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We investigate an initial-boundary value problem for a quasilinear parabolic equation with inner absorption and nonlinear
Neumann boundary condition. We establish, respectively, the conditions on nonlinearity to guarantee that 𝑢(𝑥, 𝑡) exists globally or
blows up at some finite time 𝑡∗. Moreover, an upper bound for 𝑡∗ is derived. Under somewhat more restrictive conditions, a lower
bound for 𝑡∗ is also obtained.

1. Introduction

We are concerned with the global existence and blow-up
phenomenon for a quasilinear parabolic equation with non-
linear inner absorption term

𝑢
𝑡
= [(|∇𝑢|

𝑝

+ 1) 𝑢
,𝑖
]
,𝑖

− 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡
∗

) , (1)

subjected to the nonlinear Neumann boundary and initial
conditions

(|∇𝑢|
𝑝

+ 1)

𝜕𝑢

𝜕]
= 𝑔 (𝑢) , (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑡

∗

) , (2)

𝑢 (𝑥, 0) = 𝑢
0
(0) ≥ 0, 𝑥 ∈ Ω, (3)

whereΩ is a bounded star-shaped region of 𝑅𝑁 (𝑁 ≥ 2) with
smooth boundary 𝜕Ω, ] is the unit outward normal vector
on 𝜕Ω, 𝑝 ≥ 0, 𝑡∗ is the blow-up time if blow-up occurs, or
else 𝑡
∗

= +∞, the symbol, 𝑖 denotes partial differentiation
with respect to 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑁, the repeated index indicates

summation over the index, and ∇ is gradient operator.
Many physical phenomena and biological species theo-

ries, such as the concentration of diffusion of some non-
Newton fluid through porous medium, the density of some
biological species, and heat conduction phenomena, have
been formulated as parabolic equation (1) (see [1–3]). The
nonlinear Neumann boundary condition (2) can be physi-
cally interpreted as the nonlinear radial law (see [4, 5]).

In the past decades, there have been many works dealing
with existence and nonexistence of global solutions, blow-up
of solutions, bounds of blow-up time, blow-up rates, blow-
up sets, and asymptotic behavior of solutions to nonlinear
parabolic equations; see the books [6–8] and the survey
papers [9–11]. Specially, we would like to know whether the
solution blows up and at which time when blow-up occurs.
A variety of methods have been used to study the problem
above (see [12]), and in many cases, these methods, used to
show that solutions blow up, often provide an upper bound
for the blow-up time. However, lower bounds for blow-up
time may be harder to be determined. For the study of
the initial boundary value problem of a parabolic equation
with homogeneous Dirichlet boundary condition, see [13,
14]. Payne et al. [13] considered the following quasilinear
parabolic equation:

𝑢
𝑡
= div (𝜌|∇𝑢|2∇𝑢) + 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡

∗

) , (4)

where Ω is a bounded domain in 𝑅
3 with smooth boundary

𝜕Ω. To get the lower bound for the blow-up time, the authors
assumed that 𝜌 is a positive 𝐶1 function which satisfies

𝜌 (𝑠) + 𝑠𝜌


(𝑠) > 0, 𝑠 > 0. (5)

The lower bound for the blow-up time of solution to (4) with
Robin boundary condition was obtained in [15], where 𝜌 is
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also assumed to satisfy the condition (5). However, under this
boundary condition, the best constant of Sobolev inequality
used in [13] is no longer applicable. They imposed suitable
conditions on 𝑓 and 𝜌 and determined a lower bound for
the blow-up time if blow-up occurs and determined when
blow-up cannot occur. Marras and Vernier Piro [14] studied
the nonlinear parabolic problem with time dependent coeffi-
cients

𝑘
1
(𝑡) div (𝑔 (|∇𝑢|2∇𝑢)) + 𝑘

2
(𝑡) 𝑓 (𝑢) = 𝑘

3
(𝑡) 𝑢
𝑡
,

(𝑥, 𝑡) ∈ Ω × (0, 𝑡
∗

) ,

(6)

where Ω is a bounded domain in 𝑅
𝑁 with smooth boundary

𝜕Ω. Under some conditions on the data and geometry of the
spatial domain, they obtained upper and lower bounds of the
blow-up time. Moreover, the sufficient conditions for global
existence of the solution were derived.

For the study of the initial boundary value problem of
a parabolic equation with Robin boundary condition, we
refer to [15–19]. Li et al. [16] investigated the problem of the
nonlinear parabolic equation

𝑢
𝑡
= [(|∇𝑢|

𝑝

+ 1) 𝑢
,𝑖
]
,𝑖

+ 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡
∗

) , (7)

where Ω is a bounded domain in 𝑅
3 with smooth boundary

𝜕Ω.They derived the lower bound for the blow-up timewhen
the blow-up occurs. Clearly, |∇𝑢|𝑝 + 1 does not satisfy the
condition (5). Enache [17] discussed the quasilinear parabolic
problem

