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We obtain some results on the transcendental meromorphic solutions of complex functional difference equations of the form
∑
𝜆∈𝐼
𝛼𝜆(𝑧)(∏

𝑛

𝑗=0
𝑓(𝑧 + 𝑐𝑗)

𝜆𝑗 ) = 𝑅(𝑧, 𝑓 ∘𝑝) = ((𝑎0(𝑧) +𝑎1(𝑧)(𝑓 ∘𝑝)+ ⋅ ⋅ ⋅ + 𝑎𝑠(𝑧) (𝑓 ∘𝑝)
𝑠)/(𝑏0(𝑧) + 𝑏1(𝑧) (𝑓 ∘𝑝)+ ⋅ ⋅ ⋅ + 𝑏𝑡(𝑧) (𝑓 ∘𝑝)

𝑡)),
where 𝐼 is a finite set of multi-indexes 𝜆 = (𝜆0, 𝜆1, . . . , 𝜆𝑛), 𝑐0 = 0, 𝑐𝑗 ∈ C \ {0} (𝑗 = 1, 2, . . . , 𝑛) are distinct complex constants, 𝑝(𝑧) is
a polynomial, and 𝛼𝜆(𝑧) (𝜆 ∈ 𝐼), 𝑎𝑖(𝑧) (𝑖 = 0, 1, . . . , 𝑠), and 𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small meromorphic functions relative to 𝑓(𝑧).
We further investigate the above functional difference equation which has special type if its solution has Borel exceptional zero and
pole.

1. Introduction and Main Results

In this paper, a meromorphic function means meromorphic
in the whole complex plane C. For a meromorphic function
𝑦(𝑧), let 𝜎(𝑦) be the order of growth and 𝜇(𝑦) the lower
order of𝑦(𝑧). Further, let 𝜆(𝑦) (resp., 𝜆(1/𝑦)) be the exponent
of convergence of the zeros (resp., poles) of 𝑦(𝑧). We also
assume that the reader is familiar with the fundamental
results and the standard notations of Nevanlinna theory of
meromorphic functions (see, e.g., [1]). Given a meromorphic
function 𝑦(𝑧), we call a meromorphic function 𝑎(𝑧) a small
function relative to 𝑦(𝑧) if 𝑇(𝑟, 𝑎(𝑧)) = 𝑆(𝑟, 𝑦) = 𝑜(𝑇(𝑟, 𝑦))
as 𝑟 → ∞, possibly outside of an exceptional set of finite
logarithmic measure. Moreover, if 𝑅(𝑧, 𝑦) is rational in 𝑦(𝑧)
with small functions relative to 𝑦(𝑧) as its coefficients, we use
the notation 𝑑 = deg

𝑦
𝑅(𝑧, 𝑦) for the degree of 𝑅(𝑧, 𝑦) with

respect to𝑦(𝑧). Inwhat follows, we always assume that𝑅(𝑧, 𝑦)
is irreducible in 𝑦(𝑧).

Meromorphic solutions of complex difference equations
have recently gained increasing interest, due to the problem
of integrability of difference equations. This is related to the
activity concerning Painlevé differential equations and their
discrete counterparts in the last decades. Ablowitz et al. [2]
considered discrete equations to be delay equations in the
complex plane. This allowed them to analyze these equations

with the methods from complex analysis. In regard to related
papers concerning a more general class of complex difference
equations, we may refer to [3–5]. These papers mainly dealt
with equations of the form

∑
{𝐽}

𝛼𝐽 (𝑧)(∏
𝑗∈𝐽

𝑓 (𝑧 + 𝑐𝑗)) = 𝑅 (𝑧, 𝑓) , (1)

where {𝐽} is a collection of all nonempty subsets of
{1, 2, . . . , 𝑛}, 𝑐𝑗 (𝑗 ∈ 𝐽) are distinct complex constants, 𝑓(𝑧) is
a transcendental meromorphic function, 𝛼𝐽(𝑧) (𝐽 ∈ {𝐽}) are
small functions relative to𝑓(𝑧), and𝑅(𝑧, 𝑓) is a rational func-
tion in 𝑓(𝑧) with small meromorphic coefficients. Moreover,
if the right-hand side of (1) is essentially like the composite
function 𝑒 ∘𝑓 of 𝑓(𝑧) and a rational function 𝑒(𝑧), Laine et al.
reversed the order of composition; that is, they considered the
composite function 𝑓 ∘ 𝑒 of 𝑓(𝑧) and a rational function 𝑒(𝑧),
which resulted in a complex functional difference equation.
The following theorem [5, Theorem 2.8] gives an example.

Theorem A (see [5, Theorem 2.8]). Suppose that 𝑓(𝑧) is a
transcendental meromorphic solution of equation

∑
{𝐽}

𝛼𝐽 (𝑧)(∏
𝑗∈𝐽

𝑓 (𝑧 + 𝑐𝑗)) = 𝑓 (𝑝 (𝑧)) , (2)
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where 𝑝(𝑧) is a polynomial of degree 𝑘 ≥ 2. Moreover, one
assumes that the coefficients 𝛼𝐽(𝑧) are small functions relative
to 𝑓(𝑧) and that 𝑛 ≥ 𝑘. Then

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) , (3)

where 𝛼 = (log 𝑛)/(log 𝑘).
At this point, we briefly introduce some notations used in

this paper. A difference monomial of a meromorphic function
𝑓(𝑧) is defined as

𝑓(𝑧)
𝜆0𝑓(𝑧 + 𝑐1)

𝜆1 ⋅ ⋅ ⋅ 𝑓(𝑧 + 𝑐𝑛)
𝜆𝑠 :=

𝑠

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
, (4)

where 𝑐0 = 0, 𝑐𝑗 ∈ C \ {0} (𝑗 = 1, 2, . . . , 𝑠) are distinct
constants, and 𝜆𝑗 (𝑗 = 0, 1, . . . , 𝑠) are natural numbers. A
difference polynomial 𝐻(𝑧, 𝑓(𝑧)) of a meromorphic function
𝑓(𝑧), a finite sum of difference monomials, is defined as

𝐻(𝑧, 𝑓 (𝑧)) = ∑
𝜆∈𝐼

𝛼𝜆 (𝑧)(
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
) , (5)

where 𝐼 is a finite set of multi-indexes 𝜆 = (𝜆0, 𝜆1, . . . , 𝜆𝑛),
𝛼𝜆(𝑧) (𝜆 ∈ 𝐼) are small functions relative to 𝑓(𝑧). The degree
and the weight of the difference polynomial (5), respectively, are
defined as

deg
𝑓
(𝐻) = max

𝜆∈𝐼

{
{
{

𝑛

∑
𝑗=0

𝜆𝑗
}
}
}

, 𝜅𝑓 (𝐻) = max
𝜆∈𝐼

{
{
{

𝑛

∑
𝑗=1

𝜆𝑗
}
}
}

.

(6)

Consequently, 𝜅𝑓(𝐻) ≤ deg𝑓(𝐻). For instance, the degree and
the weight of the difference polynomial 𝑓2(𝑧)𝑓(𝑧−1)𝑓(𝑧+1)+
𝑓(𝑧)𝑓(𝑧 + 1)𝑓(𝑧 + 2) + 𝑓2(𝑧 − 1)𝑓(𝑧 + 2), respectively, are
four and three. Moreover, a difference polynomial (5) is said to
be homogeneous with respect to 𝑓(𝑧) if the degree ∑𝑛

𝑗=0
𝜆𝑗 of

each monomial in the sum of (5) is nonzero and the same for
all 𝜆 ∈ 𝐼.

In the following, we proceed to prove generalizations of
Theorem A and investigate some new results for the first time.
We permit more general expressions on both sides of (1).

