reports may be influ-
enced by systematic errors (sensor biases) besides random
errors. In this case, sensor registration [3, 4] is required to
remove the sensor biases from the biased reports.When track
association and sensor registration meet each other, there
are more challenges. On the one hand, sensor registration is
based on the common sensor reports from the same target.
On the other hand, the removal of the sensor biases con-
tributes greatly tomaking correct association assignments. In
this sense, sensor registration and track association are tightly
coupled together.

An alternative way to tackle this problem is to implement
bias estimates and track-to-track association jointly. Several
heuristic algorithms, including centroid matching and sin-
gletonmatching algorithms, for estimating the relative sensor
biases in track-to-track associationwere explored in [5]. Con-
sidering the effects of biases, Stone et al. estimated the relative

biases based on the fast Fourier transform (FFT) andmultiple
dimensional spatial cross-correlation function in [6]. In [7],
Levedahl modeled this problem as a global nearest pattern
(GNP) problem. It produced the bias estimates for each
association hypothesis firstly, and the association probability
was computed based on the given bias estimates. The final
association hypothesis was determined with the maximum
probability. In [8], Papageorgiou and Sergi optimized the
computation complexity of the GNP algorithm to get the
trading-off between the optimality and computation time. In
[9, 10], Papageorgiou et al. computed the pure association
probability by assuming a prior distribution of sensor biases.
However, it is hard to get the prior distribution of sensor
biases. A joint track association and relative bias estimation
problem was formulated and a solution based on the Dijkstra
search was developed in [11]. A solution based on the branch-
and-bound framework for the same problem was described
in [12]. In [13], the performance comparisons of several
algorithms for estimating relative sensor bias were given.
In [14], a feature called “reference topology” based on the
relative coordinates is presented. However, its association
performance depends on the granularity of cell partitions
greatly. Moreover, no systematic method is given to handle
the case of missed detections. In [15, 16], the joint approaches
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to data association, sensor registration, and track fusion
were given by means of the expectation-maximization (EM)
algorithm.

In some challenging scenarios, it is impossible in practice
to implement bias estimation and compensation in time
due to the computational intractability or weak observability
about sensor biases. In this paper, we turned to implement
track-to-track association without bias estimation. As we
know, it is extremely essential to establish a reasonable
metric to measure the similarity of local tracks in track-
to-track association problem. In general, the similarity of
local tracks is based on the absolute kinematic parameters.
However, the absolute kinematic parameters are corrupted
greatly in the presence of sensor biases. For example, when
given the azimuth bias of 3 degrees, the position deviation
could reach up to 10 kilometers for a target located 200 km
from the sensor. In this case, the similarity measure based
on absolute coordinates is unbelievable anymore. In this
paper, we introduce the structural feature for each local
track describing the spatial relationship with its neighboring
targets. Although the absolute coordinates of local tracks
from the same target are severely different in the presence
of sensor biases, their structural features may be similar. So,
instead of using the absolute kinematic states only, we employ
the structural similarity to measure the distance of two local
tracks from different sensors.

In this paper, we develop a structural similarity-based
approach to deal with the problem of track association in the
presence of sensor biases. Main contributions are given as
follows. Firstly, under appropriate assumptions, the distance
invariance between two targets detected by different sensors
is verified in the presence of sensor biases. Secondly, the
structural feature is introduced for each local track, which is
represented by the distance set from the track to all the other
tracks from the same sensor.Thirdly, a two-dimensional (2D)
assignment model is established to implement track-to-track
association in the presence of sensor biases. Instead of using
the absolute kinematic states only, the structural similarity
between local tracks is adopted to measure the association
cost and is evaluated by solving another 2D assignment sub-
problem. Moreover, the dummy track is introduced for each
sensor to cope with possibly missed detections. Simulation
results demonstrated the power of the proposed approaches.

