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A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to
the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction number 𝑅

0

is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable if
𝑅
0
≤ 1, and the system is uniformly persistence if 𝑅

0
> 1. Some numerical simulations are also given to explain our analytical

results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse
rate and increase the recovery rate.

1. Introduction

Malaria is caused by a parasite called Plasmodium, which is
transmitted via the bites of infected mosquitoes. Approxi-
mately half of the world’s population is at risk of malaria.
Most malaria cases and deaths occur in Sub-Saharan Africa.
In 2011, 99 countries and territories had ongoing malaria
transmission [1]. Recently, the incidence of malaria has been
rising due to drug resistance. Various control strategies have
been taken to reduce malaria transmissions.

Many epidemic models have been analyzed mathemat-
ically and applied to specific diseases [2, 3]. Since the first
mathematical model of malaria transmission is introduced
by Ross [4], quite a few mathematical models have been for-
mulated to investigate the transmission dynamics of malaria
[5–12]. Ngwa and Shu [5] analyze a deterministic differen-
tial equation model for endemic malaria involving variable
human and mosquito populations. Ngwa [6] also analyzes a
mathematical model for endemic malaria involving variable
human and mosquito populations and uses a perturbation
analysis to approximate the endemic equilibrium in the
important case where the disease related death rate is non-
zero, small but significant. Furthermore, in quasistation-
arity, the stochastic process undergoes oscillations about
a mean population whose size can be approximated by

the stable endemic deterministic equilibrium. Chitnis et al.
[7, 8] study a model that both human and vector species
follow a logistic population, and human have immigra-
tion and disease-induced death. They present a bifurcation
analysis and analyze a periodically-forced difference equa-
tion model for malaria in mosquitoes that captures the
effects of seasonality and allows the mosquitoes to feed
on a heterogeneous population of hosts. Chamchod and
Britton [9] incorporate a vector-bias term into a malaria
transmission model to account for the greater attractiveness
of infectious humans to mosquitoes in terms of differing
probabilities that a mosquito arriving at a human depending
on whether he is infectious or susceptible. To take account
of the incubation periods of parasites within the human and
the mosquito, a delayed Ross-Macdonald model is taken by
Ruan et al. [10]. Further, Xiao and Zou [11] use mathematical
models to explored a natural concern of possible epidemics
caused by multiple species of malaria parasites in one region.
They find that epidemics involving both species in a single
region are possible. Li [12] provides a basic analysis for the
stage-structured malaria model and shows that both the
baseline and the stage-structured malaria models undergo
backward bifurcations.

Recently, Li et al. [13] consider a fast and slow dynamics of
malaria model with relapse, and analyse the global dynamics
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Figure 1: Transfer diagram of the model (1).

by using the geometric singular perturbation theory. They
find that a treatment should be given to symptomatic patients
completely and adequately rather than asymptomatic infec-
tion. On the other hand, for the asymptomatic patients, their
results strongly suggest that to control and eradicate the
malaria, it is very necessary for the government to control the
relapse rate strictly. Nadjm and Behrens [14] state that relapse
is when symptoms reappear after the parasites had been eli-
minated from blood but persist as dormant hypnozoites in
liver cells. This commonly occurs between 8–24 weeks and is
commonly seen with P. vivax and P. ovale infections. Other
papers also consider the inluence of relapse in giving up
smoking or quitting drinking, please see [15, 16] and refer-
ences cited therein.

Chitnis et al. [7] assume that the recovered humans have
some immunity to the disease and do not get clinically ill,
but they still harbor low levels of parasite in their blood
streams and can pass the infection to mosquitoes. After some
period of time, they lose their immunity and return to the
susceptible class. Unfortunately, they do not consider that the
recovered humans will return to their infectious state because
of incomplete treatment. Li et al. [13] consider the relapse but
not that the recovered humans may return to the susceptible
class.

Motivated by these works, in this paper, we propose a
more realistic mathematical model of malaria, in which we
assume that the recovered humans return to the susceptible
class and relapse. The basic reproductive number 𝑅

0
is calcu-

lated and the persistence theory is used to analyze the uni-
formly persistence of the system.

The organization of this paper is as follows. In the next
section, a mathematical model of malaria with relapse is for-
mulated. In Section 3, the basic reproduction number and
the stability of disease-free equilibria are investigated. The
existence of endemic equilibrium and uniformly persistence
are proved in Section 4, and some numerical simulations are
given in Section 5. In the last section, we give some brief dis-
cussions.