Theorem 1. Let 𝑓(𝑧) be a transcendental meromorphic solu-
tion of equation

𝐻(𝑧, 𝑓 (𝑧)) = 𝑅 (𝑧, 𝑓 ∘ 𝑝)

=
𝑎0 (𝑧) + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑓 ∘ 𝑝)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑓 ∘ 𝑝)
𝑡
,

(7)

where𝐻(𝑧, 𝑓(𝑧)) is defined as (5), 𝑝(𝑧) = 𝑑𝑘𝑧𝑘+ ⋅ ⋅ ⋅+𝑑1𝑧+𝑑0
is a polynomial with constant coefficients 𝑑𝑘( ̸= 0), . . . , 𝑑1, 𝑑0
and of the degree 𝑘 ≥ 2, and 𝑎𝑖(𝑧) (𝑖 = 0, 1, . . . , 𝑠) and
𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small meromorphic functions relative
to 𝑓(𝑧) such that 𝑎𝑠(𝑧)𝑏𝑡(𝑧) ̸≡ 0. Set 𝑑 = max{𝑠, 𝑡}. If 𝑘𝑑 ≤
(𝑛 + 1)deg

𝑓
(𝐻), then

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) , (8)

where 𝛼 = (log(𝑛 + 1) + log deg
𝑓
(𝐻) − log𝑑)/(log 𝑘).

Similar to the proof of Theorem 1, we easily obtain the
following result, which is a generation of Theorem A.

Theorem 2. Let 𝑐𝑖 ∈ C (𝑖 = 1, 2, . . . , 𝑛) be distinct
constants and 𝑓(𝑧) be a transcendental meromorphic solution
of equation

∑
{𝐽}

𝛼𝐽 (𝑧)(∏
𝑗∈𝐽

𝑓 (𝑧 + 𝑐𝑗))

= 𝑅 (𝑧, 𝑓 ∘ 𝑝)

=
𝑎0 (𝑧) + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑓 ∘ 𝑝)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑓 ∘ 𝑝)
𝑡
,

(9)

where 𝑝(𝑧) = 𝑑𝑘𝑧𝑘 + ⋅ ⋅ ⋅ + 𝑑1𝑧 + 𝑑0 is a polynomial with
constant coefficients 𝑑𝑘( ̸= 0), . . . , 𝑑1, 𝑑0 and of the degree 𝑘 ≥ 2
and 𝑎𝑖(𝑧) (𝑖 = 0, 1, . . . , 𝑠) and 𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small
functions relative to 𝑓(𝑧) such that 𝑎𝑠(𝑧)𝑏𝑡(𝑧) ̸≡ 0. If 𝑘𝑑 =
𝑘max{𝑠, 𝑡} ≤ 𝑛, then

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) , (10)

where 𝛼 = (log 𝑛 − log 𝑑)/(log 𝑘).

We then proceed to consider the distribution of zeros and
poles of meromorphic solutions of (7). The following result
indicates that solutions having Borel exceptional zeros and
poles appear only in special situations.

Theorem 3. Let 𝑐0 = 0, let 𝑐𝑖 ∈ C \ {0} (𝑖 = 1, 2, . . . , 𝑛) be
distinct constants, and let 𝑓(𝑧) be a finite order transcendental
meromorphic solution of equation

𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗

= 𝑅 (𝑧, 𝑓 ∘ 𝑝)

=
𝑎0 (𝑧) + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑓 ∘ 𝑝)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑓 ∘ 𝑝)
𝑡
,

(11)

where 𝑝(𝑧) = 𝑑𝑘𝑧𝑘 + ⋅ ⋅ ⋅ + 𝑑1𝑧 + 𝑑0 is a polynomial with
constant coefficients 𝑑𝑘( ̸= 0), . . . , 𝑑1, 𝑑0 and of the degree 𝑘 ≥ 1
and 𝑎𝑖(𝑧) (𝑖 = 0, 1, . . . , 𝑠) and 𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small
meromorphic functions relative to 𝑓(𝑧) such that 𝑎𝑠(𝑧)𝑏𝑡(𝑧) ̸≡
0. If

max{𝜆 (𝑓) , 𝜆 ( 1
𝑓
)} < 𝜎 (𝑓) , (12)

then (11) is either of the form
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
= 𝛼
𝑎𝑠 (𝑧)

𝑏0 (𝑧)
(𝑓 ∘ 𝑝)

𝑠

(13)

or
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
= 𝛼
𝑎0 (𝑧)

𝑏𝑡 (𝑧)

1

(𝑓 ∘ 𝑝)
𝑡
, (14)

where 𝛼 ∈ C \ {0} is some constant.
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Example 4. 𝑓(𝑧) = cos 𝑧 solves difference equation

4𝑓(𝑧)
2𝑓(𝑧 + 𝜋)

2 = 𝑓(2𝑧)
2 + 2𝑓 (2𝑧) + 1. (15)

Here 𝑝(𝑧) = 2𝑧. Clearly, 𝜆(1/𝑓) = 0 < 1 = 𝜆(𝑓) = 𝜎(𝑓). This
example shows that condition (12) is necessary and cannot be
replaced by

min{𝜆 (𝑓) , 𝜆 ( 1
𝑓
)} < 𝜎 (𝑓) . (16)

Moreover, we obtain a result parallel toTheorem 5.4 in [6]
for the difference case.

Theorem 5. Suppose that the equation
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
=
𝑐 (𝑧)

𝑓(𝑧)𝑚
, 𝑚 ∈ N, (17)

has a meromorphic solution of finite order, where 𝑐0 = 0, 𝑐𝑗 ∈
C \ {0} (𝑗 = 1, 2, . . . , 𝑛) are distinct constants, and 𝑐(𝑧) is a
nontrivialmeromorphic function. If𝑓(𝑧)has only finitelymany
poles, then𝑓(𝑧) = 𝐷(𝑧)𝑒𝐸(𝑧), where𝐷(𝑧) is a rational function
and𝐸(𝑧) is a polynomial, if and only if 𝑐(𝑧) = 𝐺(𝑧)𝑒𝑀(𝑧), where
𝐺(𝑧) is a rational function and𝑀(𝑧) is a polynomial.

Example 6. Difference equation

𝑓(𝑧)
2𝑓 (𝑧 + 1) 𝑓 (𝑧 − 1) = (

1

𝑧4 (𝑧2 − 1)
𝑒6𝑧) ⋅

1

𝑓(𝑧)2
(18)

of the type (17) is solved by 𝑓(𝑧) = 𝑒𝑧/𝑧. Here, 𝑓(𝑧) = 𝑒𝑧/𝑧
and 𝑐(𝑧) = 𝑒6𝑧/𝑧4(𝑧2 − 1) satisfy Theorem 5.

As an application of Theorem 3, we obtain the following.

Theorem 7. Let 𝑐 ∈ C \ {0} and let 𝑓(𝑧) be a finite order
transcendental meromorphic solution of equation

𝑓 (𝑧 + 𝑐) = 𝑅 (𝑧, 𝑓 ∘ 𝑝)

=
𝑎0 (𝑧) + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑓 ∘ 𝑝)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑓 ∘ 𝑝)
𝑡
,

(19)

where 𝑝(𝑧) = 𝑑𝑘𝑧𝑘 + ⋅ ⋅ ⋅ + 𝑑1𝑧 + 𝑑0 is a polynomial with
constant coefficients 𝑑𝑘( ̸= 0), . . . , 𝑑1, 𝑑0 and of the degree 𝑘 ≥ 2
and 𝑎𝑖(𝑧) (𝑖 = 0, 1, . . . , 𝑠) and 𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small
meromorphic functions relative to 𝑓(𝑧) such that 𝑎𝑠(𝑧)𝑏𝑡(𝑧) ̸≡
0. Then 𝑓(𝑧) has at most one Borel exceptional value.

If the degree 𝑘 of polynomial 𝑝(𝑧) is 1 in Theorem 7, the
result does not hold. For example, we have the following.

Example 8. 𝑓(𝑧) = tan 𝑧 solves difference equation

𝑓 (𝑧 + 1) =
𝑓 (𝑧) + tan 1
1 − (tan 1) 𝑓 (𝑧)

(20)

of the type (19). Obviously, 𝑓(𝑧) has two Borel exceptional
values ±𝑖.