The rest of the paper is organized as follows. In Section 2
we describe the measurement model and formulate the
problem of track-to-track association. Section 3 shows how
to implement the track association based on structural
similarity. Simulation results are given in Section 4 to demon-
strate the effectiveness of the proposed approaches. Finally,
concluding remarks and further research directions are in
Section 5.

2. Problem Formulation

Consider a multitarget tracking scenario with two sensors
and 𝑁

𝑡
targets in the surveillance region. In this paper, false

alarms are not considered since they can also be viewed as the
targets. In references with the radar sensor which measures
the range and azimuth to the target, themeasurement process

is implemented in the local polar coordinate system (LPCS).
Let 𝑧𝑚,𝑖 ≜ {𝑟𝑚,𝑖, 𝜃𝑚,𝑖} be the ithmeasurement (𝑖 = 1, 2, . . . , 𝑛

𝑚
)

from sensor 𝑚 (𝑚 = 1, 2) at the time instant 𝑘, in which 𝑟𝑚,𝑖
and 𝜃𝑚,𝑖mean the range and anglemeasurement, respectively.

Two kinds of sensor biases are considered in general:
range bias and azimuth bias. Since there are systematic biases
and random errors, the original measurement {𝑟𝑚,𝑖, 𝜃𝑚,𝑖}
from sensorm can be modeled as

𝑟
𝑚,𝑖
= 𝑟
𝑚,𝑖
+ Δ𝑟
𝑚
+ V𝑚
𝑟
,

𝜃
𝑚,𝑖
= 𝜃
𝑚,𝑖

+ Δ𝜃
𝑚
+ V𝑚
𝜃
,

(1)

where 𝑟𝑚,𝑖 and 𝜃
𝑚,𝑖

denote the real range and azimuth of target
𝑖 form sensor 𝑚, respectively. Δ𝑟𝑚 and Δ𝜃𝑚 are systematic
biases and V𝑚

𝑟
and V𝑚
𝜃
are random noises. The random noises

�̃�
𝑚
= [V𝑚
𝑟

V𝑚
𝜃
]
𝑇 are white Gaussian with zero mean and

variances of (𝜎𝑚
𝑟
)
2 and (𝜎𝑚

𝜃
)
2, respectively.

Figure 1 depicts a scenario with two sensors and two
targets. T

𝑎
(𝑥
𝑎
, 𝑦
𝑎
) and T

𝑏
(𝑥
𝑏
, 𝑦
𝑏
) are the real positions of

targets. T
𝑚,𝑎
(𝑥
𝑚,𝑎
, 𝑦
𝑚,𝑎
) and T

𝑚,𝑏
(𝑥
𝑚,𝑏
, 𝑦
𝑚,𝑏
) are the position

measurements given by sensor𝑚 (𝑚 = 1, 2).
Based on the biased measurements {𝑟𝑚,𝑖, 𝜃𝑚,𝑖}, each sen-

sor 𝑚 produces its own local tracks represented by two
tuples {x̂𝑚,𝑖,P𝑚,𝑖} (𝑚 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛

𝑚
). x̂𝑚,𝑖 and P𝑚,𝑖

mean the state estimate and error covariance, respectively.
For simplicity, we omit the time index here. Track-to-track
association seeks to determine the correspondence between
local tracks from different sensors. The key point is to mea-
sure the similarity of local tracks. Traditionally, it is defined
by the weighted statistical distance under the independence
assumption:

𝛼
𝑖
1
𝑖
2

= (x̂1,𝑖1 − x̂2,𝑖2)
𝑇

(P1,𝑖1 + P2,𝑖2)
−1

(x̂1,𝑖1 − x̂2,𝑖2)

(𝑖
1
= 1, 2, . . . , 𝑛

1
, 𝑖
2
= 1, 2, . . . , 𝑛

2
) .

(2)

However, local tracks are biased estimates in the presence
of sensor biases.Thedirect association of biased estimateswill
not produce a satisfactory result.

