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We first discuss the existence and uniqueness of weak solution for the obstacle problem of the nonhomogeneous 𝐴-harmonic
equation with variable exponent, and then we obtain the existence of the solutions of the equation 𝑑⋆𝐴(𝑥, 𝑑𝜔) = 𝐵(𝑥, 𝑑𝜔) in the
weighted variable exponent Sobolev space𝑊𝑝(𝑥)

𝑑
(Ω, Λ

𝑙

, 𝜇).

1. Introduction

In [1–5], the nonhomogeneous 𝐴-harmonic equation
𝑑
⋆

𝐴(𝑥, 𝑑𝜔) = 𝐵(𝑥, 𝑑𝜔) for differential forms has received
much investigation. In [6], the obstacle problem of the 𝐴-
harmonic equation for differential forms has been discussed.
However, most of these results are developed in the 𝐿𝑝(Ω, Λ𝑙)
space or𝑊1,𝑝(Ω, Λ𝑙) space. Meanwhile, in the past few years
the subject of variable exponent space has undergone a vast
development; see [7–11]. For example, [8–10] discuss the
weighted 𝐿𝑝(𝑥) and𝑊𝑘,𝑝(𝑥) spaces and the weak solution for
obstacle problem with variable growth has been studied in
[10, 11].

In this paper, we are interested in the following obstacle
problem:

∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑 (V − 𝑢) + 𝐵 (𝑥, 𝑑𝑢) ⋅ (V − 𝑢)) 𝑑𝑥 ≥ 0 (1)

for V belonging to

K
𝜓,𝜃
= {V ∈ 𝑊𝑝(𝑥)

𝑑
(Ω, Λ

𝑙

, 𝜇) : V ≥ 𝜓,

a.e. 𝑥 ∈ Ω, V − 𝜃 ∈ 𝑊𝑝(𝑥)
0𝑑

(Ω, Λ
𝑙

, 𝜇)} ,

(2)

where 𝜓(𝑥) = ∑𝜓
𝐼
(𝑥)𝑑𝑥

𝐼
∈ Λ
𝑙

(R𝑛), V(𝑥) = ∑ V
𝐼
(𝑥)𝑑𝑥

𝐼
∈

Λ
𝑙

(R𝑛), V
𝐼
, 𝜓
𝐼
: Ω → [−∞, +∞]; V ≥ 𝜓, a.e. 𝑥 ∈ Ω

means that, for any 𝐼, we have V
𝐼
≥ 𝜓
𝐼
, a.e. 𝑥 ∈ Ω; 𝜃 ∈

𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇), 𝑙 = 0, 1, . . . , 𝑛 − 1, and the variable exponent
𝑝(𝑥) ∈ P(Ω) satisfies

1 < 𝑝
−

≤ 𝑝 (𝑥) ≤ 𝑝
+

< ∞ for a.e. 𝑥 ∈ Ω. (3)

The operators 𝐴(𝑥, 𝜉) : Ω × Λ
𝑙

(R𝑛) → Λ
𝑙

(R) and
𝐵(𝑥, 𝜉) : Ω×Λ

𝑙

(R𝑛) → Λ
𝑙−1

(R) satisfy the following growth
conditions on a bounded domainΩ:

(H1) 𝐴(𝑥, 𝜉) and 𝐵(𝑥, 𝜉) are measurable for all 𝜉 with
respect to 𝑥 and continuous for a.e. 𝑥 ∈ Ω with
respect to 𝜉,

(H2) |𝐴(𝑥, 𝜉)| ≤ 𝐶
1
𝑤(𝑥)|𝜉|

𝑝(𝑥)−1,
(H3) 𝐴(𝑥, 𝜉) ⋅ 𝜉 ≥ 𝐶

2
𝑤(𝑥)|𝜉|

𝑝(𝑥),
(H4) |𝐵(𝑥, 𝜉)| ≤ 𝐶

3
𝑤(𝑥)|𝜉|

𝑝(𝑥)−1,
(H5) 𝐵(𝑥, 𝑑𝜉) ⋅ 𝜉 ≥ 𝐶

4
𝑤(𝑥)|𝜉|

𝑝(𝑥),
(H6) (𝐴(𝑥, 𝑑𝜉)−𝐴(𝑥, 𝑑𝜂))⋅(𝑑𝜉−𝑑𝜂)+(𝐵(𝑥, 𝑑𝜉)−𝐵(𝑥, 𝑑𝜂))⋅

(𝜉 − 𝜂) ≥ 0 for 𝜉 ̸= 𝜂,

where𝐶
1
, 𝐶
2
, 𝐶
3
, and 𝐶

4
are nonnegative constants. 𝑤(𝑥) ∈

𝐿
1

(Ω) nonnegative and 𝑤(𝑥)
1/(𝑝(𝑥)−1)