2. The Model

2.1. System Description. In this section, we introduce a math-
ematical model of malaria with relapse. Because hosts might

get repeatedly infected due to not acquiring complete immu-
nity so the population is assumed to be described by the
SIRSmodel. Mosquitoes are assumed not to recover from the
parasites so the mosquito population can be described by the
SI model.The total number of population at time 𝑡 is given by
𝑁 = 𝑆

ℎ
(𝑡)+𝐼
ℎ
(𝑡)+𝑅

ℎ
(𝑡) and𝑀 = 𝑆

𝑚
(𝑡)+𝐼
𝑚
(𝑡).The structure

of model is shown in Figure 1. The transfer diagram leads to
the following system of ordinary differential equations:

𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= 𝜇𝑁 −

𝛽𝑆
ℎ
𝐼
𝑚

𝑁
+ 𝜌
1
𝑅
ℎ
− 𝜇𝑆
ℎ
,

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
=
𝛽𝑆
ℎ
𝐼
𝑚

𝑁
+ 𝜌
2
𝑅
ℎ
− (𝛾 + 𝜇) 𝐼

ℎ
,

𝑑𝑅
ℎ (𝑡)

𝑑𝑡
= 𝛾𝐼
ℎ
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑅

ℎ
,

𝑑𝑆
𝑚 (𝑡)

𝑑𝑡
= 𝜂𝑀 −

𝛼
1
𝑆
𝑚
𝐼
ℎ

𝑁
−
𝛼
2
𝑆
𝑚
𝑅
ℎ

𝑁
− 𝜂𝑆
𝑚
,

𝑑𝐼
𝑚
(𝑡)

𝑑𝑡
=
𝛼
1
𝑆
𝑚
𝐼
ℎ

𝑁
+
𝛼
2
𝑆
𝑚
𝑅
ℎ

𝑁
− 𝜂𝐼
𝑚
,

(1)

where 𝑆
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝑆
𝑚
, 𝐼
𝑚
, 𝑁, and𝑀 represent the number of

susceptible humans, infectious humans, recovered humans,
susceptible mosquitoes, infectious mosquitoes, the total size
of the human population, and the total size of themosquitoes
population, respectively. 𝜇 is the natural birth and death
rate of humans, 𝜂 is the natural birth and death rate of
mosquitoes, 𝛽 is from an infectious mosquito to a susceptible
human transmission rate in humans,𝛼

1
and𝛼
2
represent both

infectious and recovered human to a susceptible mosquito
transmission rate in mosquitoes, 𝛾 is treatment rate, 𝜌

1
is rec-

overy rate (individuals from recovered class could back to
susceptible class again because they had a very small amount
of parasites, which would be cleared quickly by their own
immune system), 𝜌

2
is relapse rate, and 𝑞 is the number of

mosquitoes per individual. All the parameters can be found in
Table 1. In the model,𝑁 and𝑀 are constant, so we introduce
the new variables in terms of proportion as follows:

𝑠
ℎ
=
𝑆
ℎ

𝑁
, 𝑥

1
=
𝐼
ℎ

𝑁
, 𝑥

2
=
𝑅
ℎ

𝑁
,

𝑠
𝑚
=
𝑆
𝑚

𝑀
, 𝑦 =

𝐼
𝑚

𝑀
,

(2)



Abstract and Applied Analysis 3

Table 1: The parameters description of malaria model.

𝛼
1

From an infectious human to a susceptible mosquito,
transmission rate in mosquitoes

𝛼
2

From a recovered human to a susceptible mosquito,
transmission rate in mosquitoes.

𝛽
From an infectious mosquito to a susceptible human,
transmission rate in humans

𝑁 The total size of human population
𝑀 The total size of mosquito population
𝜇 Natural birth and death rate of humans
𝛾 Treatment rate
𝜌
1 Recovery rate
𝜌
2 Relapse rate
𝜂 Natural birth and death rate of mosquitoes
𝑞 The number of mosquitoes per individual

with 𝑠
ℎ
+𝑥
1
+𝑥
2
= 1, 𝑠

𝑚
+𝑦 = 1.Then the system (1) becomes

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑞𝛽 (1 − 𝑥

1
− 𝑥
2
) 𝑦 + 𝜌

2
𝑥
2
− (𝛾 + 𝜇) 𝑥

1
,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛼
1
(1 − 𝑦) 𝑥

1
+ 𝛼
2
(1 − 𝑦) 𝑥

2
− 𝜂𝑦.