3. Track Association Based on
Structural Similarity

In traditional approaches to track-to-track association, only
the absolute kinematic states of targets are considered. In the
presence of sensor biases, it does not work well especially for
the large azimuth bias, since it may result in severe deviations
of absolute coordinates. In this section, the basic principle
of the structural similarity is firstly verified, and then the
structural similarity is used to measure the distance of local
tracks instead of using the absolute kinematic states only. A
complete 2D assignment model to deal with possible missed
detections is also addressed.

3.1. Basic Principle of Structural Similarity. In what follows,
by assuming small range biases, the distance invariance
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Figure 1: Sensor configuration geometry.

between two targets detected by different sensors is verified
in the presence of sensor biases. We introduce a structural
feature for each local track, which describes the spatial
relationship with its neighboring targets. According to the
distance invariance, the structural feature of local tracks from
the same target is similar. As a result, the structural similarity
is employed to define the association cost between local
tracks.

The random error �̃�𝑚 (𝑚 = 1, 2) is ignored in the
following derivation for the simplicity; thus we have

𝑟
𝑚,𝑖
= 𝑟
𝑚,𝑖
+ Δ𝑟
𝑚
,

𝜃
𝑚,𝑖
= 𝜃
𝑚,𝑖

+ Δ𝜃
𝑚
.

(3)

In the absence of sensor biases, the real positionmeasure-
ment of the target state is

[
𝑥
𝑚,𝑖

𝑦
𝑚,𝑖] =

[

[

𝑟
𝑚,𝑖 cos (𝜃

𝑚,𝑖

)

𝑟
𝑚,𝑖 sin (𝜃

𝑚,𝑖

)

]

]

. (4)

In the presence of sensor biases, it becomes

[
𝑥
𝑚,𝑖

𝑦
𝑚,𝑖] =

[

[

(𝑟
𝑚,𝑖
+ Δ𝑟
𝑚
) cos (𝜃

𝑚,𝑖

+ Δ𝜃
𝑚
)

(𝑟
𝑚,𝑖
+ Δ𝑟
𝑚
) sin (𝜃

𝑚,𝑖

+ Δ𝜃
𝑚
)

]

]

. (5)

Manipulating the items in the above equations, we have

[
𝑥
𝑚,𝑖

𝑦
𝑚,𝑖] = (

cosΔ𝜃𝑚 − sinΔ𝜃𝑚
sinΔ𝜃𝑚 cosΔ𝜃𝑚 )[

𝑥
𝑚,𝑖

𝑦
𝑚,𝑖]

+ (
Δ𝑟
𝑚 cos (𝜃𝑚,𝑖 + Δ𝜃𝑚)

Δ𝑟
𝑚 sin (𝜃𝑚,𝑖 + Δ𝜃𝑚)

) .

(6)

From (6), it can be observed that the range bias Δ𝑟𝑚
brings about the translation for targets, and the azimuth

bias Δ𝜃𝑚 produces the rotation and also contributes to
the translation of targets when the range bias is nonzero.
Moreover, the azimuth bias is the critical factor compared
with the range bias, which produces more severe influence
on the target’s abstract coordinate and will be enlarged as the
distance from the sensor to the target increases.

The real squared distance between two targets T
𝑎
and T

𝑏

is

𝑑
2
(T
𝑎
,T
𝑏
) = (𝑥

𝑎
− 𝑥
𝑏
)
2

+ (𝑦
𝑎
− 𝑦
𝑏
)
2

. (7)

For sensor𝑚 (𝑚 = 1, 2), the squared distance 𝑑2
𝑚
(T
𝑎
,T
𝑏
)

between two position measurements T
𝑚,𝑎

and T
𝑚,𝑏

is

𝑑
2

𝑚
(T
𝑎
,T
𝑏
) ≜ 𝑑
2
(T
𝑚,𝑎
,T
𝑚,𝑏
)

= (𝑥
𝑚,𝑎
− 𝑥
𝑚,𝑏
)
2

+ (𝑦
𝑚,𝑎
− 𝑦
𝑚,𝑏
)
2

= (𝑟
𝑚,𝑎
+ Δ𝑟
𝑚
)
2

+ (𝑟
𝑚,𝑏
+ Δ𝑟
𝑚
)
2

− 2 (𝑟
𝑚,𝑎
+ Δ𝑟
𝑚
) (𝑟
𝑚,𝑏
+ Δ𝑟
𝑚
)

× cos (𝜃𝑚,𝑎 − 𝜃𝑚,𝑏) .