If we remove the assumption max{𝜆(𝑓), 𝜆(1/𝑓)} < 𝜎(𝑓)
used in Theorem 3, we obtain a result similar to Theorem 12
in [4].

Theorem 9. Let 𝑓(𝑧) be a transcendental meromorphic solu-
tion of equation

𝐻(𝑧, 𝑓 (𝑧)) = 𝑅 (𝑧, 𝑓)

=
𝑎0 (𝑧) + 𝑎1 (𝑧) 𝑓 (𝑧) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) 𝑓(𝑧)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) 𝑓 (𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) 𝑓(𝑧)
𝑡
,
(21)

where 𝐻(𝑧, 𝑓(𝑧)) is defined as (5) and 𝑎𝑖(𝑧) (𝑖 = 0, 1, . . . , 𝑠)
and 𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small meromorphic functions
relative to 𝑓(𝑧) such that 𝑎𝑠(𝑧)𝑏𝑡(𝑧) ̸≡ 0. If 𝑑 := max{𝑠, 𝑡} >
(𝑛 + 1) deg

𝑓
(𝐻), then 𝜎(𝑓) = ∞.

In fact, the following examples show that the assertion of
Theorem 9 does not remain valid identically if 𝑑 ≤ (𝑛 +
1)deg

𝑓
(𝐻).

Example 10. 𝑓(𝑧) = exp{𝑒𝑧}/𝑧 solves the difference equation

(𝑧 − 𝜋𝑖) (𝑧 + log 2 − 𝜋𝑖) 𝑓 (𝑧) 𝑓 (𝑧 − 𝜋𝑖) 𝑓 (𝑧 + log 2 − 𝜋𝑖)

+ (𝑧 + log 8) 𝑓 (𝑧 + log 8) =
1 + 𝑧11𝑓(𝑧)10

𝑧3𝑓(𝑧)2
.

(22)

Clearly, 𝑑 = 10 < (3+1) ⋅ 3 = (𝑛+1) deg
𝑓
(𝐻) and 𝜎(𝑓) = ∞.

Example 11. 𝑓(𝑧) = tan 𝑧 satisfies the difference equation

𝑓(𝑧 +
𝜋

4
) + 𝑓(𝑧 −

𝜋

4
) =

4𝑓 (𝑧)

1 − 𝑓(𝑧)2
. (23)

Obviously, 𝑑 = 2 < (2+1)×1 = (𝑛+1) deg
𝑓
(𝐻) and𝜎(𝑓) = 1.

Example 12 (see [7, pages 103–106] and [8, page 8]). The
following difference equation,

𝑓 (𝑧 + 1) = 𝛼𝑓 (𝑧) (1 − 𝑓 (𝑧)) , 𝛼 ̸= 0, (24)

derives from a well-known discrete logistic model in biology.
It has been proved that all other meromorphic solutions are
of infinite order, apart from the constant solutions 𝑓(𝑧) ≡ 0
and 𝑓(𝑧) = (𝛼 − 1)/𝛼. For instance, (24) has one-parameter
families of entire solutions of infinite order:

𝑓 (𝑧) =
1

2
(1 − exp (𝐴𝑒𝑧 log 2)) , 𝐴 ∈ C \ {0} , 𝛼 = 2,

𝑓 (𝑧) = sin2 (𝐵𝑒𝑧 log 2) , 𝐵 ∈ C \ {0} , 𝛼 = 4.
(25)

Here, 𝑑 = 2 = (1 + 1) × 1 = (𝑛 + 1)deg
𝑓
(𝐻).

Example 13. 𝑓(𝑧) = 𝑧 solves the difference equation

𝑓 (𝑧 + 1) =
1 − 𝑓(𝑧)2

−𝑧2 − 𝑧 + 1 + 𝑓(𝑧)2
. (26)

We get 𝑑 = 2 = (1 + 1) × 1 = (𝑛 + 1)deg
𝑓
(𝐻) and 𝜎(𝑓) = 0.

If the difference polynomial in the left-hand side of (21)
is homogeneous, we further obtain the following theorem.
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Theorem 14. Let 𝑓(𝑧) be a transcendental meromorphic solu-
tion of (21), where 𝐻(z, 𝑓(𝑧)) is defined as (5) and 𝑎𝑖(𝑧) (𝑖 =
0, 1, . . . , 𝑠) and 𝑏𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡) are small meromorphic
functions relative to 𝑓(𝑧) such that 𝑎𝑠(𝑧)𝑏𝑡(𝑧) ̸≡ 0. Suppose
that 𝐻(𝑧, 𝑓) is homogeneous and has at least one difference
monomial of type

𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
, (𝜆𝑗 ∈ N+, 𝑗 = 0, 1, . . . , 𝑛) . (27)

If 𝑑 := max{𝑠, 𝑡} > 3deg
𝑓
(𝐻), then 𝜎(𝑓) = ∞.

2. Proof of Theorem 1

We need some preliminaries to proveTheorem 1.

Lemma 15 (see [9, Lemma 4]). Let 𝑓(𝑧) be a transcendental
meromorphic function and let 𝑝(𝑧) = 𝑑𝑘𝑧𝑘 + ⋅ ⋅ ⋅ + 𝑑1𝑧 +
𝑑0 (𝑑𝑘 ̸= 0)be a polynomial of degree 𝑘. Given 0 < 𝛿 < |𝑑𝑘|,
denote ] := |𝑑𝑘| + 𝛿 and 𝜇 := |𝑑𝑘| − 𝛿. Then, given 𝜀 > 0 and
𝑎 ∈ C ∪ {∞}, one has, for all 𝑟 ≥ 𝑟0 > 0,

𝑘𝑛 (𝜇𝑟𝑘, 𝑎, 𝑓) ≤ 𝑛 (𝑟, 𝑎, 𝑓 ∘ 𝑝) ≤ 𝑘𝑛 (]𝑟𝑘, 𝑎, 𝑓) ,

𝑁 (𝜇𝑟𝑘, 𝑎, 𝑓) + 𝑂 (log 𝑟) ≤ 𝑁 (𝑟, 𝑎, 𝑓 ∘ 𝑝) ≤ 𝑁(]𝑟𝑘, 𝑎, 𝑓)

+ 𝑂 (log 𝑟) ,

(1 − 𝜀) 𝑇 (𝜇𝑟
𝑘, 𝑓) ≤ 𝑇 (𝑟, 𝑓 ∘ 𝑝) ≤ (1 + 𝜀) 𝑇 (]𝑟𝑘, 𝑓) .

(28)

Lemma16 (see [10,Theorem B.16]). Given distinctmeromor-
phic functions 𝑓1, . . . , 𝑓𝑛, let {𝐽} denote the collection of all
nonempty subsets of {1, 2, . . . , 𝑛}, and suppose that 𝛼𝐽 ∈ C for
each 𝐽 ∈ {𝐽}. Then

𝑇(𝑟,∑
{𝐽}

𝛼𝐽(∏
𝑗∈𝐽

𝑓𝑗)) ≤
𝑛

∑
𝑘=1

𝑇 (𝑟, 𝑓𝑘) + 𝑂 (1) . (29)

By denoting 𝑓𝑖+1 = 𝑓(𝑧 + 𝑐𝑖)
𝜆𝑖 (𝑖 = 0, 1, . . . , 𝑛) below, it is

an easy exercise to prove the following result from Lemma 16.

Lemma 17. Let 𝑓(𝑧) be a meromorphic function, let 𝐼 be a
finite set of multi-indexes 𝜆 = (𝜆0, 𝜆1, . . . , 𝜆𝑛), and let 𝛼𝜆(𝑧)
be small functions relative to 𝑓(𝑧) for all 𝜆 ∈ 𝐼. Then the
characteristic function of the difference polynomial (5) satisfies

𝑇(𝑟, ∑
𝜆∈𝐼

𝛼𝜆 (𝑧)(
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
))

≤ (𝑛 + 1) deg
𝑓
(𝐻) 𝑇 (𝑟 + 𝐶, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(30)

where 𝐶 = max{|𝑐1|, |𝑐2|, . . . , |𝑐𝑛|}.