𝑢
𝑡
= (𝑔 (𝑢) 𝑢

,𝑖
)
,𝑖

+ 𝑓 (𝑢) , (8)

where Ω is a bounded domain in 𝑅
𝑁

(𝑁 ≥ 2) with smooth
boundary 𝜕Ω. By virtue of a first-order differential inequality
technique, they showed the sufficient conditions to guarantee
that the solution 𝑢(𝑥, 𝑡) exists globally or blows up. In
addition, a lower bound for the blow-up time when blow-
up occurs was also obtained. Ding [18] studied the nonlinear
parabolic problem

(𝑏 (𝑢))
𝑡
= ∇ ⋅ (𝑔 (𝑢) ∇𝑢) + 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡

∗

) , (9)

where Ω is a bounded domain in 𝑅
3 with smooth boundary

𝜕Ω. They derived conditions on the data which guarantee
the blow-up or the global existence of the solution. A lower
bound on blow-up time when blow-up occurs was also
obtained. For the problem of the nonlinear nonlocal porous
medium equation, we read the paper of Liu [19].

Recently, for the problems with nonlinear Neumann
boundary conditions, Payne et al. [20] studied the semilinear
heat equation with inner absorption term

𝑢
𝑡
= Δ𝑢 − 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡

∗

) . (10)

They established conditions on nonlinearity to guarantee that
the solution𝑢(𝑥, 𝑡) exists for all time 𝑡 > 0 or blows up at some
finite time 𝑡∗. Moreover, an upper bound for 𝑡∗ was derived.
Under somewhat more restrictive conditions, a lower bound

for 𝑡∗ was derived.Thereafter, they considered the quasilinear
parabolic equation

𝑢
𝑡
= ∇ ⋅ (|∇𝑢|

𝑝

∇𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡
∗

) , (11)

and they showed that blow-up occurs at some finite time
under certain conditions on the nonlinearities and the data;
upper and lower bounds for the blow-up time were derived
when blow-up occurs; see [21]. Liu et al. The authors [22, 23]
studied the reaction diffusion problem with nonlocal source
and inner absorption terms or with local source and gradient
absorption terms. Very recently, Fang et al. [24] considered
lower bounds estimate for the blow-up time to nonlocal
problemwith homogeneousDirichlet orNeumann boundary
condition.

Motivated by the above work, we intend to study the
global existence and the blow-up phenomena of problem (1)–
(3), and the results of the semilinear equations are extended to
the quasilinear equations. Unfortunately, the techniques used
for semilinear equation to analysis of blow-up phenomena
are no longer applicable to our problem. As a consequence,
by using the suitable techniques of differential inequalities,
we establish, respectively, the conditions on the nonlinearities
𝑓 and 𝑔 to guarantee that 𝑢(𝑥, 𝑡) exists globally or blows up
at some finite time. If blow-up occurs, we derive upper and
lower bounds of the blow-up time.

The rest of our paper is organized as follows. In Section 2,
we establish conditions on the nonlinearities to guarantee
that 𝑢(𝑥, 𝑡) exists globally. In Section 3, we show the condi-
tions on data forcing the solution 𝑢(𝑥, 𝑡) to blow up at some
finite time 𝑡

∗ and obtain an upper bound for 𝑡
∗. A lower

bound of blow-up time under some assumptions is derived
in Section 4.

2. The Global Existence

In this section,we establish the conditions on the nonlinearity
𝑓 and nonlinearity 𝑔 to guarantee that 𝑢(𝑥, 𝑡) exists globally.
We state our result as follows.

Theorem 1. Assume that the nonnegative functions 𝑓 and 𝑔

satisfy

𝑓 (𝜉) ≥ 𝑘
1
𝜉
𝑞

, 𝜉 ≥ 0,

𝑔 (𝜉) ≤ 𝑘
2
𝜉
𝑠

, 𝜉 ≥ 0,

(12)

where 𝑘
1
> 0, 𝑘

2
≥ 0, 𝑠 > 1, 2𝑠 < 𝑞 + 1, and 𝑠 − 1 < 𝑝 < 𝑞 − 1.

Then the (nonnegative) solution 𝑢(𝑥, 𝑡) of problem (1)-(3) does
not blow up; that is, 𝑢(𝑥, 𝑡) exists for all time 𝑡 > 0.

Proof. Set

Ψ (𝑡) = ∫

Ω

𝑢
2

𝑑𝑥. (13)
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Similar to Theorem 2.1 in [20], we get

Ψ


(𝑡) ≤ {2𝛿
2

∫

Ω

𝑢
2𝑠

𝑑𝑥 − 𝑘
1
∫

Ω

𝑢
𝑞+1

𝑑𝑥}

+ {

2𝑘
2
𝑁

𝜌
0

∫

Ω

𝑢
𝑠+1

𝑑𝑥

−2∫

Ω

|∇𝑢|
𝑝+2

𝑑𝑥 − 𝑘
1
∫

Ω

𝑢
𝑞+1

𝑑𝑥}

= 𝐼
1
+ 𝐼
2
,

(14)

where 𝛿 = 𝑘
2
(𝑠 + 1)𝑑/2𝜌

0
, 𝜌
0

= min
𝑥∈𝜕Ω

(𝑥 ⋅ ]), 𝑑 =

max
𝑥∈𝜕Ω

|𝑥|, and

𝐼
1
≤ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

(𝑠+1)/(𝑞+1)