(8)

In this way, the difference between 𝑑
2

𝑚
(T
𝑎
,T
𝑏
) and

𝑑
2
(T
𝑎
,T
𝑏
) can be expressed by

𝐷 ≜ 𝑑
2

𝑚
(T
𝑎
,T
𝑏
) − 𝑑
2
(T
𝑎
,T
𝑏
)

= 2(Δ𝑟
𝑚
)
2

+ 2Δ𝑟
𝑚
𝑟
𝑚,𝑎
+ 2Δ𝑟

𝑚
𝑟
𝑚,𝑏

− 2 ((Δ𝑟
𝑚
)
2

+ Δ𝑟
𝑚
𝑟
𝑚,𝑎
+ Δ𝑟
𝑚
𝑟
𝑚,𝑏
)

× cos(𝜃
𝑚,𝑎

− 𝜃
𝑚,𝑏

)

= 2 ((Δ𝑟
𝑚
)
2

+ Δ𝑟
𝑚
𝑟
𝑚,𝑎
+ Δ𝑟
𝑚
𝑟
𝑚,𝑏
)

× [1 − cos(𝜃
𝑚,𝑎

− 𝜃
𝑚,𝑏

)] .

(9)

From (9), it is seen that the difference𝐷 is only influenced
by the range bias Δ𝑟𝑚 and the real position of the target but is
independent of azimuth bias Δ𝜃𝑚. This reveals that although
the azimuth bias may cause a severe impact on the absolute
coordinate, it causes less impact on the relative coordinate.
When the range bias is too large, the difference 𝐷 may be
severe. Fortunately, the range bias in practical applications is
generally at a low level.That means that the distance between
two targets detected by different sensors differs slightly, which
is less sensitive to sensor biases. In what follows, we employ
the structural similarity to measure the distance between two
local tracks from different sensors.

3.2. 2D Assignment Model for Track Association. As we know,
it is very important to establish a reasonable metric to
measure the similarity of local tracks from different sensors.
This problem becomes extremely complicated in the presence
of sensor bias, random errors, and missed tracks. Figure 2



4 Journal of Applied Mathematics

Measurement from sensor 1

Measurement from sensor 2

In which measurements
from the same target

Figure 2: Distribution of measurements from different sensors.

1

2

3

4

0

1

2

3

4

0

5

Sensor A Sensor B

Local tracks
Dummy node

Connecting cost

Figure 3: Graphical representation of track association problem.

illustrates a scenario with two sensors and six targets. Here,
sensor 1 detects 4 targets, and sensor 2 detects 5 targets. That
means that 𝑛

1
= 4, 𝑛

2
= 5, and there are 3 common targets.

For the scenario in Figure 2, a graphical representation of
track association is shown in Figure 3. We introduce a node
for each local track. To deal with possible missed detections,
a dummy node is introduced for each local sensor which
provides the access to link an isolated track with the dummy
track. The edges mean possible links between different local
tracks.

In the following, a 2D assignment model with given
constraints is established by minimizing the sum of all
pairwise costs:

min
𝑛
1

∑

𝑖
1
=0

𝑛
2

∑

𝑖
2
=0

𝑐
𝑖
1
𝑖
2

𝜌
𝑖
1
𝑖
2

s.t
𝑛
2

∑

𝑖
2
=0

𝜌
𝑖
1
𝑖
2

= 1, ∀𝑖
1
= 1, 2, . . . , 𝑛

1

𝑛
1

∑

𝑖
1
=0

𝜌
𝑖
1
𝑖
2

= 1, ∀𝑖
2
= 1, 2, . . . , 𝑛

2

𝜌
𝑖
1
𝑖
2

∈ {0, 1} , ∀𝑖
1
= 0, 1, 2, . . . , 𝑛

1
,

∀𝑖
2
= 0, 1, 2, . . . , 𝑛

2
.