∈ 𝐿
1

(Ω). We will
discuss the existence and uniqueness of the solution 𝑢 ∈ K

𝜓,𝜃

for the abovementioned obstacle problem.
Now, we introduce the existing results and related defini-

tions.
Throughout this paper, we assume that Ω is a bounded

domain in R𝑛. Let Λ𝑙 = Λ
𝑙

(R𝑛) be the set of all 𝑙-forms in
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R𝑛. A differential 𝑙-form 𝑢(𝑥) is generated by {𝑑𝑥
𝑖1
∧ 𝑑𝑥
𝑖2
∧

⋅ ⋅ ⋅ ∧ 𝑑𝑥
𝑖𝑙
}, 𝑙 = 1, 2, . . . , 𝑛; that is, 𝑢(𝑥) = ∑

𝐼
𝑢
𝐼
(𝑥)𝑑𝑥

𝐼
=

∑𝑢
𝑖1,𝑖2,...,𝑖𝑙

(𝑥)𝑑𝑥
𝑖1
∧𝑑𝑥
𝑖2
∧⋅ ⋅ ⋅∧𝑑𝑥

𝑖𝑙
, where 𝑢

𝐼
(𝑥) is differential

function, 𝐼 = (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑙
), and 1 ≤ 𝑖

1
< 𝑖
2
< ⋅ ⋅ ⋅ <

𝑖
𝑙
≤ 𝑛. Let 𝐷󸀠(Ω, Λ𝑙) be the space of all differential 𝑙-

forms on Ω. For 𝛼(𝑥) = Σ𝛼
𝐼
(𝑥)𝑑𝑥

𝐼
∈ Λ
𝑙 and 𝛽(𝑥) =

Σ𝛽
𝐼
(𝑥)𝑑𝑥

𝐼
∈ Λ
𝑙, then the inner product is obtained by

𝛼 ⋅ 𝛽 = ⋆(𝛼 ∧ ⋆𝛽) = ∑
𝐼
𝛼
𝐼
(𝑥)𝛽
𝐼
(𝑥). We write |𝑢| = (𝑢 ⋅

𝑢)
1/2

= (∑
𝐼
|𝑢
𝐼
(𝑥)|
2

)
1/2. We denote the exterior derivative

by 𝑑𝑢 = ∑
𝑛

𝑖=1
∑
𝐼
(𝜕𝑢
𝐼
(𝑥)/𝜕𝑥

𝑖
)𝑑𝑥
𝐼
∧ 𝑑𝑥
𝑖
: 𝐷
󸀠

(Ω, Λ
𝑙

) →

𝐷
󸀠

(Ω, Λ
𝑙+1

) for 𝑙 = 0, 1, . . . , 𝑛 − 1. Its formal adjoint operator
𝑑
⋆

: 𝐷
󸀠

(Ω, Λ
𝑙+1

) → 𝐷
󸀠

(Ω, Λ
𝑙

) is given by 𝑑⋆ = (−1)𝑛𝑙+1⋆𝑑⋆,
𝑙 = 0, 1, 2, . . . , 𝑛 − 1; here ⋆ is the well-known Hodge star
operator. Denote the class of infinitely differential 𝑙-forms on
Ω by 𝐶∞(Ω, Λ𝑙). A differential 𝑙-form 𝑢 ∈ 𝐷

󸀠

(Ω, Λ
𝑙

) is called
a closed form if 𝑑𝑢 = 0 inΩ.