Lemma18 (see [11, Lemma5]). Let𝑔(𝑟) andℎ(𝑟) bemonotone
nondecreasing functions on [0,∞) such that 𝑔(𝑟) ≤ ℎ(𝑟) for all
𝑟 ∉ 𝐸 ∪ [0, 1], where 𝐸 ⊂ (1,∞) is a set of finite logarithmic
measure. Let 𝛼 > 1 be a given constant. Then there exists an
𝑟0 = 𝑟0(𝛼) > 0 such that 𝑔(𝑟) ≤ ℎ(𝛼𝑟) for all 𝑟 ≥ 𝑟0.

Lemma 19 (see [12, Lemma 3]). Let 𝜓(𝑟) be a function of
𝑟 (𝑟 ≥ 𝑟0), positive and bounded in every finite interval.

(i) Suppose that 𝜓(𝜇𝑟𝑚) ≤ 𝐴𝜓(𝑟) + 𝐵 (𝑟 ≥ 𝑟0), where
𝜇 (𝜇 > 0),𝑚 (𝑚 > 1),𝐴 (𝐴 ≥ 1), and 𝐵 are constants.
Then 𝜓(𝑟) = 𝑂((log 𝑟)𝛼) with 𝛼 = (log𝐴)/(log𝑚),
unless 𝐴 = 1 and 𝐵 > 0; and if 𝐴 = 1 and 𝐵 > 0, then
for any 𝜀 > 0, 𝜓(𝑟) = 𝑂((log 𝑟)𝜀).

(ii) Suppose that (with the notation of (i)) 𝜓(𝜇𝑟𝑚) ≥
𝐴𝜓(𝑟) (𝑟 ≥ 𝑟0). Then for all sufficiently large values of
𝑟, 𝜓(𝑟) ≥ 𝐾(log 𝑟)𝛼 with 𝛼 = (log𝐴)/(log𝑚) for some
positive constant 𝐾.

Proof of Theorem 1. For any 𝜀 (0 < 𝜀 < 1), we may apply
Valiron-Mohon’ko lemma, Lemmas 15 and 17, and (5) and (7)
to conclude that
𝑑 (1 − 𝜀) 𝑇 (𝜇𝑟

𝑘, 𝑓)

≤ 𝑑𝑇 (𝑟, 𝑓 ∘ 𝑝) + 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟,
𝑎0 (𝑧) + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑓 ∘ 𝑝)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑓 ∘ 𝑝)
𝑡
)

+ 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟, ∑
𝜆∈𝐼

𝛼𝜆 (𝑧)(
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
)) + 𝑆 (𝑟, 𝑓)

≤ (𝑛 + 1) deg
𝑓
(𝐻) 𝑇 (𝑟 + 𝐶, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ (𝑛 + 1) deg
𝑓
(𝐻) (1 + 𝜀) 𝑇 (𝑟 + 𝐶, 𝑓)

(31)
holds for all sufficiently large 𝑟, possibly outside of an
exceptional set of finite logarithmic measure, where 𝐶 =
max{|𝑐1|, |𝑐2|, . . . , |𝑐𝑛|} and 𝜇 is defined as Lemma 15. Now, we
may apply Lemma 18 to deal with the exceptional set and
conclude that, for every 𝜂 > 1, there exists an 𝑟0 > 0 such
that
𝑑 (1 − 𝜀) 𝑇 (𝜇𝑟

𝑘, 𝑓) ≤ (𝑛 + 1) deg
𝑓
(𝐻) (1 + 𝜀) 𝑇 (𝜂𝑟, 𝑓)

(32)
holds for all 𝑟 ≥ 𝑟0. Denote 𝜔 = 𝜂𝑟. Then (32) can be written
in the form

𝑇(
𝜇

𝜂𝑘
𝜔𝑘, 𝑓) ≤

(𝑛 + 1) deg
𝑓
(𝐻) (1 + 𝜀)

𝑑 (1 − 𝜀)
𝑇 (𝜔, 𝑓) . (33)

Since 𝑑𝑘 ≤ (𝑛 + 1)deg
𝑓
(𝐻), we get ((𝑛 + 1)deg

𝑓
(𝐻)(1 +

𝜀))/(𝑑(1 − 𝜀)) > 1 for all 0 < 𝜀 < 1. Thus, we now apply
Lemma 19(i) to conclude that

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) ,

𝛼 =
log ((𝑛 + 1) deg

𝑓
(𝐻) (1 + 𝜀) /𝑑 (1 − 𝜀))

log 𝑘

=
log (𝑛 + 1) + log deg

𝑓
(𝐻) − log𝑑

log 𝑘
+ 𝑜 (1) .

(34)

The proof of Theorem 1 is completed.
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3. Proof of Theorems 3 and 5

We again need some preliminaries.

Lemma 20 (see [13, Theorem 1.5]). Suppose that 𝑓𝑗(𝑧) (𝑗 =
1, 2, . . . , 𝑛) (𝑛 ≥ 2) are meromorphic functions and 𝑔𝑗(𝑧) (𝑗 =
1, 2, . . . , 𝑛) are entire functions satisfying the following condi-
tions.

(1) ∑𝑛
𝑗=1
𝑓𝑗(𝑧)𝑒

𝑔𝑗(𝑧) = 0.

(2) 𝑔𝑗(𝑧) − 𝑔𝑘(𝑧) are not constants for 1 ≤ 𝑗 < 𝑘 ≤ 𝑛.

(3) For 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ ℎ < 𝑘 ≤ 𝑛,

𝑇 (𝑟, 𝑓𝑗) = 𝑜 {𝑇 (𝑟, 𝑒
𝑔ℎ−𝑔𝑘)} (𝑟 󳨀→ +∞, 𝑟 ∉ 𝐸) , (35)

where 𝐸 ⊂ (1, +∞) is of finite linear measure or finite
logarithmic measure.

Then 𝑓𝑗(𝑧) ≡ 0 (𝑗 = 1, 2, . . . , 𝑛).

Lemma21 (see [14,Theorem4]). Let𝐹(𝑧),𝑃𝑛(𝑧), . . . , 𝑃0(𝑧) be
polynomials such that 𝐹𝑃𝑛𝑃0 ̸≡ 0 and then every finite order
transcendental meromorphic solution 𝑓(𝑧) of equation

𝑃𝑛 (𝑧) 𝑓 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃1 (𝑧) 𝑓 (𝑧 + 1) + 𝑃0 (𝑧) 𝑓 (𝑧) = 𝐹 (𝑧)
(36)

satisfies 𝜆(𝑓) = 𝜎(𝑓) ≥ 1.

Remark 22. Replacing 𝑗 by 𝑐𝑗 (𝑗 = 1, 2, . . . , 𝑛), where 𝑐𝑗 (𝑗 =
1, 2, . . . , 𝑛) are distinct nonzero complex constants, Lemma 21
remains valid.