(3)

2.2. Basic Properties

2.2.1. Invariant Region. Notice that from (1) we have

𝑑𝑁 (𝑡)

𝑑𝑡
= 0,

𝑑𝑀 (𝑡)

𝑑𝑡
= 0. (4)

Thus, the total human population 𝑁 and mosquitoes’ popu-
lation𝑀 are constant. Since the system (3) monitor human
population, it is plausible to assume that all its state variables
and parameters are nonnegative for all 𝑡 ≥ 0. Further, it can
be shown that the region

Ω = {(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑦 (𝑡)) ∈ 𝑅

3

+
:

𝑥
1 (𝑡) + 𝑥2 (𝑡) ≤ 1}

(5)

is positively-invariant. Thus, each solution of the system
(3), with initial conditions in Ω, remains there for 𝑡 ≥ 0.
Therefore, the 𝜔-limit sets of solutions of the system (3), are
contained in Ω. Furthermore, in Ω, the usual existence,
uniqueness, and continuation results hold for the system,
so that the system (3), is well-posed mathematically and
epidemiologically. So we consider dynamics of system (3) on
the setΩ in this paper.

2.2.2. Positivity of Solutions. For system (3), to ensure the
solutions of the systemwith positive initial conditions remain
positive for all 𝑡 > 0, it is necessary to prove that all the state
variables are nonnegative, so we have the following lemma.

Lemma 1. If 𝑥
1
(0) > 0, 𝑥

2
(0) > 0, 𝑦(0) > 0, the solutions

𝑥
1
(𝑡), 𝑥
2
(𝑡), and 𝑦(𝑡) of system (3) are positive for all 𝑡 ≥ 0.

Proof. Under the given initial conditions, it is easy to prove
that the solutions of the system (3) are positive; if not, we ass-
ume a contradiction: that there exists a first time 𝑡

1
such that

𝑥
1
(𝑡
1
) = 0, 𝑥

󸀠

1
(𝑡
1
) ≤ 0, 𝑥

2
(𝑡
1
) ≥ 0,

𝑦 (𝑡
1
) ≥ 0, 𝑥

2
(𝑡
1
) + 𝑦 (𝑡

1
) > 0,

𝑥
2
(𝑡) > 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (0, 𝑡
1
) ;

(6)

there exists a 𝑡
2
, such that

𝑥
2
(𝑡
2
) = 0, 𝑥

󸀠

2
(𝑡
2
) ≤ 0, 𝑥

1
(𝑡
2
) ≥ 0,

𝑦 (𝑡
2
) ≥ 0, 𝑥

1
(𝑡
2
) + 𝑦 (𝑡

2
) > 0,

𝑥
1
(𝑡) > 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (0, 𝑡
2
) ;

(7)

there exists a 𝑡
3
, such that

𝑦 (𝑡
3
) = 0, 𝑦

󸀠
(𝑡
3
) ≤ 0, 𝑥

1
(𝑡
3
) ≥ 0,

𝑥
2
(𝑡
3
) ≥ 0, 𝑥

1
(𝑡
3
) + 𝑥
2
(𝑡
3
) > 0,

𝑥
1 (𝑡) > 0, 𝑥

2 (𝑡) > 0,

𝑡 ∈ (0, 𝑡
3
) .

(8)

In the first case, we have

𝑥
󸀠

1
(𝑡
1
) = 𝑞𝛽 (1 − 𝑥

2
) 𝑦 + 𝜌

2
𝑥
2
> 0, (9)

which is a contradiction meaning that 𝑥
1
(𝑡) > 0, 𝑡 ≥ 0.

In the second case, we have

𝑥
󸀠

2
(𝑡
2
) = 𝛾𝑥

1
> 0, (10)

which is a contradiction meaning that 𝑥
2
(𝑡) > 0, 𝑡 ≥ 0.

In the third case, we have

𝑦
󸀠
(𝑡
3
) = 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
> 0, (11)

which is a contradiction meaning that 𝑦(𝑡) > 0, 𝑡 ≥ 0. Thus,
the solutions 𝑥

1
(𝑡), 𝑥

2
(𝑡), and 𝑦(𝑡) of system (3) remain

positive for all 𝑡 > 0.