Next we will introduce some basic properties of weighted
variable exponent Lebesgue spaces 𝐿𝑝(𝑥)(Ω, 𝜇) and weighted
variable exponent Sobolev spaces 𝑊1,𝑝(𝑥)(Ω, 𝜇), and we
define P(Ω) to be the set of all n-dimensioned Lebesgue
measurable functions 𝑝 : Ω → [1,∞]. Functions 𝑝 ∈

P(Ω) are called variable exponents on Ω. We define 𝑝− :=
ess inf

𝑥∈Ω
𝑝(𝑥), 𝑝+ := ess sup

𝑥∈Ω
𝑝(𝑥). If 𝑝+ < ∞, then

we call 𝑝 a bounded variable exponent. If 𝑝 ∈ P(Ω), then
we define 𝑝󸀠 ∈ P(Ω) by (1/𝑝(𝑥)) + (1/𝑝󸀠(𝑥)) = 1, where
1/∞ := 0.The function𝑝󸀠 is called the dual variable exponent
of 𝑝. We denote 𝑤 as a weight if 𝑤 ∈ 𝐿

1

loc(R
𝑛

) and 𝑤 > 0

a.e.; also in general 𝑑𝜇 = 𝑤𝑑𝑥. From [7, 10], we know that
if 𝑝 ∈ P(Ω) satisfies (3), the weighted variable exponent
Lebesgue spaces 𝐿𝑝(𝑥)(Ω, 𝜇) = {𝑓 : ∫

Ω

|𝜆𝑓(𝑥)|
𝑝(𝑥)

𝑑𝜇 <

∞, 𝜆 > 0} with the norm ‖𝑓‖
𝐿
𝑝(𝑥)
(Ω,𝜇)

= inf{𝜆 > 0 :

∫
Ω

|𝑓(𝑥)/𝜆|
𝑝(𝑥)

𝑑𝜇 ≤ 1} and the weighted variable exponent
Sobolev spaces 𝑊1,𝑝(𝑥)(Ω, 𝜇) = {𝑓 ∈ 𝐿

𝑝(𝑥)

(Ω, 𝜇) : ∇𝑓 ∈

𝐿
𝑝(𝑥)

(Ω, 𝜇)} with the norm ‖𝑓‖
𝑊
1,𝑝(𝑥)
(Ω,𝜇)

= ‖𝑓‖
𝐿
𝑝(𝑥)
(Ω,𝜇)

+

‖∇𝑓‖
𝐿
𝑝(𝑥)
(Ω,𝜇)

are Banach space and reflexive and uniformly
convex. On the set of all differential forms onΩ, we define the
weighted variable exponent Lebesgue spaces of differential
𝑙-forms 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇) and the weighted variable exponent
Sobolev spaces of differential forms𝑊𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇).

Definition 1. We denote the weighted variable exponent
Lebesgue spaces of differential 𝑙-forms by 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇) =
{𝑢 = ∑

𝐼
𝑢
𝐼
(𝑥)𝑑𝑥

𝐼
∈ Λ
𝑙

: 𝑢
𝐼
(𝑥) ∈ 𝐿

𝑝(𝑥)

(Ω, 𝜇)} 𝑙 = 0, 1, 2, . . . , 𝑛

and we endow 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇) with the following norm:

‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
= inf {𝜆 > 0 : ∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇 ≤ 1} . (4)

And the spaces𝑊𝑝(𝑥)
𝑑

(Ω, Λ
𝑙

, 𝜇) = {𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω, Λ
𝑙

, 𝜇) : 𝑑𝑢 ∈

𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

, 𝜇)} with the norm

‖𝑢‖
𝑊

𝑝(𝑥)

𝑑
(Ω,Λ

l
,𝜇)

= ‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
+ ‖𝑑𝑢‖

𝐿
𝑝(𝑥)
(Ω,Λ
𝑙+1
,𝜇) (5)

are the weighted variable exponent Sobolev spaces of differ-
ential 𝑙-forms; 𝑙 = 0, 1, 2, . . . , 𝑛 − 1. 𝑊𝑝(𝑥)

0𝑑
(Ω, Λ
𝑙

, 𝜇) is the

completion of 𝐶∞
0
(Ω, Λ
𝑙

, 𝜇) in𝑊𝑝(𝑥)
𝑑

(Ω, Λ
𝑙

, 𝜇). We need the
following Hölder inequalities; see [7, 10].

Proposition 2. Let 𝑝, 𝑞 ∈ P(Ω) be such that 1 = (1/𝑝(𝑥)) +
(1/𝑞(𝑥)) for 𝜇-almost every 𝑥 ∈ Ω. Then

∫
Ω

󵄨󵄨󵄨󵄨𝑓𝑔
󵄨󵄨󵄨󵄨 𝑑𝜇 ≤ ∫

Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇 + ∫
Ω

1

𝑞 (𝑥)

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨

𝑞(𝑥)

𝑑𝜇, (6)

∫
Ω

󵄨󵄨󵄨󵄨𝑓𝑔
󵄨󵄨󵄨󵄨 𝑑𝜇 ≤ ((

1

𝑝
)

+

+ (
1

𝑞
)

+

)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(Ω,𝜇)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞(𝑥)(Ω,𝜇)

,

(7)

for all 𝑓 ∈ 𝐿𝑝(𝑥)(Ω, 𝜇) and 𝑔 ∈ 𝐿𝑞(𝑥)(Ω, 𝜇).