Proof of Theorem 3. Let 𝜏 be the multiplicity of pole of 𝑓(𝑧)
at the origin, and let 𝑞(𝑧) be a canonical product formed with
nonzero poles of 𝑓(𝑧). Since max{𝜆(𝑓), 𝜆(1/𝑓)} < 𝜎(𝑓), then
ℎ(𝑧) = 𝑧𝜏𝑞(𝑧) is an entire function such that

𝜎 (ℎ) = 𝜆(
1

𝑓
) < 𝜎 (𝑓) < +∞, (37)

and 𝑔(𝑧) = ℎ(𝑧)𝑓(𝑧) is a transcendental entire function with

𝑇 (𝑟, 𝑔) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , 𝜎 (𝑔) = 𝜎 (𝑓) ,

𝜆 (𝑔) = 𝜆 (𝑓) .
(38)

If 𝑞(𝑧) is a polynomial, we obtain quickly that 𝜎(ℎ ∘ 𝑝) =
0 < 𝜎(𝑔 ∘ 𝑝). Otherwise, we conclude from the last assertion
of Lemma 15, (37), and (38) that

𝜎 (ℎ ∘ 𝑝) = 𝑘𝜎 (ℎ) = 𝑘𝜆(
1

𝑓
) < 𝑘𝜎 (𝑔) = 𝜎 (𝑔 ∘ 𝑝) . (39)

Therefore,

𝑇 (𝑟, ℎ ∘ 𝑝) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) . (40)

Now, substituting 𝑓(𝑧) = 𝑔(𝑧)/ℎ(𝑧) into (11), we conclude
that

(ℎ ∘ 𝑝)
𝑠−𝑡

∏
𝑛

𝑗=0
ℎ(𝑧 + 𝑐𝑗)

𝜆𝑗
(
𝑛

∏
𝑗=0

𝑔(𝑧 + 𝑐𝑗)
𝜆𝑗
)

= (𝑎0 (𝑧) (ℎ ∘ 𝑝)
𝑠
+ 𝑎1 (𝑧) (ℎ ∘ 𝑝)

𝑠−1
(𝑔 ∘ 𝑝)

+ ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑔 ∘ 𝑝)
𝑠
)

× (𝑏0 (𝑧) (ℎ ∘ 𝑝)
𝑡
+ 𝑏1 (𝑧) (ℎ ∘ 𝑝)

𝑡−1
(𝑔 ∘ 𝑝)

+ ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑔 ∘ 𝑝)
𝑡
)
−1

.

(41)

Obviously, it follows from (37)–(40) and Lemma 15 that

𝑇(𝑟,
1

∏
𝑛

𝑗=0
ℎ(𝑧 + 𝑐𝑗)

𝜆𝑗
) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) ,

𝑇 (𝑟, (ℎ ∘ 𝑝)
𝑠−𝑡
) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) ,

𝑇 (𝑟, 𝑎𝑢 (𝑧) (ℎ ∘ 𝑝)
𝑠−𝑢
) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) , 𝑢 = 0, 1, . . . , 𝑠,

𝑇 (𝑟, 𝑏V (𝑧) (ℎ ∘ 𝑝)
𝑡−V
) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) , V = 0, 1, . . . , 𝑡.

(42)

Denoting𝐴(𝑧) = (ℎ ∘ 𝑝)𝑠−𝑡/∏𝑛
𝑗=0
ℎ(𝑧 + 𝑐𝑗)

𝜆𝑗 , we get from (42)
that

𝑇 (𝑟, 𝐴) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) . (43)
Since zeros and poles are Borel exceptional values of 𝑓(𝑧) by
(12), we may apply a result due to Whittaker; see [15, Satz
13.4], to deduce that 𝑓(𝑧) is of regular growth. Thus, we use
Lemma 15 and (12) again to get

𝑇(𝑟,
𝑓󸀠

𝑓
) = 𝑁(𝑟, 𝑓) + 𝑁(𝑟,

1

𝑓
) + 𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) .

(44)

Similarly, if we set 𝐵(𝑧) = 𝐴(𝑧)(∏
𝑛

𝑗=0
𝑔(𝑧 + 𝑐𝑗)

𝜆𝑗), we
also deduce from the lemma of the logarithmic derivative,
Lemma 15, (12), (38), and (43) that

𝑇(𝑟,
𝐵󸀠

𝐵
) = 𝑇(𝑟,

𝐴󸀠

𝐴
+
𝑛

∑
𝑗=0

𝜆𝑗
𝑔󸀠 (𝑧 + 𝑐𝑗)

𝑔 (𝑧 + 𝑐𝑗)
) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) .

(45)
Denoting 𝐹(𝑧) = 𝑔 ∘ 𝑝,

𝑃 (𝑧, 𝐹) =
𝑎0 (𝑧)

𝑎𝑠 (𝑧)
(ℎ ∘ 𝑝)

𝑠

+
𝑎1 (𝑧)

𝑎𝑠 (𝑧)
(ℎ ∘ 𝑝)

𝑠−1
𝐹 (𝑧) + ⋅ ⋅ ⋅ + 𝐹(𝑧)

𝑠,

𝑄 (𝑧, 𝐹) =
𝑏0 (𝑧)

𝑏𝑡 (𝑧)
(ℎ ∘ 𝑝)

𝑡

+
𝑏1 (𝑧)

𝑏𝑡 (𝑧)
(ℎ ∘ 𝑝)

𝑡−1
𝐹 (𝑧) + ⋅ ⋅ ⋅ + 𝐹(𝑧)

𝑡.

(46)
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Therefore, we deduce from Lemma 15 and (42) that the
coefficients of 𝑃(𝑧, 𝐹) and𝑄(𝑧, 𝐹) are small functions relative
to 𝐹(𝑧). Thus, (41) can be written in the form

𝑏𝑡 (𝑧)

𝑎𝑠 (𝑧)
𝐵 (𝑧) =

𝑃 (𝑧, 𝐹)

𝑄 (𝑧, 𝐹)
:= 𝑢 (𝑧, 𝐹) . (47)

Denoting

𝜓 (𝑧) =
𝐹󸀠 (𝑧)

𝐹 (𝑧)
, 𝑈 (𝑧) =

𝑢󸀠 (𝑧, 𝐹)

𝑢 (𝑧, 𝐹)
, (48)

we get 𝑇(𝑟, 𝑈) = 𝑆(𝑟, 𝑔 ∘ 𝑝) from (45) and (47). We
also conclude from the lemma of logarithmic derivative,
Lemma 15, and (12) that

𝑇 (𝑟, 𝜓) = 𝑇(𝑟,
𝐹󸀠

𝐹
) = 𝑚(𝑟,

𝐹󸀠

𝐹
) + 𝑁(𝑟,

𝐹󸀠

𝐹
)

≤ 𝑁 (𝑟, 𝐹) + 𝑁(𝑟,
1

𝐹
) + 𝑆 (𝑟, 𝐹)

= 𝑁 (𝑟, 𝑔 ∘ 𝑝) + 𝑁(𝑟,
1

𝑔 ∘ 𝑝
) + 𝑆 (𝑟, 𝑔 ∘ 𝑝)

≤ 𝑁(𝑟,
1

𝑔 ∘ 𝑝
) + 𝑆 (𝑟, 𝑔 ∘ 𝑝)

≤ 𝑁(]𝑟𝑘,
1

𝑔
) + 𝑆 (𝑟, 𝑔 ∘ 𝑝) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) ,

(49)

where ] is defined as Lemma 15.
Since

𝑃󸀠𝑄 − 𝑃𝑄󸀠

𝑄2
= 𝑢󸀠 = 𝑈𝑢 =

𝑈𝑃

𝑄
, (50)

we conclude that

𝑃󸀠𝑄 − 𝑃𝑄󸀠 = 𝑈𝑃𝑄. (51)

Now, writing 𝐹󸀠 = 𝜓𝐹 in (51), regarding then (51) as an
algebraic equation in𝐹with coefficients of growth 𝑆(𝑟, 𝐹), and
comparing the leading coefficients, we deduce that

(𝑠 − 𝑡) 𝜓 = 𝑈. (52)

By integrating both sides of the last equality above, we
conclude that

𝑢 (𝑧, 𝐹) = 𝛼𝐹(𝑧)
𝑠−𝑡, (53)

for some 𝛼 ∈ C \ {0}. Therefore, by combining the
representations of 𝐹, 𝐵, 𝐴, 𝑔 with (53), we conclude that

𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
= 𝛼
𝑎𝑠 (𝑧)

𝑏𝑡 (𝑧)
(𝑓 ∘ 𝑝)

𝑠−𝑡
. (54)

If 𝑠𝑡 ̸= 0, we deduce from (11) and (54) that

𝛼
𝑎𝑠 (𝑧)

𝑏𝑡 (𝑧)
(𝑓 ∘ 𝑝)

𝑠−𝑡

= 𝑅 (𝑧, 𝑓 ∘ 𝑝)

=
𝑎0 (𝑧) + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) (𝑓 ∘ 𝑝)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) (𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) (𝑓 ∘ 𝑝)
𝑡
.