(10)

3.3. Association Cost of Local Nodes Based on the Structural
Similarity. The model (10) can be solved efficiently and
optimally by the general 2D assignment algorithms, such
as auction algorithm and Hungarian algorithm. Now, the
remaining problem in solving (10) is how to define the
connecting cost 𝑐

𝑖
1
𝑖
2

. Instead of using the absolute kinematic
states only, the structural similarity of local tracks is employed
here. Three kinds of costs need to be specified: between local
tracks, between dummy tracks, and between local track and
the dummy track.

Firstly, we define a structural feature for each node 𝑁
𝑖
𝑚

(𝑚 = 1, 2; 𝑖
𝑚
= 1, . . . , 𝑛

𝑚
), which is represented by the set

𝐼
𝑖
𝑚

including all the distances from local track 𝑖
𝑚
to 𝑗 (𝑗 =

1, 2, . . . , 𝑛
𝑚
, 𝑗 ̸= 𝑖
𝑚
); that is,

𝐼
𝑖
𝑚

= {𝑑(𝑗, 𝑖
𝑚
)}
𝑗=1,2,...,𝑛

𝑚
,𝑗 ̸= 𝑖
𝑚

. (11)

We discuss the definition of 𝑐
𝑖
1
𝑖
2

in terms of the following
three cases.

(1) With Unity Detection Probability 𝑃
𝐷
𝑚

(𝑃
𝐷
𝑚

= 1,𝑚 = 1, 2).
If 𝑃
𝐷
𝑚

= 1 (𝑚 = 1, 2), then 𝑛
1
= 𝑛
2
= 𝑛. We order the

elements of set 𝐼
𝑖
𝑚

from the smallest to largest: 𝑑
𝑖
𝑚
,1
≤ 𝑑
𝑖
𝑚
,2
≤

⋅ ⋅ ⋅ ≤ 𝑑
𝑖
𝑚
,𝑛−1

. In this way, the cost 𝑐
𝑖
1
𝑖
2

(for all 𝑖
1
= 1, 2, . . . , 𝑛

1
,

for all 𝑖
2
= 1, 2, . . . , 𝑛

2
) can be defined by

𝑐
𝑖
1
𝑖
2

= 𝐷(𝐼
𝑖
1

, 𝐼
𝑖
2

) =

𝑛−1

∑

𝑗=1


𝑑
𝑖
1
,𝑗
− 𝑑
𝑖
2
,𝑗


. (12)

(2) Without Unity Detection Probability 𝑃
𝐷
𝑚

(𝑃
𝐷
1

⋅ 𝑃
𝐷
2

̸= 1).
If 𝑃
𝐷
𝑚

< 1 (𝑚 = 1, 2), the computation of 𝑐
𝑖
1
𝑖
2

(for all 𝑖
1
=

1, 2, . . . , 𝑛
1
, for all 𝑖

2
= 1, 2, . . . , 𝑛

2
) becomes complicated due

to possible missed detections. To define the connection cost
𝑐
𝑖
1
𝑖
2

, a 2D assignment subproblem (13) is constructed. As
shown in Figure 4, a graphical representation is established
to compute the cost 𝑐

23
. As done in the optimization model
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to compute the cost 𝑐

23
.