× {𝐴
1
|Ω|
(𝑞−𝑠)/(𝑞+1)

− 𝐴
2
(∫

Ω

𝑢
𝑞+1

𝑑𝑥)

(𝑞−𝑠)/(𝑞+1)

} ,

(15)

where 𝐴
1
= 2𝛿
2

𝛼𝜀
(𝛼−1)/𝛼, 𝐴

2
= 𝑘
1
− 2𝛿
2

(1 − 𝛼)𝜀, 𝛼 = (𝑞 + 1 −

2𝑠)/(𝑞 − 𝑠) < 1, 𝜀 > 0.
Next, we estimate 𝐼

2
= (2𝑘
2
𝑁/𝜌
0
) ∫
Ω

𝑢
𝑠+1

𝑑𝑥−2 ∫
Ω

|∇𝑢|
𝑝+2

𝑑𝑥 − 𝑘
1
∫
Ω

𝑢
𝑞+1

𝑑𝑥. Since






∇𝑢
(𝑝/2)+1







2

= (

𝑝

2

+ 1)

2

𝑢
𝑝

|∇𝑢|
2

, (16)

it follows from Hölder inequality that

∫

Ω






∇𝑢
(𝑝/2)+1







2

𝑑𝑥 ≤ (

𝑝

2

+ 1)

2

(∫

Ω

|∇𝑢|
𝑝+2

𝑑𝑥)

2/(𝑝+2)

× (∫

Ω

𝑢
𝑝+2

𝑑𝑥)

𝑝/(𝑝+2)

.

(17)

Furthermore, we have

∫

Ω

𝑢
𝑝+2

𝑑𝑥 ≤ [

(𝑝 + 2)
2

4𝜆
1

]

(𝑝/2)+1

∫

Ω

|∇𝑢|
𝑝+2

𝑑𝑥, (18)

which follows from (17) and membrane inequality

𝜆
1
∫

Ω

𝜔
2

𝑑𝑥 ≤ ∫

Ω

|∇𝜔|
2

𝑑𝑥, (19)

where 𝜆
1
is the first eigenvalue in the fixed membrane

problem

Δ𝜔 + 𝜆𝜔 = 0, 𝜔 > 0 in Ω, 𝜔 = 0 on 𝜕Ω. (20)

Combining 𝐼
2
and (18), we have

𝐼
2
≤

2𝑘
2
𝑁

𝜌
0

∫

Ω

𝑢
𝑠+1

𝑑𝑥 − 2[

4𝜆
1

(𝑝 + 2)
2
]

(𝑝/2)+1

× ∫

Ω

𝑢
𝑝+2

𝑑𝑥 − 𝑘
1
∫

Ω

𝑢
𝑞+1

𝑑𝑥.

=

{

{

{

2𝑘
2
𝑁

𝜌
0

∫

Ω

𝑢
𝑠+1

𝑑𝑥 − 3[

4𝜆
1

(𝑝 + 2)
2

]

(𝑝/2)+1

∫

Ω

𝑢
𝑝+2

𝑑𝑥

}

}

}

+

{

{

{

[

4𝜆
1

(𝑝 + 2)
2
]

(𝑝/2)+1

∫

Ω

𝑢
𝑝+2

𝑑𝑥 − 𝑘
1
∫

Ω

𝑢
𝑞+1

𝑑𝑥

}

}

}

= 𝐼
21
+ 𝐼
22
.

(21)

Making use of Hölder inequality, we obtain

∫

Ω

𝑢
𝑠+1

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑝+2

𝑑𝑥)

(𝑠+1)/(𝑝+2)

|Ω|
(𝑝−𝑠+1)/(𝑝+2)

, (22)

Ψ (𝑡) = ∫

Ω

𝑢
2

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑠+1

𝑑𝑥)

2/(𝑠+1)

|Ω|
(𝑠−1)/(𝑠+1)

. (23)

Combining (21), (22) with (23), we get

𝐼
21

≤ (∫

Ω

𝑢
𝑠+1

𝑑𝑥) {𝐵
1
− 𝐵
2
Ψ
(𝑝−𝑠+1)/2

} , (24)

with

𝐵
1
=

2𝑘
2
𝑁

𝜌
0

, 𝐵
2
= 3[

4𝜆
1

(𝑝 + 2)
2
]

(𝑝/2)+1

|Ω|
−(𝑝−𝑠+1)/2

.

(25)

Applying Hölder inequality, we obtain

∫

Ω

𝑢
𝑝+2

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

(𝑝+2)/(𝑞+1)

|Ω|
(𝑞−𝑝−1)/(𝑞+1)

,

Ψ (𝑡) = ∫

Ω

𝑢
2

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

2/(𝑞+1)

|Ω|
(𝑞−1)/(𝑞+1)

.

(26)

It follows from (26) that

𝐼
22

≤ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

(𝑝+2)/(𝑞+1)

{𝐶
1
− 𝐶
2
Ψ
(𝑞−𝑝−1)/2

} , (27)

where

𝐶
1
= [

4𝜆
1

(𝑝 + 2)
2

]

(𝑝/2)+1

|Ω|
(𝑞−𝑝−1)/(𝑞+1)

,

𝐶
2
= 𝑘
1
|Ω|
(1−𝑞)(𝑞−𝑝−1)/2(𝑞+1)

.