Lemma 3 (see [7]). Let (𝐷,∑, 𝜇) be a 𝜎-finite, complete
measure space; if 𝑓 ∈ 𝐿

𝑝(⋅)

(𝐷, 𝜇), 𝑔 ∈ 𝐿
0

(𝐷, 𝜇), and 0 ≤

|𝑔| ≤ |𝑓| 𝜇-almost everywhere, then 𝑔 ∈ 𝐿
𝑝(⋅)

(𝐷, 𝜇) and
‖𝑔‖
𝐿
𝑝(𝑥)
(𝐷,𝜇)

≤ ‖𝑓‖
𝐿
𝑝(𝑥)
(𝐷,𝜇)

.

By the inequality (∑
𝑛

𝑖=1
(𝑎
𝑖
)
2

)
1/2

≤ ∑
𝑛

𝑖=1
𝑎
𝑖

≤

𝑛
1/2

(∑
𝑛

𝑖=1
(𝑎
𝑖
)
2

)
1/2 for any 𝑎

𝑖
≥ 0, using Lemma 3, we

can easily have the following lemma.

Lemma 4. If 𝑢 = Σ
𝐼
𝑢
𝐼
(𝑥)𝑑𝑥

𝐼
∈ 𝐷
󸀠

(Ω, Λ
𝑙

) and |𝑢| =

(∑
𝐼
|𝑢
𝐼
|
2

)
1/2, then 𝑢 ∈ 𝐿

𝑝(𝑥)

(Ω, Λ
𝑙

, 𝜇) and |𝑢| ∈ 𝐿
𝑝(𝑥)

(Ω, 𝜇)

are equivalent, and ‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
= ‖|𝑢|‖

𝐿
𝑝(𝑥)
(Ω,𝜇)

.

2. Main Results

In this section, we will obtain the existence and uniqueness of
weak solution for obstacle problem of the nonhomogeneous
𝐴-harmonic equation in space𝑊𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇).

Theorem 5. Suppose K
𝜓,𝜃

is not empty, under conditions
(H1)–(H6), and there exists a unique solution 𝑢 to the obstacle
problem (1)-(2). That is, there is a differential form 𝑢 in K

𝜓,𝜃

such that

∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑 (V − 𝑢) + 𝐵 (𝑥, 𝑑𝑢) ⋅ (V − 𝑢)) 𝑑𝑥 ≥ 0, (8)

whenever V ∈ K
𝜓,𝜃

.

WededuceTheorem 5 from a proposition of Kinderlehrer
and Stampacchia.

Proposition 6 (see [12]). Let 𝐾 be a nonempty closed convex
subset of 𝑋 and let A : 𝐾 → 𝑋

󸀠 be monotone, coercive, and
weakly continuous on 𝐾. Then there exists an element 𝑢 in 𝐾
such that ⟨A𝑢, V − 𝑢⟩ ≥ 0 whenever V ∈ 𝐾.

Now let𝑋 = 𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇) and ⟨⋅, ⋅⟩ be the usual pairing
between 𝑋 and 𝑋󸀠, ⟨𝑓, 𝑔⟩ = ∫

Ω

𝑓 ⋅ 𝑔𝑑𝜇, where 𝑔 is in 𝑋 and
𝑓 in𝑋󸀠 = 𝑊𝑝

󸀠
(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇). We will takeK
𝜓,𝜃

as𝐾. We define
a mappingA : K

𝜓,𝜃
→ 𝑋
󸀠 by

⟨AV, 𝑢⟩ = ∫
Ω

(𝐴 (𝑥, 𝑑V) ⋅ 𝑑𝑢 + 𝐵 (𝑥, 𝑑V) ⋅ 𝑢) 𝑑𝑥 (9)

for 𝑢 ∈ 𝑊𝑝(𝑥)
𝑑

(Ω, Λ
𝑙

, 𝜇).
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Lemma 7. If 𝑝(𝑥) satisfies (3), then spaces 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇) and
𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇) are complete and convex.