3. Analysis of the Model

The model (3) has one disease-free equilibrium 𝐸
0
and one

endemic equilibrium 𝐸∗.

3.1. Disease-Free Equilibrium and the Basic Reproduction
Number. Themodel has a disease-free equilibrium given by

𝐸
0
= (0, 0, 0) . (12)
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In the following, the basic reproduction number of system
(3) will be obtained by the next generation matrix method
formulated in [17].

Let𝑋 = (𝑥
1
, 𝑥
2
, 𝑦)
𝑇, then system (3) can be written as

𝑑𝑋

𝑑𝑡
= F (𝑋) −V (𝑋) , (13)

where

F (𝑋) = (

𝑞𝛽 (1 − 𝑥
1
− 𝑥
2
) 𝑦

0

𝛼
1
(1 − 𝑦) 𝑥

1
+ 𝛼
2
(1 − 𝑦) 𝑥

2

) ,

V (𝑋) = (

−𝜌
2
𝑥
2
+ (𝛾 + 𝜇) 𝑥

1

−𝛾𝑥
1
+ (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2

𝜂𝑦

) .

(14)

The Jacobian matrices ofF(𝑋) andV(𝑋) at the disease-free
equilibrium 𝐸

0
are, respectively,

𝐷F (𝐸
0
) = (

0 0 𝑞𝛽

0 0 0

𝛼
1
𝛼
2
0

) ,

𝐷V (𝐸
0
) = (

𝛾 + 𝜇 −𝜌
2

0

−𝛾 𝜌
1
+ 𝜌
2
+ 𝜇 0

0 0 −𝜂

) .

(15)

The model reproduction number
denoted by 𝑅

0
is thus given by 𝑅

0
=

√𝑞𝛽[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾]/𝜂[(𝜇 + 𝛾)(𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
].

Here 𝑅
0
is associated with disease transmission by infected

humans as well as the infection of susceptible humans by
infected mosquitoes. Susceptible mosquitoes acquire malaria
infection from infected humans in two ways, namely, by
infected or recoveries. Susceptible humans acquire infection
following effective contacts with infected mosquitoes.

3.2. Global Stability of 𝐸
0

Theorem 2. For system (3), the disease-free equilibrium 𝐸
0
is

locally asymptotically stable if 𝑅
0
< 1.

Proof. The linearised system (3) at the disease-free equilib-
rium is given by

𝑑𝑥
1

𝑑𝑡
= − (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦,

𝑑𝑥
2

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦

𝑑𝑡
= 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦.

(16)

Therefore, the characteristic equation is

𝜆
3
+ 𝐴
1
𝜆
2
+ 𝐴
2
𝜆 + 𝐴

3
(1 − 𝑅

2

0
) = 0. (17)

with 𝐴
1
= 𝛾 + 2𝜇 + 𝜌

1
+ 𝜌
2
+ 𝜂, 𝐴

2
= [(𝛾 + 𝜇)(𝜌

1
+ 𝜌
2
+ 𝜇)(1 +

𝜂) − 𝑞𝛽𝛼
1
], and 𝐴

3
= [(𝛾 + 𝜇)(𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]𝜂. We use

the Routh-Hurwitz criterion [18] to prove that when 𝑅
0
< 1,

all roots of (17) have negative real part. From (17), we see that
𝐻
1
= 𝛾 + 2𝜇 + 𝜌

1
+ 𝜌
2
+ 𝜂 > 0 and

𝐻
2
= 𝐴
1
𝐴
2
− 𝐴
3
(1 − 𝑅

2

0
)

= (𝛾 + 2𝜇 + 𝜌
1
+ 𝜌
2
+ 𝜂)

× [(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
] (1 + 𝜂)

− 𝑞𝛽𝛼
1
− 𝜂 (𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇)

+ 𝜂𝛾𝜌
2
+ 𝑞𝛽 [𝛼

1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] .