(10), two dummy nodes are introduced to cope with the case
of missed detections:

𝐽
𝑖
1
𝑖
2

= min
𝑛
1

∑

𝑗
1
=0,𝑗
1
̸= 𝑖
1

𝑛
2

∑

𝑗
2
=0,𝑗
2
̸= 𝑖
2

𝑐
𝑗
1
𝑗
2

𝜌
𝑗
1
𝑗
2

s.t
𝑛
2

∑

𝑗
2
=0,𝑗
2
̸= 𝑖
2

𝜌
𝑗
1
𝑗
2

= 1, ∀𝑗
1
= 1, 2, . . . , 𝑛

1
, 𝑗
1
̸= 𝑖
1

𝑛
1

∑

𝑗
1
=0,𝑗
1
̸= 𝑖
1

𝜌
𝑗
1
𝑗
2

= 1, ∀𝑗
2
= 1, 2, . . . , 𝑛

2
, 𝑗
2
̸= 𝑖
2

𝜌
𝑗
1
𝑗
2

∈ {0, 1} , ∀𝑗
1
= 0, 1, 2, . . . , 𝑛

1
,

∀𝑗
2
= 0, 1, 2, . . . , 𝑛

2
, 𝑗
1
̸= 𝑖
1
, 𝑗
2
̸= 𝑖
2
.

(13)

In this optimization model (13), the critical part is to
define the cost 𝑐

𝑗
1
𝑗
2

. For all 𝑗
1
= 1, 2, . . . , 𝑛

1
, 𝑗
1
̸= 𝑖
1
, and

for all 𝑗
2
= 1, 2, . . . , 𝑛

2
, 𝑗
2
̸= 𝑖
2
, the cost 𝑐

𝑗
1
𝑗
2

is defined by the
absolute value of distance difference:

𝑐
𝑗
1
𝑗
2

=
𝑑 (𝑗1, 𝑖1) − 𝑑 (𝑗2, 𝑖2)

 . (14)

If track-pair {𝑖
1
, 𝑗
1
} from sensor 1 and {𝑖

2
, 𝑗
2
} from sensor

2 share the same two targets, then 𝑐
𝑗
1
𝑗
2

would be a small
quantity due to the structural similarity. When given a
threshold 𝜆, we compare 𝑐

𝑗
1
𝑗
2

and the gate value 𝜆. If 𝑐
𝑗
1
𝑗
2

> 𝜆,
then it means that track-pair {𝑖

1
, 𝑗
1
} from sensor 1 and {𝑖

2
, 𝑗
2
}

from sensor 2 do not share the same targets. To prevent them
from associating, we set 𝑐

𝑗
1
𝑗
2

= +∞. In practical operations,

we set 𝑐
𝑗
1
𝑗
2

= Γ, where Γ is a large positive integer. In addition,
we set 𝑐

0𝑗
2

= 𝑐
𝑗
1
0
= 10
−2
Γ to encourage the isolated node to

link with the dummy node. In addition, we set 𝑐
00
= Γ.

As far, a complete 2D assignment subproblem (13) is well
defined. By solving it, the optimal fitness 𝐽∗

𝑖
1
𝑖
2

can be obtained.
It is noted that 𝑐

𝑖
1
𝑖
2

cannot be defined directly by 𝐽∗
𝑖
1
𝑖
2

; further
processing is required considering possible isolated tracks.
We denote the number of valid associations by 𝛽, which is
defined as the number of association assignments between
local tracks (not with dummy nodes). If 𝛽 is close enough
to the expected number 𝛼 of common targets (|𝛽 − 𝛼| ≤ 𝜀,
𝜀 is a small positive integer), then 𝑐

𝑖
1
𝑖
2

= 𝐽
∗

𝑖
1
𝑖
2

. Otherwise, set
𝑐
𝑖
1
𝑖
2

= Γ, where the expected number 𝛼 of common targets is
computed by

𝛼 =

𝑃
𝐷
1

𝑃
𝐷
2

(𝑛
1
+ 𝑛
2
)

(1 + 𝑃
𝐷
1

𝑃
𝐷
2

)

. (15)

It is proportional to the detection probability 𝑃
𝐷
𝑚

(𝑚 = 1, 2)
of sensors. If 𝑃

𝐷
𝑚

= 1 (𝑚 = 1, 2), then 𝛼 = 𝑛
1
= 𝑛
2
.