Proof. From [7], we know that if 𝑝 satisfies (3) and
𝑤(𝑥)
1/(𝑝(𝑥)−1)

∈ 𝐿
1

(Ω), then let 𝐿𝑝(𝑥)(Ω, 𝜇) be Banach space
and uniformly convex. If 𝜔

1
and 𝜔

2
are two 𝑙-forms: 𝜔

1
=

∑
𝐼
𝑎
𝐼
𝑑𝑥
𝐼
and 𝜔

2
= ∑
𝐼
𝑏
𝐼
𝑑𝑥
𝐼
, we can easily have 𝜔

1
+ 𝜔
2
=

∑
𝐼
(𝑎
𝐼
+ 𝑏
𝐼
)𝑑𝑥
𝐼
and 𝑑(𝜔

1
+ 𝜔
2
) = 𝑑𝜔

1
+ 𝑑𝜔
2
, so we can

immediately obtain the convexity of spaces 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇)
and𝑊𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇).
Let 𝑢

𝑗
= ∑
𝐼
𝑢
𝑗𝐼
𝑑𝑥
𝐼
∈ 𝐿
𝑝(𝑥)

(Ω, Λ
𝑙

, 𝜇) be a Cauchy
sequence in𝑊𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇). Then for any 𝐼, 𝑢
𝑗𝐼
(𝑥) converges

in 𝐿𝑝(𝑥)(Ω, 𝜇). Suppose that 𝑢
𝑗𝐼
(𝑥) → 𝑢

𝐼
(𝑥) in 𝐿𝑝(𝑥)(Ω, 𝜇).

Now let 𝑢 = ∑
𝐼
𝑢
𝐼
𝑑𝑥
𝐼
∈ 𝐿
𝑝(𝑥)

(Ω, Λ
𝑙

, 𝜇), we have

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
− 𝑢

󵄨󵄨󵄨󵄨󵄨
= (∑

𝐼

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗𝐼
− 𝑢
𝐼

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

≤ ∑

𝐼

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗𝐼
− 𝑢
𝐼

󵄨󵄨󵄨󵄨󵄨
, (10)

using Lemmas 3 and 4, and we know the sequence 𝑢
𝑗

converges to 𝑢 in 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇).
For the sequence {𝑑𝑢

𝑗
}, we suppose 𝑑𝑢

𝑗
→ V in

𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

, 𝜇), and then V ∈ 𝐿𝑝(𝑥)(Ω, Λ𝑙+1, 𝜇). So (𝑢
𝑗
, 𝑑𝑢
𝑗
)

converges to (𝑢, V) in the normed space 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇) ×
𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

, 𝜇). From 𝑑𝑢
𝑗
− 𝑑𝑢 = ∑

𝐼
(𝑑𝑢
𝑗𝐼
− 𝑑𝑢
𝐼
) ∧ 𝑑𝑥

𝐼
,

we have

󵄨󵄨󵄨󵄨󵄨
𝑑𝑢
𝑗
− 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝐼

𝑛

∑

𝑖=1

𝜕𝑢
𝑗𝐼
− 𝜕𝑢
𝐼

𝜕𝑥
𝑖

𝑑𝑥
𝑖
∧ 𝑑𝑥
𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (∑

𝐼

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑗𝐼
− 𝜕𝑢
𝐼

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)

1/2

≤ ∑

𝐼

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑗𝐼
− 𝜕𝑢
𝐼

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑

𝐼

𝑛
1/2

(

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑗𝐼
− 𝜕𝑢
𝐼

𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)

1/2

= 𝑛
1/2

∑

𝐼

󵄨󵄨󵄨󵄨󵄨
∇𝑢
𝑗𝐼
− ∇𝑢
𝐼

󵄨󵄨󵄨󵄨󵄨
.

(11)

In view of [10], for any 𝐼, we know that 𝑢
𝑗𝐼

→ 𝑢
𝐼

in 𝐿
𝑝(𝑥)

(Ω, 𝜇) and ∇𝑢
𝑗𝐼

→ V
𝐼
in 𝐿
𝑝(𝑥)

(Ω, 𝜇), and then
∇𝑢
𝐼
= V
𝐼
∈ 𝐿
𝑝(𝑥)

(Ω, 𝜇). Using Lemmas 3 and 4, we get
the sequence 𝑑𝑢

𝑗
that converges to 𝑑𝑢 in 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇); it

follows that V = 𝑑𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

, 𝜇). So, we prove
𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇) is a closed subspace of 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇) ×

𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

, 𝜇). This ends the proof of Lemma 7.