(18)

For ease of notation, we introduce 𝐵
1
= 𝛾 + 𝜇 and 𝐵

2
= 𝜌
1
+

𝜌
2
+ 𝜇, so that

𝐻
2
= (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
(𝐵
1
+ 𝜂) 𝑞𝛽𝛼

1

𝜂 (𝐵
1
+ 𝐵
2
) (𝐵
1
+ 𝐵
2
+ 𝜂)

] + 𝑞𝛽𝛼
2
𝛾

≥ (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
𝑞𝛽𝛼
1

𝜂 (𝐵
1
+ 𝐵
2
)
] + 𝑞𝛽𝛼

2
𝛾

≥ (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
𝑞𝛽𝛼
1
𝐵
2
+ 𝑞𝛽𝛼

2
𝛾

𝜂 (𝐵
1
𝐵
2
+ 𝐵
2

2
)
] + 𝑞𝛽𝛼

2
𝛾

≥ (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
𝑞𝛽𝛼
1
𝐵
2
+ 𝑞𝛽𝛼

2
𝛾

𝜂 (𝐵
1
𝐵
2
− 𝛾𝜌
2
)
] + 𝑞𝛽𝛼

2
𝛾

= (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 − 𝑅
2

0
] + 𝑞𝛽𝛼

2
𝛾.

(19)

Thus, for 𝑅
0
< 1, 𝐻

2
> 0. Lastly, 𝐻

3
= 𝐻
2
𝐴
3
(1 − 𝑅

2

0
). Thus,

for 𝑅
0
< 1, all roots of (17) have negative real parts. The dis-

ease-free equilibriumpoint𝐸
0
, is locally asymptotically stable

if 𝑅
0
< 1.

In the following, we prove that when𝑅
0
≤ 1,𝐸

0
is globally

asymptotically stable inΩ.

Theorem 3. For system (3), the disease-free equilibrium 𝐸
0
is

globally asymptotically stable if 𝑅
0
≤ 1.

Proof. We introduce the following Lyapunov function [19,
20]:

𝑉 = 𝑎𝑥
1
+ 𝑏𝑥
2
+ 𝑐𝑦, (20)
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where 𝑎 = 𝛼
1
(𝜌
1
+𝜌
2
+𝜇)+𝛼

2
𝛾, 𝑏 = 𝛼

2
(𝛾 +𝜇) +𝛼

1
𝜌
2
, and 𝑐 =

(𝛾 + 𝜇)(𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
. It is easy to see that 𝑎, 𝑏, and 𝑐 are

all positive. The derivative of 𝑉 is given by

𝑉̇ = 𝑎𝑥̇
1
+ 𝑏𝑥̇
2
+ 𝑐 ̇𝑦

= 𝑎 [𝑞𝛽 (1 − 𝑥
1
− 𝑥
2
) 𝑦 + 𝜌

2
𝑥
2
− (𝛾 + 𝜇) 𝑥

1
]

+ 𝑏 [𝛾𝑥
1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2
]

+ 𝑐 [𝛼
1
(1 − 𝑦) 𝑥

1
+ 𝛼
2
(1 − 𝑦) 𝑥

2
− 𝜂𝑦]

= (𝑎𝑞𝛽 − 𝑐𝜂) 𝑦 − [𝑎 (𝛾 + 𝜇) − 𝑏𝛾 − 𝑐𝛼
1
] 𝑥
1

+ [𝑎𝜌
2
− 𝑏 (𝜌

1
+ 𝜌
2
+ 𝜇) + 𝑐𝛼

2
] 𝑥
2

− (𝑎𝑞𝛽 + 𝑐𝛼
1
) 𝑥
1
𝑦 − (𝑎𝑞𝛽 + 𝑐𝛼

2
) 𝑥
2
𝑦

= − (𝑎𝑞𝛽 + 𝑐𝛼
1
) 𝑥
1
𝑦 − (𝑎𝑞𝛽 + 𝑐𝛼

2
) 𝑥
2
𝑦

+

(𝑅
2

0
− 1) 𝑦

[(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
] 𝜂
.

(21)

If 𝑅
0
≤ 1, then (𝑅2

0
− 1)/[(𝛾 + 𝜇)(𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]𝜂 ≤ 0.

As we know that −(𝑎𝑞𝛽 + 𝑐𝛼
1
) < 0 and −(𝑎𝑞𝛽 + 𝑐𝛼

2
) < 0,

so we obtain 𝑉̇ ≤ 0. Furthermore, 𝑉̇ = 0 only if 𝑦 = 0 or
𝑅
0
= 1. The maximum invariant set in {(𝑥

1
, 𝑥
2
, 𝑦) : 𝑉̇ = 0} is

the singleton 𝐸
0
. By LaSalle’s Invariance Principle [21], 𝐸

0
is

globally asymptotically stable in Ω.