(28)



4 Abstract and Applied Analysis

Combining (14), (15), (21), and (24) with (27), we obtain

Ψ


(𝑡) ≤ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

(𝑠+1)/(𝑞+1)

{𝐴
1
− 𝐴
2
Ψ(𝑡)
(𝑞−𝑠)/2

}

+ (∫

Ω

𝑢
𝑠+1

𝑑𝑥) {𝐵
1
− 𝐵
2
Ψ
(𝑝−𝑠+1)/2

}

+ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

(𝑝+2)/(𝑞+1)

{𝐶
1
− 𝐶
2
Ψ
(𝑞−𝑝−1)/2

} ,

(29)

with

𝐴
1
= 𝐴
1
|Ω|
(𝑞−𝑠)/(𝑞+1)

, 𝐴
2
= 𝐴
2
|Ω|
(1−𝑞)(𝑞−𝑠)/2(𝑞+1)

. (30)

We conclude from (29) that Ψ(𝑡) is decreasing in each time
interval on which we obtain

Ψ (𝑡) ≥ max{(𝐴
1

𝐴
2

)

2/(𝑞−𝑠)

, (

𝐵
1

𝐵
2

)

2/(𝑝−𝑠+1)

, (

𝐶
1

𝐶
2

)

2/(𝑞−𝑝−1)

} ,

(31)

so that Ψ(𝑡) remains bounded for all time under the
conditions in Theorem 1. This completes the proof of
Theorem 1.

3. Blow-Up and Upper Bound of 𝑡∗

In this section, Ω needs not to be star-shaped. We establish
the conditions to assure that the solution of (1)–(3) blows
up at finite time 𝑡∗ and derive an upper bound for 𝑡∗. More
precisely we establish the following result.

Theorem 2. Let 𝑢(𝑥, 𝑡) be the classical solution of problem (1)-
(3). Assume that the nonnegative and integrable functions 𝑓
and 𝑔 satisfy

𝜉𝑓 (𝜉) ≤ 2 (1 + 𝛼) 𝐹 (𝜉) , 𝜉 ≥ 0,

𝜉𝑔 (𝜉) ≥ 2 (1 + 𝛽)𝐺 (𝜉) , 𝜉 ≥ 0,

(32)

with

𝐹 (𝜉) = ∫

𝜉

0

𝑓 (𝜂) 𝑑𝜂, 𝐺 (𝜉) = ∫

𝜉

0

𝑔 (𝜂) 𝑑𝜂, (33)

where 𝛼 ≥ 0,

𝛽 ≥ max (
𝑝

2

, 𝛼) . (34)

Moreover assume that Φ(0) ≥ 0 with

Φ (𝑡) = 2∫

𝜕Ω

𝐺 (𝑢) 𝑑𝑆 − ∫

Ω

|∇𝑢|
2

(1 +

2

𝑝 + 2

|∇𝑢|
𝑝

)𝑑𝑥

− 2∫

Ω

𝐹 (𝑢) 𝑑𝑥.

(35)

Then the solution 𝑢(𝑥, 𝑡) of problem (1)-(3) blows up at some
finite time 𝑡∗ < 𝑇 with

𝑇 =

Ψ (0)

2𝛽 (1 + 𝛽)Φ (0)

, 𝛽 > 0, (36)

where Ψ(𝑡) is defined in (13). If 𝛽 = 0, we have 𝑇 = ∞.

Proof. We compute

Ψ


(𝑡) = 2∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 = 2∫

Ω

𝑢 [((|∇𝑢|
𝑝

+ 1) 𝑢
,𝑖
)
,𝑖

− 𝑓 (𝑢)] 𝑑𝑥

= 2∫

𝜕Ω

𝑢 (|∇𝑢|
𝑝

+ 1)

𝜕𝑢

𝜕]
𝑑𝑆 − 2∫

Ω

(|∇𝑢|
𝑝

+ 1) |∇𝑢|
2

𝑑𝑥

− 2∫

Ω

𝑢𝑓 (𝑢) 𝑑𝑥

= 2∫

𝜕Ω

𝑢𝑔 (𝑢) 𝑑𝑆 − 2∫

Ω

(|∇𝑢|
𝑝

+ 1) |∇𝑢|
2

𝑑𝑥

− 2∫

Ω

𝑢𝑓 (𝑢) 𝑑𝑥.

(37)

Making use of the hypotheses stated inTheorem 2, we have

Ψ


(𝑡) ≥ 2 (1 + 𝛽)Φ (𝑡) . (38)

Differentiating (35), we derive

Φ


(𝑡) = 2∫

𝜕Ω

𝑔 (𝑢) 𝑢
𝑡
𝑑𝑆 − ∫

Ω

(|∇𝑢|
𝑝

+ 1) (|∇𝑢|
2

)
𝑡

𝑑𝑥

− 2∫

Ω

𝑓 (𝑢) 𝑢
𝑡
𝑑𝑥.