(55)

From this, we get that 𝑅(𝑧, 𝑓 ∘ 𝑝) is not irreducible in 𝑓 ∘ 𝑝,
a contradiction. Thus, 𝑡 = 0 or 𝑠 = 0. Therefore, we deduce
from (54) that

𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
= 𝛼
𝑎𝑠 (𝑧)

𝑏0 (𝑧)
(𝑓 ∘ 𝑝)

𝑠

(56)

or
𝑛

∏
𝑗=0

𝑓(𝑧 + 𝑐𝑗)
𝜆𝑗
= 𝛼
𝑎0 (𝑧)

𝑏𝑡 (𝑧)

1

(𝑓 ∘ 𝑝)
𝑡
. (57)

The proof of Theorem 3 is completed.

Proof of Theorem 5. Assume first that 𝑓(𝑧) = 𝐷(𝑧)𝑒𝐸(𝑧),
where 𝐷(𝑧) is a rational function and 𝐸(𝑧) is a polynomial.
One can see from (17) that

𝑐 (𝑧) = 𝑓(𝑧)
𝑚

𝑛

∏
𝑖=0

𝑓(𝑧 + 𝑐𝑖)
𝜆𝑖

= [𝐷(𝑧)
𝑚

𝑛

∏
𝑖=0

𝐷(𝑧 + 𝑐𝑖)
𝜆𝑖] 𝑒𝑚𝐸(𝑧)+∑

𝑛
𝑖=0 𝜆𝑖𝐸(𝑧+𝑐𝑖)

:= 𝐺 (𝑧) 𝑒
𝑀(𝑧),

(58)

where 𝐺(𝑧) = 𝐷(𝑧)𝑚∏𝑛
𝑖=0
𝐷(𝑧 + 𝑐𝑖)

𝜆𝑖 is rational and𝑀(𝑧) =
𝑚𝐸(𝑧) + ∑

𝑛

𝑖=0
𝜆𝑖𝐸(𝑧 + 𝑐𝑖) is a polynomial.

Suppose next that 𝑐(𝑧) = 𝐺(𝑧)𝑒𝑀(𝑧), where 𝐺(𝑧) is a
rational function and 𝑀(𝑧) is a polynomial. Since 𝑓(𝑧) has
only finitely many poles, we conclude from (17) that

𝑁(𝑟,
1

𝑓
) ≤ 𝑁(𝑟,

1

𝑓𝑚
) = 𝑁(𝑟,

∏
𝑛

𝑖=0
𝑓(𝑧 + 𝑐𝑖)

𝜆𝑖

𝑐 (𝑧)
)

= 𝑂 (log 𝑟) .

(59)

Thus, 𝑓(𝑧) has only finitely many zeros and poles, and
𝑓(𝑧) = 𝐷(𝑧)𝑒𝐸(𝑧), where𝐷(𝑧) is rational and 𝐸(𝑧) is an entire
function. In the following,we only prove𝐸(𝑧) is a polynomial.
Now, substituting𝑓(𝑧) = 𝐷(𝑧)𝑒𝐸(𝑧) and 𝑐(𝑧) = 𝐺(𝑧)𝑒𝑀(𝑧) into
(17), we get

𝑛

∏
𝑖=0

{𝐷(𝑧 + 𝑐𝑖)
𝜆𝑖 exp (𝜆𝑖𝐸 (𝑧 + 𝑐𝑖))}

=
𝐺 (𝑧)

𝐷(𝑧)𝑚
exp (𝑀 (𝑧) − 𝑚𝐸 (𝑧)) ,

(60)

(
𝑛

∏
𝑖=0

𝐷(𝑧 + 𝑐𝑖)
𝜆𝑖) exp(

𝑛

∑
𝑖=0

𝜆𝑖𝐸 (𝑧 + 𝑐𝑖))

=
𝐺 (𝑧)

𝐷(𝑧)𝑚
exp (𝑀 (𝑧) − 𝑚𝐸 (𝑧)) .

(61)

Thus, we deduce from Lemma 20 that two exponents in (61)
cancel each other to a constant 𝜏 ∈ C such that

𝑛

∑
𝑖=0

𝜆𝑖𝐸 (𝑧 + 𝑐𝑖) = 𝑀 (𝑧) − 𝑚𝐸 (𝑧) + 𝜏; (62)
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that is,
𝑛

∑
𝑖=1

𝜆𝑖𝐸 (𝑧 + 𝑐𝑖) + (𝜆0 + 𝑚)𝐸 (𝑧) = 𝑀 (𝑧) + 𝜏. (63)

Suppose that 𝐸(𝑧) is not a polynomial. If 𝐸(𝑧) is a transcen-
dental entire function of finite order, we get from Lemma 21,
Remark 22, and (63) that 𝜎(𝐸) ≥ 1. Otherwise, 𝐸(𝑧) is a
transcendental entire function of infinite order. These both
show that 𝜎(𝑓) = ∞, contradicting the assumption that
𝑓(𝑧) is finite order. Thus, 𝐸(𝑧) is a polynomial. The proof of
Theorem 5 is completed.

4. Proof of Theorem 7

Lemmas 23 and 25 reveal some properties of the maximal
module of the polynomial in composite function 𝑓 ∘ 𝑝 with a
meromorphic function 𝑓(𝑧) and a polynomial 𝑝(𝑧), which
are useful for proving the existence of Borel exceptional
value of finite order meromorphic solutions of functional
difference equation of type (19).

Lemma 23. Let 𝑔(𝑧) be a nonconstant entire function of order
𝜎(𝑔) = 𝜎 < ∞. Suppose that 𝛼𝑗(𝑧) (𝑗 = 1, 2, . . . , 𝑚) are small
meromorphic functions relative to 𝑔(𝑧). Then there exists a set
𝐸 ⊂ (1,∞) of lower logarithmic density 1 such that

𝑀(𝑟, 𝛼𝑗)

𝑀 (𝑟, 𝑔)
󳨀→ 0, 𝑗 = 1, 2, . . . , 𝑚, (64)

hold simultaneously for all 𝑟 ∈ 𝐸 as 𝑟 → ∞, where the lower
logarithmic density of set 𝐸 is defined by

logdens (𝐸) = lim inf
𝑟→∞

∫
[1,𝑟]∩𝐸

(𝑑𝑡/𝑡)

log 𝑟
. (65)

Remark 24. The proof of Lemma 23 is similar to the proof of
Lemma 2.4 and Remark 2.5 in [16]. Here, we omit it.

Lemma 25. Let 𝑓(𝑧) be a finite order transcendental mero-
morphic function satisfying (12), and 𝑝(𝑧) = 𝑑𝑘𝑧𝑘 + ⋅ ⋅ ⋅+𝑑1𝑧+
𝑑0 is a polynomial with constant coefficients 𝑑𝑘( ̸= 0), . . . , 𝑑1, 𝑑0
and of the degree 𝑘 ≥ 1. Suppose that

𝐻(𝑧) = 𝑎𝑛 (𝑧) (𝑓 ∘ 𝑝)
𝑛
+ 𝑎𝑛−1 (𝑧) (𝑓 ∘ 𝑝)

𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎1 (𝑧) (𝑓 ∘ 𝑝) + 𝑎0 (𝑧)
(66)

is a polynomial in 𝑓 ∘𝑝, where 𝑛 (≥ 1) is a positive integer and
𝑎𝑛(𝑧) ( ̸≡ 0), 𝑎𝑛−1(𝑧), . . . , 𝑎1(𝑧), 𝑎0(𝑧) are small meromorphic
functions relative to 𝑓(𝑧). Then there exists a set 𝐸1 of lower
logarithmic density 1 such that

log+𝑀(𝑟,𝐻) ≥ (𝑛 − 2𝜀) 𝑇 (𝜇𝑟𝑘, 𝑓) (67)

for all 𝑟 ∈ 𝐸1 as 𝑟 → ∞, where 0 < 𝜇 < |𝑑𝑘|. Hence,𝐻(𝑧) ̸≡
0.