(3) Connection Cost with Dummy Node. When a local node
(𝑖
1
or 𝑖
2
) is declared isolated, we set 𝑐

0𝑖
2

= 𝑐
𝑖
1
0
= 10
−2
Γ to

encourage it to link with the dummy node. In addition, we set
𝑐
00
= Γ to discourage the association between dummy tracks.

3.4. Discussions

(1) Approximation Solution Based on the Nearest Neighbor-
hoodMethod. A newapproach to track-to-track association in
the presence of sensor biases is given in Sections 3.2 and 3.3,
which requires solving two 2D optimal assignment models.
One serves to compute the connecting cost between two local
tracks, and the other one is to determine the final association
assignment between two sets of local tracks. To simplify, we
call this method “structural similarity-based 2D assignment”
(SS-based 2D assignment). Considering the complexity of
the proposed model, an approximation solution can be
obtained by using the nearest neighborhood (NN) method
when determining the final association assignment, instead
of using the optimal assignment. Such a scheme is denoted by
structural similarity-based nearest neighborhood (SS-based
NN). Simulation results provided before indicate that such
an approximate method can also provide a better association
result, because the structural property is considered when
constructing the connection cost between local tracks.

(2) Possible Extensions. In practical fusion applications,
heterogeneous sensors are commonly found. The proposed
approach can alsoworkwell in this case, sincewhat we handle
here are local tracks after local processing. Although the
measuring process is implemented in the local measurement
coordinate system, local tracks from heterogeneous sensors
may be in the common Cartesian coordinate system.

In addition, in short-range applications or for maritime
surveillance, different scattering centres of the objects under
consideration may give rise to several distinct detections.
At this time, what one is concerned with includes the state
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for both the target kinematics and the target extension. The
proposed approach fails to deal with the case that the targets
have more than one scattering centers. Readers may refer to
literatures concerning extended target tracking [17, 18]. It is
still a problem which few people get into to implement track-
to-track association between extended targets.

4. Simulation Results

4.1. Scenario Setup and Results. In this section, we provide
some simulation results to illustrate the efficiencies of the
proposed approaches (“SS-based 2D assignment” and “SS-
based NN”). Here, we consider a multiple target tracking
scenario with two sensors. At the beginning of the tracking
process, 30 targets are distributed uniformly in the region
[20 km, 40 km]×[20 km, 40 km].Themotion of all the targets
follows the constant acceleration (CA) model with accelera-
tion 1m/s2.Theprocess noise is assumedwhiteGaussianwith
zero mean and covariance matrix 𝑄 = (0.1m/s3)I

2
, where I

2

is an 2 × 2 identity matrix. The initial direction of velocity
occurs randomly in [0, 2𝜋] with the amplitude 100m/s. The
sample interval 𝑇 is set to 1 s, and the tracking time is 30 s.
Two sensors are located at (40000m, 5000m) and (15000m,
10000m) in the global Cartesian coordinate system (GCCS),
respectively. Each sensor measures the range and angle to the
target. The random range error for both sensors is modelled
as white Gaussian noises with the standard deviations 𝜎1

𝑟
=

30m and 𝜎2
𝑟
= 40m, respectively. The random angle error is

also modelled as white Gaussian noises with standard devia-
tions 𝜎1

𝜃
= 0.2∘ and 𝜎2

𝜃
= 0.1∘. Both of the sensors employ EKF

to obtain the local tracks based on their own measurement
information. The measurements are supported by 50 Monte-
Carlo runs performed on the same target trajectories but with
independently generatedmeasurements for each trial. Except
for the special declaration in the following simulations, the
detection probabilities of the two sensors are 𝑃

𝑑
1

= 0.8 and
𝑃
𝑑
2

= 0.7; the systematic biases are set to Δ𝑟
1
= 400m,

Δ𝑟
2
= 500m, Δ𝜃

1
= 6∘, Δ𝜃

2
= −5∘.