Using Lemma 7, we can immediately obtain the following
lemma.

Lemma 8. K
𝜓,𝜃

is a closed convex set.

Lemma 9. For each V ∈ K
𝜓,𝜃
,AV ∈ [𝑊𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇)]
󸀠

.

Proof. Using Hölder inequality (7) with 1 = (1/𝑝(𝑥)) +

(1/𝑝
󸀠

(𝑥)) and (H2), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝐴 (𝑥, V (𝑥)) ⋅ 𝑢 (𝑥) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
1
∫
Ω

|V (𝑥)|𝑝(𝑥)−1 |𝑢 (𝑥)| 𝑤 (𝑥) 𝑑𝑥

≤ 𝐶
1
(
1

𝑝−
+

1

𝑝󸀠−
)
󵄩󵄩󵄩󵄩󵄩
|V (𝑥)|𝑝(𝑥)−1

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(𝑥)
(Ω,Λ
𝑙
,𝜇)

‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)

≤ 2𝐶
1
‖V (𝑥)‖𝑝(𝑥)−1

𝐿
𝑝(𝑥)(Ω,Λ𝑙,𝜇)

‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
.

(12)

Similarly, for the operator 𝐵(𝑥, 𝜉), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝐵 (𝑥, V (𝑥)) ⋅ 𝑢 (𝑥) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝐶
3
‖V(𝑥)‖𝑝(𝑥)−1

𝐿
𝑝(𝑥)(Ω,Λ𝑙,𝜇)

‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
.

(13)

Using (12) and (13) we can easily prove

|⟨AV, 𝑢⟩|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

(𝐴 (𝑥, 𝑑V) ⋅ 𝑑𝑢 + 𝐵 (𝑥, 𝑑V) ⋅ 𝑢) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝐶
1
‖𝑑V‖𝑝(𝑥)−1
𝐿
𝑝(𝑥)(Ω,Λ𝑙+1,𝜇)

‖𝑑𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙+1
,𝜇)

+ 2𝐶
3
‖𝑑V‖𝑝(𝑥)−1
𝐿
𝑝(𝑥)(Ω,Λ𝑙+1,𝜇)

‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)

≤ 𝐶
5
‖𝑑V‖𝑝(𝑥)−1
𝐿
𝑝(𝑥)(Ω,Λ𝑙+1,𝜇)

(‖𝑑𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙+1
,𝜇)
+ ‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
)

≤ 𝐶
5
‖V (𝑥)‖𝑝(𝑥)−1

𝑊

𝑝(𝑥)

𝑑 (Ω,Λ𝑙,𝜇)
‖𝑢‖
𝑊

𝑝(𝑥)

𝑑
(Ω,Λ
𝑙
,𝜇)

.

(14)

So we get AV ∈ [𝑊𝑝(𝑥)
𝑑

(Ω, Λ
𝑙

, 𝜇)]
󸀠

, whenever V ∈ K
𝜓,𝜃

, 𝑢 ∈
𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙

, 𝜇), and 𝐶
1
and 𝐶

3
are constants fixed to (H2)

and (H4).

Lemma 10. A is monotone and coercive onK
𝜓,𝜃

.
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Proof. It follows from (H6) thatA is monotone. To show that
A is coercive onK

𝜓,𝜃
, fix 𝜑 ∈ K

𝜓,𝜃
and using the conditions

(H2)–(H5), (12), (13), and (6), then

⟨A𝑢 −A𝜑, 𝑢 − 𝜑⟩

= ∫
Ω

((𝐴 (𝑥, 𝑑𝑢) − 𝐴 (𝑥, 𝑑𝜑)) ⋅ (𝑑𝑢 − 𝑑𝜑)