Proof of Lemma 25. Let 𝜏 be the multiplicity of pole of 𝑓(𝑧)
at the origin, and let 𝑞(𝑧) be a canonical product formed

with the nonzero poles of 𝑓(𝑧). Since 𝑓(𝑧) satisfies (12), then
ℎ(𝑧) = 𝑧𝜏𝑞(𝑧) is an entire function. Thus, 𝑔(𝑧) = ℎ(𝑧)𝑓(𝑧) is
entire, and (37), (38), and (40) also hold.

Now, substituting 𝑓(𝑧) = 𝑔(𝑧)/ℎ(𝑧) into (66), we con-
clude that

𝐻(𝑧) = 𝑎𝑛 (𝑧) ⋅
(𝑔 ∘ 𝑝)

𝑛

(ℎ ∘ 𝑝)
𝑛 + 𝑎𝑛−1 (𝑧) ⋅

(𝑔 ∘ 𝑝)
𝑛−1

(ℎ ∘ 𝑝)
𝑛−1
+ ⋅ ⋅ ⋅

+ 𝑎1 (𝑧) ⋅
(𝑔 ∘ 𝑝)

(ℎ ∘ 𝑝)
+ 𝑎0 (𝑧)

=
𝑎𝑛 (𝑧)

(ℎ ∘ 𝑝)
𝑛 (𝑔 ∘ 𝑝)

𝑛

× [1 +
𝑎𝑛−1 (𝑧) (ℎ ∘ 𝑝)

𝑎𝑛 (𝑧)
(𝑔 ∘ 𝑝)

−1
+ ⋅ ⋅ ⋅

+
𝑎1 (𝑧) (ℎ ∘ 𝑝)

𝑛−1

𝑎𝑛 (𝑧)
(𝑔 ∘ 𝑝)

1−𝑛

+
𝑎0 (𝑧) (ℎ ∘ 𝑝)

𝑛

𝑎𝑛 (𝑧)
(𝑔 ∘ 𝑝)

−𝑛
] .

(68)

We note from Lemma 15 and (40) that

𝑇(𝑟,
𝑎𝑛 (𝑧)

(ℎ ∘ 𝑝)
𝑛) = 𝑆 (𝑟, 𝑔 ∘ 𝑝) ,

𝑇(𝑟,
𝑎𝑗 (𝑧) (ℎ ∘ 𝑝)

𝑛−𝑗

𝑎𝑛 (𝑧)
) = 𝑆 (𝑟, 𝑔 ∘ 𝑝)

for 𝑗 = 0, 1, . . . , 𝑛 − 1.

(69)

Therefore, we deduce from Lemma 23 that there exists a set
𝐸 ⊂ (1,∞) of lower logarithmic density 1 such that

𝑀(𝑟, 𝑎𝑛 (𝑧) /(ℎ ∘ 𝑝)
𝑛
)

𝑀 (𝑟, 𝑔 ∘ 𝑝)
󳨀→ 0,

𝑀(𝑟, 𝑎𝑗 (𝑧) (ℎ ∘ 𝑝)
𝑛−𝑗
/𝑎𝑛 (𝑧))

𝑀 (𝑟, 𝑔 ∘ 𝑝)
󳨀→ 0,

(𝑗 = 0, 1, . . . , 𝑛 − 1) .

(70)

Moreover, according to the choosing of 𝐸 in the proof
of Lemma 23, we know that 𝑎𝑗(𝑧)(ℎ ∘ 𝑝)

𝑛−𝑗/𝑎𝑛(𝑧) for
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𝑗 = 0, 1, . . . , 𝑛 − 1 have no zeros and poles for all |𝑧| = 𝑟 ∈ 𝐸.
Thus, we conclude from (68) and (70) that, for any 𝜀 > 0,

𝑀(𝑟,𝐻) ≥ 𝑀(𝑟, 𝑔 ∘ 𝑝)
𝑛−𝜀

× [1 −
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑛−1 (𝑧) (ℎ ∘ 𝑝)

𝑎𝑛 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀(𝑟, 𝑔 ∘ 𝑝)

−1
− ⋅ ⋅ ⋅

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎1 (𝑧) (ℎ ∘ 𝑝)
𝑛−1

𝑎𝑛 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀(𝑟, 𝑔 ∘ 𝑝)

1−𝑛

−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎0 (𝑧) (ℎ ∘ 𝑝)
𝑛

𝑎𝑛 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀(𝑟, 𝑔 ∘ 𝑝)

−𝑛
]

≥ (1 − 𝜀)𝑀(𝑟, 𝑔 ∘ 𝑝)
𝑛−𝜀
,

(71)

and so

log+𝑀(𝑟,𝐻) ≥ (𝑛 − 3
2
𝜀) log+𝑀(𝑟, 𝑔 ∘ 𝑝) (72)

for all |𝑧| = 𝑟 ∈ 𝐸 and |𝑔 ∘ 𝑝(𝑧)| = 𝑀(𝑟, 𝑔 ∘ 𝑝).
Therefore, we deduce from Lemma 15 and (38) that

log+𝑀(𝑟,𝐻) ≥ (𝑛 − 2𝜀) 𝑇 (𝜇𝑟𝑘, 𝑓) (73)

for all |𝑧| = 𝑟 ∈ 𝐸1 = 𝐸 ∩ (𝑟0, +∞), where 𝑟0 > 0. It is
obvious that 𝐸1 has lower logarithmic density 1. The proof of
Lemma 25 is completed.

Proof of Theorem 7. Suppose that 𝑓(𝑧) has two finite Borel
exceptional values 𝑎 and 𝑏 ( ̸= 0, 𝑎). For the case where one
of 𝑎 and 𝑏 is infinite, we can use a similar method to prove it.
Set

𝑔 (𝑧) =
𝑓 (𝑧) − 𝑎

𝑓 (𝑧) − 𝑏
. (74)

Then 𝜎(𝑔) = 𝜎(𝑓) and

𝜆 (𝑔) = 𝜆 (𝑓 − 𝑎) < 𝜎 (𝑔) , 𝜆 (
1

𝑔
) = 𝜆 (𝑓 − 𝑏) < 𝜎 (𝑔) .

(75)

It follows from (74) that

𝑓 (𝑧) =
𝑎 − 𝑏𝑔 (𝑧)

1 − 𝑔 (𝑧)
. (76)

Now, substituting (76) into (19), we conclude that

𝑔 (𝑧 + 𝑐) = (
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) (𝑎 − 𝑏𝑔 ∘ 𝑝)
𝑖
(1 − 𝑔 ∘ 𝑝)

𝑠+𝑡−𝑖

−𝑎
𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) (𝑎 − 𝑏𝑔 ∘ 𝑝)
𝑗
(1 − 𝑔 ∘ 𝑝)

𝑠+𝑡−𝑗
)

× (
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) (𝑎 − 𝑏𝑔 ∘ 𝑝)
𝑖
(1 − 𝑔 ∘ 𝑝)

𝑠+𝑡−𝑖

−𝑏
𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) (𝑎 − 𝑏𝑔 ∘ 𝑝)
𝑗
(1 − 𝑔 ∘ 𝑝)

𝑠+𝑡−𝑗
)

−1

= ((−𝑔 ∘ 𝑝)
𝑠+𝑡
(
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑎

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗)

+ ⋅ ⋅ ⋅ + (
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑎
𝑖 − 𝑎

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑎
𝑗))

× ((−𝑔 ∘ 𝑝)
𝑠+𝑡
(
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑏

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗)

+ ⋅ ⋅ ⋅ + (
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑎
𝑖 − 𝑏

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑎
𝑗))

−1

.