Performance comparisons are made between the pro-
posed approaches and the competing algorithms. In compet-
ing algorithms, the square Mahalanobis distance is chosen as
the similarity measure of two local tracks. The final associa-
tion assignment is determined based on the 2D assignment
algorithm and the nearest neighborhood (NN) algorithm,
respectively. To simplify, they are called “bias-ignorant 2D
assignment” and “bias-ignorant NN.”

We adopt the probability of correct association𝑃
𝑐
(𝑡) at the

time 𝑡 to evaluate the association performance:

𝑃
𝑐
(𝑡) =

∑
𝐿

𝑖=1
𝐶
𝑖
(𝑡)

𝐿 × 𝑁
, (16)

where 𝐶𝑖(𝑡) denotes the number of tracks with correct
association at time 𝑡 at the 𝑖th Monte-Carlo run, 𝐿 is the total
number ofMonte-Carlo runs, and𝑁 is the number of targets.

The average probability of correct association 𝐴𝑃
𝑐
is

computed by

1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sensor location
Target trajectories

x (m)

y
(m

)

×104

×104

Figure 5: Sensors and target trajectories.
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𝐴𝑃
𝑐
=
∑
𝐾

𝑖=1
𝑃
𝑐
(𝑡)

𝐾
, (17)

where𝐾 is the overall tracking time.
Figure 5 shows sensor locations and target trajectories

during the whole tracking time in one run. The probability
comparison of the correct association via the tracking time is
shown in Figure 6.

Figures 7–10 illustrate the average probabilities of correct
association via different detection probability, angle bias,
range bias, and the total number of targets, respectively. In
Figure 7, the detection probability 𝑃

𝐷
1

of sensor 1 is set to 0.8,
and the detection probability 𝑃

𝐷
2

of sensor 2 varies from 0.5
to 1. In Figure 8, the angle bias Δ𝜃

1
of sensor 1 is 1∘, and the

angle bias Δ𝜃
2
of sensor 2 varies from 0∘ to 7∘. In Figure 9,
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Figure 8: Average probability of correct association via different
angle biases.

the range bias of sensor 1 Δ𝑟
1
varies from 0m to 1000m, and

the one of sensor 2Δ𝑟
2
is 500m. In Figure 10, the total number

of targets varies from 10 to 70.

4.2. Result Analysis. From Figures 6–10, it is shown that
the proposed “SS-based 2D assignment” and “SS-based NN”
outperform the competing algorithms. Moreover, “SS-based
NN” is inferior to “SS-based 2D assignment” just a little bit
due to the fact that the structural property is consideredwhen
constructing the association cost. From Figure 8, it is seen
that, as the angle bias increases, the association performances
of the “bias-ignorant 2D assignment” and “bias-ignorant
NN” experience severe degradations. However, the proposed
approaches still perform well, which are insensitive to the
angle bias. In addition, it is observed from Figure 10 that
the probabilities of correct association given by all methods
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Figure 9: Average probability of correct association via different
range biases.
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Figure 10: Average probability of correct association via the total
number of targets.

decrease to some extent as the total number of targets
becomes large.

Although the proposed approach performs well in the
simulation experiments, it has some flaws. Firstly, the range
bias is assumed to be a small one when using the proposed
approach; otherwise, the distance invariance between two
targets detected by different sensors cannot hold. Secondly, it
is required to solve a 2D assignment model when computing
the association cost. Doing so may result in a high computa-
tional burden, especially for a large number of targets.

5. Conclusions

The sensor reports are disturbed by not only random errors,
but also sensor biases. When track-to-track association and
sensor registration meet each other, some challenging prob-
lems arise since they are tightly coupled together. In this



8 Journal of Applied Mathematics

paper, instead of using the absolute kinematic states only, the
structural features of local tracks are employed for track-to-
track association in the presence of sensor biases. A complete
2D assignment model for track-to-track association is given
to deal with possibly missed detections. Lots of simulation
results demonstrated the power of the proposed approaches.
Further work includes the utilization of multiscan infor-
mation and the extension of the proposed approach to the
multisensor case.
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