(39)

Integrating the identity ∇ ⋅ (𝑢
𝑡
(|∇𝑢|
𝑝

+1)∇𝑢) = 𝑢
𝑡
∇ ⋅ ((|∇𝑢|

𝑝

+

1)∇𝑢) + (1/2)(|∇𝑢|
𝑝

+ 1)(|∇𝑢|
2

)
𝑡
overΩ, we get

∫

Ω

(|∇𝑢|
𝑝

+ 1) (|∇𝑢|
2

)
𝑡

𝑑𝑥

= 2∫

Ω

∇ ⋅ (𝑢
𝑡
(|∇𝑢|
𝑝

+ 1) ∇𝑢) 𝑑𝑥

− 2∫

Ω

𝑢
𝑡
∇ ⋅ ((|∇𝑢|

𝑝

+ 1) ∇𝑢) 𝑑𝑥

= 2∫

𝜕Ω

𝑢
𝑡
(|∇𝑢|
𝑝

+ 1) ∇𝑢 ⋅ ]𝑑𝑆

− 2∫

Ω

𝑢
𝑡
∇ ⋅ ((|∇𝑢|

𝑝

+ 1) ∇𝑢) 𝑑𝑥

= 2∫

𝜕Ω

𝑢
𝑡
(|∇𝑢|
𝑝

+ 1)

𝜕𝑢

𝜕]
𝑑𝑆

− 2∫

Ω

𝑢
𝑡
∇ ⋅ ((|∇𝑢|

𝑝

+ 1) ∇𝑢) 𝑑𝑥.

(40)

Substituting (40) into (39), we have

Φ


(𝑡) = 2∫

Ω

𝑢
2

𝑡
𝑑𝑥 > 0, (41)

whichwithΦ(0) > 0 implyΦ(𝑡) > 0 for all 𝑡 ∈ (0, 𝑡
∗

). Making
use of the Schwarz inequality, we obtain

2 (1 + 𝛽)Ψ


Φ ≤ (Ψ


(𝑡))

2

= 4(∫

Ω

𝑢𝑢
𝑡
𝑑𝑥)

2

≤ 2Ψ (𝑡)Φ


(𝑡) .

(42)
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Multiplying the above inequality by Ψ−2−𝛽, we deduce

(ΦΨ
−(1+𝛽)

)



≥ 0. (43)

Arguing as in Theorem 3.1 in [20], we find

𝑡
∗

≤ 𝑇 =

1

2𝛽 (1 + 𝛽)

(Ψ (0))
−𝛽

=

Ψ (0)

2𝛽 (1 + 𝛽)Φ (0)

(44)

valid for 𝛽 > 0. If 𝛽 = 0, we have

Ψ (𝑡) ≥ Ψ (0) 𝑒
2𝑀𝑡 (45)

valid for 𝑡 > 0, implying that 𝑡∗ = ∞. This completes the
proof of Theorem 2.

4. Lower Bounds for 𝑡∗

In this section, under the assumption that Ω is a star shaped
domain in 𝑅

3, convex in two orthogonal directions, we seek a
lower bound for the blow-up time 𝑡∗. Now we state the result
as follows.

Theorem 3. Let 𝑢(𝑥, 𝑡) be the nonnegative solution of problem
(1)-(3) and 𝑢(𝑥, 𝑡) blows up at 𝑡∗; moreover, the nonnegative
functions 𝑓 and 𝑔 satisfy

𝑓 (𝜉) ≥ 𝑘
1
𝜉
𝑞

, 𝜉 ≥ 0,

𝑔 (𝜉) ≤ 𝑘
2
𝜉
𝑠

, 𝜉 ≥ 0,

(46)

with 𝑘
1
> 0, 𝑘

2
> 0, 𝑞 > 1, 𝑠 > 1, 𝑞 < 𝑠. Define

𝜑 (𝑡) = ∫

Ω

𝑢
𝑛(𝑠−1)

𝑑𝑥, (47)

where 𝑛 is a parameter restricted by the condition

𝑛 > max {4, 2

𝑠 − 1

} . (48)

Then 𝜑(𝑡) satisfies inequality

𝜑


(𝑡) ≤ Γ (𝜑) , (49)

for some computable function Γ(𝜑). It follows that 𝑡∗ is bounded
from below. We have

𝑡
∗

≥ ∫

∞

𝜑(0)

𝑑𝜂

Γ (𝜂)

𝑑𝜂. (50)

Proof. Differentiating (47) and making use of the boundary
condition (2) together with the conditions (46), we have

𝜑


(𝑡) = 𝑛 (𝑠 − 1) ∫

Ω

𝑢
𝑛(𝑠−1)−1

𝑢
𝑡
𝑑𝑥

= 𝑛 (𝑠 − 1) ∫

Ω

𝑢
𝑛(𝑠−1)−1

× [((|∇𝑢|
𝑝

+ 1) 𝑢
,𝑖
)
,𝑖

− 𝑓 (𝑢)] 𝑑𝑥

= 𝑛 (𝑠 − 1) ∫

𝜕Ω

𝑢
𝑛(𝑠−1)−1

(|∇𝑢|
𝑝

+ 1)

𝜕𝑢

𝜕]
𝑑𝑆

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
𝑝+2

𝑑𝑥

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
2

𝑑𝑥

− 𝑛 (𝑠 − 1) ∫

Ω

𝑢
𝑛(𝑠−1)−1

𝑓 (𝑢) 𝑑𝑥

≤ 𝑘
2
𝑛 (𝑠 − 1) ∫

𝜕Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑆

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
𝑝+2

𝑑𝑥

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
2

𝑑𝑥

− 𝑘
1
𝑛 (𝑠 − 1) ∫

Ω

𝑢
𝑛(𝑠−1)+𝑞−1

𝑑𝑥.