3.3. Endemic Equilibrium

3.3.1. Existence of the Endemic Equilibrium

Theorem 4. If 𝑅
0
> 1, system (3) has a unique endemic equi-

librium 𝐸∗ = (𝑥∗
1
, 𝑥
∗

2
, 𝑦
∗
), where

𝑥
∗

1
= ( (𝜌

1
+ 𝜌
2
+ 𝜇) [(𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

×𝜂 (𝑅
2

0
− 1))

× ([(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

× [𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾]

+ (𝜌
1
+ 𝜌
2
+ 𝜇 + 𝛾))

−1
,

𝑥
∗

2
=

𝛾

𝜌
1
+ 𝜌
2
+ 𝜇
𝑥
1
,

𝑦
∗
=

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
1

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
1
+ 𝜂 (𝜌

1
+ 𝜌
2
+ 𝜇)

.

(22)

Proof. It follows from system (3) that

𝑞𝛽 (1 − 𝑥
∗

1
− 𝑥
∗

2
) 𝑦
∗
+ 𝜌
2
𝑥
∗

2
− (𝛾 + 𝜇) 𝑥

∗

1
= 0,

𝛾𝑥
∗

1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

∗

2
= 0,

𝛼
1
(1 − 𝑦

∗
) 𝑥
∗

1
+ 𝛼
2
(1 − 𝑦

∗
) 𝑥
∗

2
− 𝜂𝑦 = 0.

(23)

From the second equation of (23), we obtain

𝑥
∗

2
=

𝛾

𝜌
1
+ 𝜌
2
+ 𝜇
𝑥
∗

1
. (24)

Substituting 𝑥∗
2
into the third equation of (23), we have

𝑦
∗
=

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
∗

1

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
∗

1
+ 𝜂 (𝜌

1
+ 𝜌
2
+ 𝜇)

. (25)

Then substituting (24) and (25) into first equation of (23), we
get

𝑥
∗

1
= ( (𝜌

1
+ 𝜌
2
+ 𝜇) [(𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

×𝜂 (𝑅
2

0
− 1))

× ([(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

× [𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾]

+ (𝜌
1
+ 𝜌
2
+ 𝜇 + 𝛾))

−1
.

(26)

Hence, if 𝑅
0
≤ 1, there is no positive root of (26), while if

𝑅
0
> 1 there is one positive root.

3.3.2. Uniform Persistence of the Disease. We using the per-
sistence theory of dynamical system to show the uniform
persistence of the disease when 𝑅

0
> 1. Let 𝐸 be a closed pos-

itively invariant subset ofΩ, on which a continuous flowF is
defined. We denote the restriction F to 𝜕𝐸 by 𝜕F and note
that 𝜕𝐸 is in general not positively invariant. Let 𝑁 be the
maximal invariant set of 𝜕F on 𝜕𝐸. Suppose 𝑁 is a closed
invariant set and there exists a cover {𝑁

𝛼
}
𝛼∈𝐴

of𝑁, where𝐴 is
a nonempty index set.𝑁

𝛼
⊂ 𝜕𝐸,𝑁 ⊂ ⋃

𝛼∈𝐴
𝑁
𝛼
, and {𝑁

𝛼
}(𝛼 ∈

𝐴) are pairwise disjoint closed invariant sets. Furthermore,
we propose the following hypothesis and Lemma. (𝐻

1
) All

𝑁
𝛼
are isolated invariant sets of the flow F. (𝐻

2
), {𝑁
𝛼
}
𝛼∈𝐴

is acyclic; that is, any finite subset of {𝑁
𝛼
}
𝛼∈𝐴

does not form
a cycle. (𝐻

3
) Any compact subset of 𝜕𝐸 contains, at most,

finitely many sets of {𝑁
𝛼
}
𝛼∈𝐴

[22].

Lemma 5 (see [22,Theorem 4.3]). Let 𝐸 be a closed positively
invariant subset ofΩ on which a continuous flowF is defined.
Suppose there is a constant 𝜀 > 0 such that F is point dis-
sipative on 𝑆[𝜕𝐸, 𝜀]⋂𝐸0 and the assumption (𝐻

1
–𝐻
3
) holds.