(77)

Since 𝑎0(𝑧) + 𝑎1(𝑧)(𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑎𝑠(𝑧)(𝑓 ∘ 𝑝)
𝑠 and 𝑏0(𝑧) +

𝑏1(𝑧)(𝑓 ∘ 𝑝) + ⋅ ⋅ ⋅ + 𝑏𝑡(𝑧)(𝑓 ∘ 𝑝)
𝑡 are irreducible in 𝑓 ∘ 𝑝, we

conclude that at least one of the following three inequalities
holds; that is,

(
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑎

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗) ⋅ (

𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑏

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗)

̸≡ 0,

(
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑎

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗) ⋅ (

𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑎
𝑖 − 𝑏

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑎
𝑗)

̸≡ 0,

(
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑏

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗) ⋅ (

𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑎
𝑖 − 𝑎

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑎
𝑗)

̸≡ 0.

(78)

Thus, we deduce fromTheorem 3 that

𝑔 (𝑧 + 𝑐) = 𝑐 (𝑧) (𝑔 ∘ 𝑝)
𝑙
, (79)

where 𝑐(𝑧) is meromorphic function satisfying 𝑇(𝑟, 𝑐) =
𝑆(𝑟, 𝑔) and 𝑙 ∈ Z. Clearly, 𝑙 ̸= 0 and 𝑔(𝑧) is of regular growth
from (75); see [15, Staz 13.4]. Therefore, 𝜎(𝑐) < 𝜎(𝑔).

If 𝑙 ≥ 1, we conclude from (77) and (79) that

(−1)
𝑠+𝑡𝑐 (𝑧)(

𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑏
𝑖 − 𝑏

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑏
𝑗)(𝑔 ∘ 𝑝)

𝑠+𝑡+𝑙

+ ⋅ ⋅ ⋅ + (−
𝑠

∑
𝑖=0

𝑎𝑖 (𝑧) 𝑎
𝑖 + 𝑎

𝑡

∑
𝑗=0

𝑏𝑗 (𝑧) 𝑎
𝑗) = 0.

(80)
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Thus, we deduce from Lemma 25 that (80) is a contradiction.
If 𝑙 ≤ −1, we use the same method as above to get
another contradiction. Therefore, 𝑓(𝑧) has at most one Borel
exceptional value. The proof of Theorem 7 is completed.

5. Proof of Theorems 9 and 14

We first recall two lemmas.

Lemma 26 (see [17, Lemma 2.1]). Let 𝑓(𝑧) be a nonconstant
meromorphic function, 𝑠 > 0, 𝛼 < 1, and 𝐹 ⊂ R+ the set of all
𝑟 such that

𝑇 (𝑟, 𝑓) ≤ 𝛼𝑇 (𝑟 + 𝑠, 𝑓) . (81)

If the logarithmicmeasure of𝐹 is infinite, that is,∫
𝐹
(𝑑𝑡/𝑡) = ∞,

then 𝑓(𝑧) is of infinite order of growth.

Lemma 27 (see [18, Corollary 2.6] and [19, Corollary 2.2]).
Let 𝑓(𝑧) be a meromorphic function of finite order, and let 𝑐 ∈
C. Then

𝑚(𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) = 𝑆 (𝑟, 𝑓) (82)

for all 𝑟 outside of a possible exceptional set of finite logarithmic
measure.

Proof of Theorem 9. For any 𝜀 (0 < 𝜀 < (𝑑 − (𝑛 +
1)deg

𝑓
(𝐻))/(𝑑 + (𝑛 + 1) deg

𝑓
(𝐻))), we may apply Valiron-

Mohon’ko lemma, Lemma 17, (5), and (21) to conclude that

𝑑 (1 − 𝜀) 𝑇 (𝑟, 𝑓)

≤ 𝑑𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟,
𝑎0 (𝑧) + 𝑎1 (𝑧) 𝑓 (𝑧) + ⋅ ⋅ ⋅ + 𝑎𝑠 (𝑧) 𝑓(𝑧)

𝑠

𝑏0 (𝑧) + 𝑏1 (𝑧) 𝑓 (𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑡 (𝑧) 𝑓(𝑧)
𝑡
)

= 𝑇 (𝑟,𝐻 (𝑧, 𝑓 (𝑧))) ≤ (𝑛 + 1) deg
𝑓
(𝐻) 𝑇 (𝑟 + 𝐶, 𝑓)

+ 𝑆 (𝑟, 𝑓)

≤ (𝑛 + 1) deg
𝑓
(𝐻) (1 + 𝜀) 𝑇 (𝑟 + 𝐶, 𝑓) ,

(83)

for all 𝑟 outside of a possible exceptional set of finite
logarithmic measure.

Denote

𝛼 =
(𝑛 + 1) deg

𝑓
(𝐻) (1 + 𝜀)

𝑑 (1 − 𝜀)
. (84)

Then 𝛼 < 1 since 0 < 𝜀 < (𝑑 − (𝑛 + 1)deg
𝑓
(𝐻))/(𝑑 + (𝑛 +

1)deg
𝑓
(𝐻)) and 𝑑 > (𝑛 + 1)deg

𝑓
(𝐻). Thus,

𝑇 (𝑟, 𝑓) ≤ 𝛼𝑇 (𝑟 + 𝐶, 𝑓) (85)

holds for all 𝑟 in a set with infinite logarithmic measure.
Therefore, we deduce from Lemma 26 and (85) that 𝜎(𝑓) =
∞. The proof of Theorem 9 is completed.

Proof of Theorem 14. Assume, contrary to the assertion, that
𝑓(𝑧) is meromorphic of finite order. Taking into account the
assumption that𝐻(𝑧, 𝑓(𝑧)) is homogeneous, we deduce from
Lemma 27 that

𝑚(𝑟,
𝐻 (𝑧, 𝑓 (𝑧))

𝑓(𝑧)deg𝑓(𝐻)
) = 𝑆 (𝑟, 𝑓) (86)

for all 𝑟 outside of a possible exceptional set of finite
logarithmic measure.

Denote 𝐶 = max1≤𝑖≤𝑛{|𝑐𝑖|}. Since 𝐻(𝑧) is homogeneous
and has at least one difference monomial of type∏𝑛

𝑗=0
𝑓(𝑧 +

𝑐𝑗)
𝜆𝑗 , we immediately conclude that, by looking at pole

multiplicities, summing over |𝑧| ≤ 𝑟, and integrating
logarithmically,

𝑁(𝑟,
𝐻 (𝑧, 𝑓 (𝑧))

𝑓(𝑧)deg𝑓(𝐻)
)

≤ 𝜅𝑓 (𝐻) (𝑁 (𝑟 + 𝐶, 𝑓) + 𝑁(𝑟,
1

𝑓
)) + 𝑆 (𝑟, 𝑓)

≤ deg
𝑓
(𝐻) (𝑁 (𝑟 + 𝐶, 𝑓) + 𝑁(𝑟,

1

𝑓
)) + 𝑆 (𝑟, 𝑓) .

(87)

Therefore,

𝑇 (𝑟,𝐻 (𝑧, 𝑓 (𝑧)))

= 𝑚 (𝑟,𝐻 (𝑧, 𝑓 (𝑧))) + 𝑁 (𝑟,𝐻 (𝑧, 𝑓 (𝑧)))

≤ 𝑚(𝑟,
𝐻 (𝑧, 𝑓 (𝑧))

𝑓(𝑧)deg𝑓(𝐻)
) + 𝑚(𝑟, 𝑓(𝑧)

deg𝑓(𝐻))

+ 𝑁(𝑟,
𝐻 (𝑧, 𝑓 (𝑧))

𝑓(𝑧)deg𝑓(𝐻)
) + 𝑁(𝑟, 𝑓(𝑧)

deg𝑓(𝐻))

≤ deg
𝑓
(𝐻) (𝑁 (𝑟 + 𝐶, 𝑓) + 𝑁(𝑟,

1

𝑓
))

+ 𝑇 (𝑟, 𝑓(𝑧)
deg𝑓(𝐻)) + 𝑆 (𝑟, 𝑓)

≤ 3deg
𝑓
(𝐻) 𝑇 (𝑟 + 𝐶, 𝑓) + 𝑆 (𝑟, 𝑓)

(88)

for all 𝑟 outside of a possible exceptional set of finite
logarithmic measure. The remainder can be proven by a
similar method in Theorem 9. The proof of Theorem 14 is
completed.
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