(51)

Applying inequality (2.7) in [20] to the first term on the right
hand side of (51), we have

∫

𝜕Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑆 ≤

3

𝜌
0

∫

Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑥

+

(𝑛 + 1) (𝑠 − 1) 𝑑

𝜌
0

∫

Ω

𝑢
(𝑛+1)(𝑠−1)−1

|∇𝑢| 𝑑𝑥.

(52)
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Substituting (52) into (51), we obtain

𝜑


(𝑡) ≤

3𝑘
2
𝑛 (𝑠 − 1)

𝜌
0

∫

Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑥

+

𝑘
2
𝑛 (𝑛 + 1) (𝑠 − 1)

2

𝑑

𝜌
0

∫

Ω

𝑢
(𝑛+1)(𝑠−1)−1

|∇𝑢| 𝑑𝑥

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1] ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
𝑝+2

𝑑𝑥

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1] ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
2

𝑑𝑥

− 𝑘
1
𝑛 (𝑠 − 1) ∫

Ω

𝑢
𝑛(𝑠−1)+𝑞−1

𝑑𝑥.

(53)

Making use of arithmetic-geometric mean inequality, we
derive

∫

Ω

𝑢
(𝑛+1)(𝑠−1)−1

|∇𝑢| 𝑑𝑥 ≤

𝜇

2

∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
2

𝑑𝑥

+

1

2𝜇

∫

Ω

𝑢
(𝑛+2)(𝑠−1)

𝑑𝑥,

(54)

for all 𝜇 > 0. Choose 𝜇 > 0 such that

𝑘
2
𝑛 (𝑛 + 1) (𝑠 − 1)

2

𝑑𝜇

2𝜌
0

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1] = 0. (55)

We rewrite (53) as

𝜑


(𝑡) ≤

3𝑘
2
𝑛 (𝑠 − 1)

𝜌
0

∫

Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑥

+

𝑘
2
𝑛 (𝑛 + 1) (𝑠 − 1)

2

𝑑

2𝜇𝜌
0

∫

Ω

𝑢
(𝑛+2)(𝑠−1)

𝑑𝑥

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1] ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
𝑝+2

𝑑𝑥

− 𝑘
1
𝑛 (𝑠 − 1) ∫

Ω

𝑢
𝑛(𝑠−1)+𝑞−1

𝑑𝑥.

(56)

Using Hölder inequality, we get

∫

Ω

𝑢
𝑛(𝑠−1)

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑛(𝑠−1)+𝑞−1

𝑑𝑥)

𝑛(𝑠−1)/(𝑛(𝑠−1)+𝑞−1)

× |Ω|
(𝑞−1)/(𝑛(𝑠−1)+𝑞−1)

.

(57)

Combining (56) with (57), we obtain

𝜑


(𝑡) ≤

3𝑘
2
𝑛 (𝑠 − 1)

𝜌
0

∫

Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑥

+

𝑘
2
𝑛 (𝑛 + 1) (𝑠 − 1)

2

𝑑

2𝜇𝜌
0

∫

Ω

𝑢
(𝑛+2)(𝑠−1)

𝑑𝑥

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
𝑝+2

𝑑𝑥

− 𝑘
1
𝑛 (𝑠 − 1) |Ω|

(1−𝑞)/𝑛(𝑠−1)

𝜑
(𝑛(𝑠−1)+𝑞−1)/𝑛(𝑠−1)

=

3𝑘
2
𝑛 (𝑠 − 1)

𝜌
0

𝐽
1
(𝑡)

+

𝑘
2
𝑛 (𝑛 + 1) (𝑠 − 1)

2

𝑑

2𝜇𝜌
0

𝐽
2
(𝑡)

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1] 𝜔 (𝑡)

− 𝑘
1
𝑛 (𝑠 − 1) |Ω|

(1−𝑞)/𝑛(𝑠−1)

𝜑
(𝑛(𝑠−1)+𝑞−1)/𝑛(𝑠−1)

,

(58)

where

𝐽
1
(𝑡) = ∫

Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑥,

𝐽
2
(𝑡) = ∫

Ω

𝑢
(𝑛+2)(𝑠−1)

𝑑𝑥,

𝜔 (𝑡) = ∫

Ω

𝑢
𝑛(𝑠−1)−2

|∇𝑢|
𝑝+2

𝑑𝑥.