Then the flow F is uniformly persistent, if and only if
𝑊
+
(𝑁
𝛼
)⋂ 𝑆[𝜕𝐸, 𝛼]⋂𝐸

0
= 𝜙. For any 𝛼 ∈ 𝐴, where

𝑊
+
(𝑁
𝛼
) = {𝑦 ∈ Ω, 𝜔(𝑦) ⊂ 𝑁

𝛼
}, 𝑆[𝜕𝐸, 𝜀] = {𝑥 : 𝑥 ∈

Ω, 𝑑(𝑥, 𝜕𝐸) ≤ 𝜀}, and 𝐸0 is interior of set 𝐸.

By this lemma, we can show the uniform persistence of
disease when 𝑅

0
> 1, and similar to the proof ofTheorem 2.3

in [13], we have the following.

Theorem6. In system (3), assume that𝑅
0
> 1, and the disease

is initially present, then the disease is uniformly persistent; that
is, there is a constant 𝑘 > 0 such that lim inf

𝑡→+∞
𝑥
1
(𝑡) ≥ 𝑘,

lim inf
𝑡→+∞

𝑥
2
(𝑡) ≥ 𝑘, and lim inf

𝑡→+∞
𝑦(𝑡) ≥ 𝑘.

Proof. We set 𝐸 = {(𝑥
1
, 𝑥
2
, 𝑦) ∈ R3

+
| 0 ≤ 𝑥

1
+ 𝑥
2
≤ 1, 0 ≤

𝑦 ≤ 1}, 𝜕𝐸 = {(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝐸 | 𝑥

1
= 0}; we will prove

below that the conditions of Lemma 5 are satisfied. Clearly
𝑁
𝛼
= 𝐸
0
= (0, 0, 0) is isolated. Hence, the covering is simply

𝑁 = 𝐸
0
, which is acyclic.Thus, the condition (𝐻

1
–𝐻
3
) holds.
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Figure 2: 𝑅
0
< 1, the disease-free equilibrium, 𝐸

0
, is globally asymptotically stable.

We also can obtain F is point dissipative by Lemma 1. Now
we show that𝑊+(𝐸

0
)⋂𝐸
0
= 𝜙; suppose this is not true, then

there exists a solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) ∈ 𝐸

0 such that:
lim
𝑡→+∞

𝑥
1
(𝑡) = 0, lim

𝑡→+∞
𝑥
2
(𝑡) = 0, lim

𝑡→+∞
𝑦(𝑡) = 0.

For any sufficiently small constant 𝜀 > 0, there exists a
positive constant 𝑇 = 𝑇(𝜀) such that 𝑥

1
(𝑡) < 𝜀, 𝑥

2
(𝑡) <

𝜀, 𝑦(𝑡) < 𝜀, for all 𝑡 ≥ 𝑇.
Noting that

𝑑𝑥
1

𝑑𝑡
≥ − (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦,

𝑑𝑥
2

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
+
𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦

𝑑𝑡
≥ 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦.

(27)

Therefore, if 𝑥
1
, 𝑥
2
, 𝑦 → 0, as 𝑡 → ∞, then by a standard

comparison argument and the nonnegativity, the solution
𝑥
1
, 𝑥
2
, 𝑦 of

𝑑𝑥
1

𝑑𝑡
= − (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦,

𝑑𝑥
2

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
+
𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦

𝑑𝑡
= 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦,

(28)

with initial data 𝑥
1
(𝑇) = 𝑥

1
(𝑇), 𝑥

2
(𝑇) = 𝑥

2
(𝑇), 𝑦(𝑇) = 𝑦(𝑇),

converges to (0, 0, 0) as well. Thus lim𝑊(𝑡) = 0, where
𝑊(𝑡) > 0, is defined by

𝑑𝑊

𝑑𝑡
= 𝑘
1
[− (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦]

+ 𝑘
2
[𝛾𝑥
1
− (𝜌
+
𝜌
2
+ 𝜇) 𝑥

2
]

+𝑘
3
[𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦] .

(29)

Here, 𝑘
1
= 𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾, 𝑘
2
= 𝛼
2
(𝛾 + 𝜇) + 𝜌

2
𝜌, 𝑘
3
=

(𝛾 + 𝜇)(𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
. The derivative of𝑊(𝑡) is given by

𝑑𝑊

𝑑𝑡
= [(𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
] (𝑅
2

0
− 1) 𝑦 ≥ 0. (30)

Therefore,𝑊(𝑡) goes to either infinity or some positive num-
ber as 𝑡 → ∞, which is a contradiction to lim

𝑡→+∞
𝑊(𝑡) =

0. Thus, we have 𝑊+(𝐸
0
)⋂𝐸
0
= 𝜙. Then, we obtain

lim inf
𝑡→+∞

𝑥
1
(𝑡) ≥ 𝑘

1
, for some constant 𝑘

1
> 0. By the

second and third equations of (3) and the use of Lemma 1, we
have 𝑘

2
= 𝛾𝑘
1
/(𝜌
1
+ 𝜌
2
+ 𝜇), 𝑘

3
= (𝛼
1
𝑘
1
+ 𝛼
2
𝑘
2
)/𝜂, such that

lim inf
𝑡→+∞

𝑥
2
(𝑡) ≥ 𝑘

2
, lim inf

𝑡→+∞
𝑦(𝑡) ≥ 𝑘

3
. Denote 𝑘 =

min{𝑘
1
, 𝑘
2
, 𝑘
3
}, lim inf

𝑡→+∞
𝑥
1
(𝑡) ≥ 𝑘, lim inf

𝑡→+∞
𝑥
2
(𝑡) ≥

𝑘, lim inf
𝑡→+∞

𝑦(𝑡) ≥ 𝑘. Then the proof of Theorem 6 is
completed.

4. Numerical Simulation

To illustrate the analytical results obtained above, we give
some simulations using the parameter values in Table 2.
Numerical results are displayed in Figures 2–5. First, we
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Table 2: The parameters values of malaria model.

𝛼
1

From an infectious human to a susceptible mosquito, transmission rate in mosquitoes 0.8333 (day−1) [7]
𝛼
2

From a recovered human to a susceptible mosquito, transmission rate in mosquitoes 8.333 ∗ 10
−2 (day−1) [7]

𝛽 From an infectious mosquito to a susceptible human, transmission rate in humans 2.000 ∗ 10
−2 (day−1) [7]

𝑁 The total size of human population Estimated
𝑀 The total size of mosquito population 𝑞𝑁 [9]
𝜇 Natural birth and death rate of humans 1/70 (year−1) [9]
𝛾 Treatment rate 3.704 ∗ 10

−3 (day−1) [7]
𝜌
1

Recovery rate Estimated
𝜌
2

Relapse rate Estimated
𝜂 Natural birth and death rate of mosquitoes 0.1429 (day−1) [7]
𝑞 The number of mosquitoes per individual 1-2 [9]
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Figure 3: 𝑅
0
> 1, the disease is uniformly persistent.

choose 𝜌
2
= 0.004, 𝜌

1
= 0.0146, and 𝑞 = 1.5, numerical sim-

ulation gives 𝑅
0
= 0.6940 < 1, then the disease-free equilib-

rium 𝐸
0
is globally asymptotically stable (Figure 2). Second,

we choose 𝜌
2
= 0.04, 𝜌

1
= 0.0146, and 𝑞 = 1.5, numerical

simulation gives 𝑅
0
= 1.1254 > 1, the disease is uniformly

persistent (Figure 3).
Finally, for showing the effect of relapse and recover rate

to the basic reproduction number, we give the relation bet-
ween𝑅

0
and 𝜌
2
(Figure 4), and the relation between𝑅

0
and 𝜌
1

(Figure 5) in the numerical simulation. From Figures 4 and 5,
we know that 𝑅

0
is increasing with respect to the relapse rate,

while it is decreasing with respect to the recovery rate.

5. Discussion

An ordinary differential equation for the transmission of
malaria is formulated in this paper. The model exhibits two
equilibria, that is, the disease-free equilibrium and endemic
equilibrium. By constructing Lyapunov function and persis-
tence theory of dynamical system, it is shown that if 𝑅

0
≤ 1,

then the disease-free equilibrium point 𝐸
0
is globally stable,

and if 𝑅
0
> 1, the disease is uniformly persistent. Some num-

erical simulations for 𝑅
0
in terms of relapse rate and recover

rate are performed.𝑅
0
is increasingwith respect to the relapse

rate while it is decreasing with respect to the recovery rate.
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Our results strongly suggest that to control and eradicate the
malaria, it is very necessary for the government to decrease
the relapse rate and increase the recovery rate.
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