(59)

Using Sobolev type inequality (A.5) derived by Payne et al.
[21], we obtain

𝐽
1
(𝑡) = ∫

Ω

𝑢
(𝑛+1)(𝑠−1)

𝑑𝑥

≤ {

3

𝜌
0

∫

Ω

𝑢
(2/3)(𝑛+1)(𝑠−1)

𝑑𝑥 +

(𝑛 + 1) (𝑠 − 1)

3

×(1 +

𝑑

𝜌
0

)∫

Ω

𝑢
(2/3)(𝑛+1)(𝑠−1)−1

|∇𝑢| 𝑑𝑥}

3/2

.

(60)

We now make use of Hölder inequality to bound the second
integral on the right hand side of (60) as follows:

∫

Ω

𝑢
(2/3)(𝑛+1)(𝑠−1)−1

|∇𝑢| 𝑑𝑥

≤ (∫

Ω

𝑢
(2/3)(𝑛+1)(𝑠−1)(1−𝛿

1
)

𝑑𝑥)

(𝑝+1)/(𝑝+2)

𝜔
1/(𝑝+2)

,

(61)

with

𝛿
1
=

(𝑛 − 2) (𝑠 − 1) + 3𝑝

2 (𝑛 + 1) (𝑠 − 1) (𝑝 + 1)

. (62)
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Wenote that 𝛿
1
< 1 for 𝑛 > (3𝑝−2(𝑠−1)(𝑝+2))/(𝑠−1)(2𝑝+1),

an inequality satisfied in view of (48). Using again Hölder’s
inequality, we obtain

∫

Ω

𝑢
(2/3)(𝑛+1)(𝑠−1)(1−𝛿

1
)

𝑑𝑥

≤ 𝜑
2(𝑛+1)(1−𝛿

1
)/3𝑛

|Ω|
1−(2(𝑛+1)(1−𝛿

1
)/3𝑛)

,

∫

Ω

𝑢
(2/3)(𝑛+1)(𝑠−1)

𝑑𝑥 ≤ 𝜑
2(𝑛+1)/3𝑛

|Ω|
1−(2(𝑛+1)/3𝑛)

,

(63)

where |Ω| = ∫
Ω

𝑑𝑥 is the volume of Ω. Substituting (61) and
(63) in (60), we obtain the following inequality:

𝐽
1
(𝑡) ≤ {𝑐

1
𝜑
2(𝑛+1)/3𝑛

+ 𝑐
2
𝜑
(2(𝑛+1)(1−𝛿

1
)/3𝑛)((𝑝+1)/(𝑝+2))

× 𝜔
1/(𝑝+2)

}

3/2

≤ 𝑐
1
𝜑
(𝑛+1)/𝑛

+ 𝑐
2
𝜑
((𝑛+1)(1−𝛿

1
)/𝑛)((𝑝+1)/(𝑝+2))

𝜔
3/2(𝑝+2)

,

(64)

where 𝑐
1
, 𝑐
2
are computable positive constants. Note that the

last inequality in (64) follows from Hölder inequality under
the particular form (𝑎 + 𝑏)

3/2

≤ √2(𝑎
3/2

+ 𝑏
3/2

). Similarly, we
can bound 𝐽

2
and get

𝐽
2
(𝑡) ≤ 𝑐

3
𝜑
(𝑛+2)/𝑛

+ 𝑐
4
𝜑
((𝑛+2)(1−𝛿

2
)/𝑛)((𝑝+1)/(𝑝+2))

𝜔
3/2(𝑝+2)

,

(65)

where 𝑐
3
, 𝑐
4
are computable positive constants,

𝛿
2
=

(𝑛 − 4) (𝑠 − 1) + 3𝑝

2 (𝑛 + 1) (𝑠 − 1) (𝑝 + 1)

. (66)

Wenote that 𝛿
2
< 1 for 𝑛 > (3𝑝−4(𝑠−1)(𝑝+2))/(𝑠−1)(2𝑝+1),

an inequality satisfied in view of (48). Inserting (64) and (65)
in (58), we arrive at

𝜑


(𝑡) ≤
̃
𝑑
1
𝜑
(𝑛+1)/𝑛

+
̃
𝑑
2
𝜑
((𝑛+1)(1−𝛿

1
)/𝑛)𝜆

𝜔
3/2(𝑝+2)

+ 𝑑
3
𝜑
(𝑛+2)/𝑛

+
̃
𝑑
4
𝜑
((𝑛+2)(1−𝛿

2
)/𝑛)𝜆

𝜔
3/2(𝑝+2)

− 𝑛 (𝑠 − 1) [𝑛 (𝑠 − 1) − 1] 𝜔 (𝑡)

− 𝑘
1
𝑛 (𝑠 − 1) |Ω|

(1−𝑞)/𝑛(𝑠−1)

𝜑
(𝑛(𝑠−1)+𝑞−1)/𝑛(𝑠−1)

,

(67)

where 𝜆 = (𝑝 + 1)/(𝑝 + 2), 𝑑
3
and ̃

𝑑
𝑗
(𝑗 = 1, 2, 4) are

computable positive constants. Next, we want to eliminate
the quantity 𝜔(𝑡) in inequality (67). By using the following
inequality:

𝜑
𝛼

𝜔
𝛽

= (𝛾𝜔)
𝛽

{

𝜑
𝛼/(1−𝛽)

𝛾
𝛽/(1−𝛽)

}

1−𝛽

≤ 𝛾𝛽𝜔 + (1 − 𝛽) 𝛾
𝛽/(𝛽−1)

+ (1 − 𝛽) 𝛾
𝛽/(𝛽−1)

𝜑
𝛼/(1−𝛽)

,

(68)

valid for 0 < 𝛽 < 1, where 𝛾 is an arbitrary positive constant,
then we have

̃
𝑑
2
𝜑
((𝑛+1)(1−𝛿

1
)/𝑛)𝜆

𝜔
3/2(𝑝+2)

≤ 𝛾
1
𝜔 (𝑡) + 𝑑

2
𝜑
(2(𝑛+1)(1−𝛿

1
)(𝑝+2)/𝑛(2𝑝+1))𝜆

,

̃
𝑑
4
𝜑
((𝑛+2)(1−𝛿

2
)/𝑛)𝜆

𝜔
3/2(𝑝+2)

≤ 𝛾
2
𝜔 (𝑡) + 𝑑

4
𝜑
(2(𝑛+2)(1−𝛿

2
)(𝑝+2)/𝑛(2𝑝+1))𝜆

,

(69)

with arbitrary positive constants 𝛾
1
, 𝛾
2
and computable

positive constants 𝑑
2
, 𝑑
4
. Substitute (69) in (67) and choose

the arbitrary (positive) constants 𝛾
1
, 𝛾
2
such that 𝛾

1
+𝛾
2
−𝑛(𝑠−

1)[𝑛(𝑠 − 1) − 1] = 0. We obtain

𝜑


(𝑡) ≤
̃
𝑑
1
𝜑
(𝑛+1)/𝑛

+ 𝑑
2
𝜑
(2(𝑛+1)(1−𝛿

1
)(𝑝+2)/𝑛(2𝑝+1))𝜆

+ 𝑑
3
𝜑
(𝑛+2)/𝑛

+ 𝑑
4
𝜑
(2(𝑛+2)(1−𝛿

2
)(𝑝+2)/𝑛(2𝑝+1))𝜆

− 𝑘
1
𝑛 (𝑠 − 1) |Ω|

(1−𝑞)/𝑛(𝑠−1)

𝜑
(𝑛(𝑠−1)+𝑞−1)/𝑛(𝑠−1)

.

(70)

We eliminate the last term in (70), by using the following
inequality:

𝜑
(𝑛+1)/𝑛

= {𝑚𝜑
(𝑛(𝑠−1)+𝑞−1)/𝑛(𝑠−1)

}

(2𝑛−1)(𝑠−1)/((2𝑛−1)(𝑠−1)+𝑠−𝑞)

× {𝑚
(2𝑛−1)(1−𝑠)/(𝑠−𝑞)

𝜑
3

}

(𝑠−𝑞)/((2𝑛−1)(𝑠−1)+𝑠−𝑞)

≤

(2𝑛 − 1) (𝑠 − 1)

(2𝑛 − 1) (𝑠 − 1) + 𝑠 − 𝑞

𝑚𝜑
(𝑛(𝑠−1)+𝑞−1)/𝑛(𝑠−1)

+

𝑠 − 𝑞

(2𝑛 − 1) (𝑠 − 1) + 𝑠 − 𝑞

𝑚
(2𝑛−1)(1−𝑠)/(𝑠−𝑞)

𝜑
3

,

(71)

valid for 𝑞 < 𝑠 and arbitrary𝑚 > 0, and choose𝑚 such that

(2𝑛 − 1) (𝑠 − 1)

(2𝑛 − 1) (𝑠 − 1) + 𝑠 − 𝑞

̃
𝑑
1
𝑚 − 𝑘

1
𝑛 (𝑠 − 1) |Ω|

(1−𝑞)/𝑛(𝑠−1)

= 0.

(72)

Then (70) can be rewritten as

𝜑


(𝑡) ≤ 𝑑
1
𝜑
3

+ 𝑑
2
𝜑
(2(𝑛+1)(1−𝛿

1
)(𝑝+2)/𝑛(2𝑝+1))𝜆

+ 𝑑
3
𝜑
(𝑛+2)/𝑛

+ 𝑑
4
𝜑
(2(𝑛+2)(1−𝛿

2
)(𝑝+2)/𝑛(2𝑝+1))𝜆

.

(73)

Integrating (73) over [0, 𝑡], we conclude

𝑡
∗

≥ ∫

∞

𝜑(0)

𝑑𝜂

× (𝑑
1
𝜂
3

+ 𝑑
2
𝜂
(2(𝑛+1)(1−𝛿

1
)(𝑝+2)/𝑛(2𝑝+1))𝜆

+ 𝑑
3
𝜂
(𝑛+2)/𝑛

+ 𝑑
4
𝜂
(2(𝑛+2)(1−𝛿

2
)(𝑝+2)/𝑛(2𝑝+1))𝜆

)

−1

.

(74)

This completes the proof of Theorem 3.
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