+ (𝐵 (𝑥, 𝑑𝑢) − 𝐵 (𝑥, 𝑑𝜑)) ⋅ (𝑢 − 𝜑)) 𝑑𝑥

= ∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑𝑢) 𝑑𝑥 + ∫
Ω

(𝐴 (𝑥, 𝑑𝜑) ⋅ 𝑑𝜑) 𝑑𝑥

− ∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑𝜑) 𝑑𝑥 − ∫
Ω

(𝐴 (𝑥, 𝑑𝜑) ⋅ 𝑑𝑢) 𝑑𝑥

+ ∫
Ω

(𝐵 (𝑥, 𝑑𝑢) ⋅ 𝑢) 𝑑𝑥 + ∫
Ω

(𝐵 (𝑥, 𝑑𝜑) ⋅ 𝜑) 𝑑𝑥

− ∫
Ω

(𝐵 (𝑥, 𝑑𝑢) ⋅ 𝜑) 𝑑𝑥 − ∫
Ω

(𝐵 (𝑥, 𝑑𝜑) ⋅ 𝑢) 𝑑𝑥

≥ 𝐶
2
(∫
Ω

|𝑑𝑢|
𝑝(𝑥)

𝑤 (𝑥) 𝑑𝑥 + ∫
Ω

󵄨󵄨󵄨󵄨𝑑𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑤 (𝑥) 𝑑𝑥)

− 𝐶
1
∫
Ω

|𝑑𝑢|
𝑝(𝑥)−1 󵄨󵄨󵄨󵄨𝑑𝜑

󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥 − 2𝐶1
󵄩󵄩󵄩󵄩𝑑𝜑

󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

‖𝑑𝑢‖

+ 𝐶
4
(∫
Ω

|𝑢|
𝑝(𝑥)

𝑤 (𝑥) 𝑑𝑥 + ∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑤 (𝑥) 𝑑𝑥)

− 𝐶
3
∫
Ω

|𝑑𝑢|
𝑝(𝑥)−1 󵄨󵄨󵄨󵄨𝜑

󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥 − 2𝐶3
󵄩󵄩󵄩󵄩𝑑𝜑

󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

‖𝑢‖

≥ 𝐶
2
∫
Ω

|𝑑𝑢|
𝑝(𝑥)

𝑑𝜇 − 𝐶
1
∫
Ω

1

𝑝󸀠 (𝑥)
𝜀|𝑑𝑢|
𝑝(𝑥)

𝑑𝜇

− 𝐶
1
∫
Ω

1

𝑝 (𝑥)
𝜀
1−𝑝(𝑥)󵄨󵄨󵄨󵄨𝑑𝜑

󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇

− 𝐶
3
∫
Ω

1

𝑝󸀠 (𝑥)
𝜀|𝑑𝑢|
𝑝(𝑥)

𝑑𝜇

− 𝐶
3
∫
Ω

1

𝑝 (𝑥)
𝜀
1−𝑝(𝑥)󵄨󵄨󵄨󵄨𝜑

󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇 + 𝐶
4
∫
Ω

|𝑢|
𝑝(𝑥)

𝑑𝜇

− 2max (𝐶
1
, 𝐶
3
)
󵄩󵄩󵄩󵄩𝑑𝜑

󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

(‖𝑑𝑢‖ + ‖𝑢‖)

+ 𝐶 (𝜑, 𝑝 (𝑥) , 𝐶
2
, 𝐶
4
) ,

(15)

where ‖ ⋅ ‖ is the 𝐿
𝑝(𝑥)

(Ω, Λ
𝑙

, 𝜇) norm; taking 𝜀 =

𝐶
2
(𝑝
󸀠

)
−

/2(𝐶
1
+ 𝐶
3
), we have

⟨A𝑢 −A𝜑, 𝑢 − 𝜑⟩

≥
𝐶
2

2
∫
Ω

|𝑑𝑢|
𝑝(𝑥)

𝑑𝜇 + 𝐶
4
∫
Ω

|𝑢|
𝑝(𝑥)

𝑑𝜇

− 𝐶
5

󵄩󵄩󵄩󵄩𝑑𝜑
󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

(‖𝑑𝑢‖ + ‖𝑢‖) + 𝐶
6

≥
𝐶
2

2
∫
Ω

(
󵄨󵄨󵄨󵄨𝑑𝑢 − 𝑑𝜑

󵄨󵄨󵄨󵄨

𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝑑𝜑

󵄨󵄨󵄨󵄨

𝑝(𝑥)

) 𝑑𝜇

+ 𝐶
4
∫
Ω

(
󵄨󵄨󵄨󵄨𝑢 − 𝜑

󵄨󵄨󵄨󵄨

𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

) 𝑑𝜇

− 𝐶
5

󵄩󵄩󵄩󵄩𝑑𝜑
󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

(
󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑑𝜑

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩) + 𝐶6

≥ 𝐶
7
(∫
Ω

󵄨󵄨󵄨󵄨𝑑𝑢 − 𝑑𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇 + ∫
Ω

󵄨󵄨󵄨󵄨𝑢 − 𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇)

− 𝐶
5

󵄩󵄩󵄩󵄩𝑑𝜑
󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

(
󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩) + 𝐶8.

(16)

Let 𝜌
𝑝(⋅)
(𝑡) = ∫

Ω

|𝑡|
𝑝(𝑥)

𝑑𝜇; from [7, pages 24, 73], we know
that if the variable exponent 𝑝 ∈ P(Ω) satisfied 𝑝+ < ∞,
then

min {(󰜚
𝑝(⋅)
(𝑓))
1/𝑝
−

, (󰜚
𝑝(⋅)
(𝑓))
1/𝑝
+

}

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(𝜔,𝜇)

≤ max {(󰜚
𝑝(⋅)
(𝑓))
1/𝑝
−

, (󰜚
𝑝(⋅)
(𝑓))
1/𝑝
+

}

(17)

holds. Whenever ‖𝑢‖
𝑊

𝑝(𝑥)

𝑑
(Ω,Λ
𝑙
,𝜇)

→ ∞, we have
‖𝑑𝑢 − 𝑑𝜑‖

𝐿
𝑝(𝑥)
(Ω,Λ
𝑙+1
,𝜇)

> 1 or ‖𝑢 − 𝜑‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)

> 1,
and using (17) we have

∫
Ω

󵄨󵄨󵄨󵄨𝑑𝑢 − 𝑑𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇 + ∫
Ω

󵄨󵄨󵄨󵄨𝑢 − 𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇

≥ max {󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑
󵄩󵄩󵄩󵄩

𝑝
−

,
󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩

𝑝
+

}

+max {󵄩󵄩󵄩󵄩𝑢 − 𝜑
󵄩󵄩󵄩󵄩

𝑝
−

,
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩

𝑝
+

} .

(18)

Substituting (18) in (16) we obtain

⟨A𝑢 −A𝜑, 𝑢 − 𝜑⟩

≥ 𝐶
7
(∫
Ω

󵄨󵄨󵄨󵄨𝑑𝑢 − 𝑑𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇 + ∫
Ω

󵄨󵄨󵄨󵄨𝑢 − 𝜑
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝜇)

− 𝐶
5

󵄩󵄩󵄩󵄩𝑑𝜑
󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

(
󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩) + 𝐶8

≥ 𝐶
9
(max {󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩

𝑝
−

,
󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩

𝑝
+

}

+max {󵄩󵄩󵄩󵄩𝑢 − 𝜑
󵄩󵄩󵄩󵄩

𝑝
−

,
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩

𝑝
+

})

− 𝐶
5

󵄩󵄩󵄩󵄩𝑑𝜑
󵄩󵄩󵄩󵄩

𝑝(𝑥)−1

(
󵄩󵄩󵄩󵄩𝑑𝑢 − 𝑑𝜑

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩) + 𝐶8.

(19)

Then it is easy to obtain

⟨A𝑢 −A𝜑, 𝑢 − 𝜑⟩
󵄩󵄩󵄩󵄩𝑢 − 𝜑

󵄩󵄩󵄩󵄩𝑊
𝑝(𝑥)

𝑑
(Ω,Λ
𝑙
,𝜇)

󳨀→ ∞ (20)

as ‖𝑢 − 𝜑‖
𝑊

𝑝(𝑥)

𝑑
(Ω,Λ
𝑙
,𝜇)

→ ∞. It follows that A is coercive on
K
𝜓,𝜃

. This completes the proof of Lemma 10.
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Lemma 11. A is weakly continuous onK
𝜓,𝜃

.

Proof. Let 𝑢
𝑖
∈ K
𝜓,𝜃

be a sequence that converges to an
element 𝑢 ∈ K

𝜓,𝜃
in 𝑊𝑝(𝑥)
𝑑

(Ω, Λ
𝑙

, 𝜇). Pick a subsequence
𝑢
𝑖𝑗

such that 𝑢
𝑖𝑗

→ 𝑢 a.e. in Ω. Since the mapping
𝜉 → 𝐴(𝑥, 𝜉) and 𝜉 → 𝐵(𝑥, 𝜉) are continuous for a.e. 𝑥 in
Ω, we have 𝐴(𝑥, 𝑢

𝑖𝑗
(𝑥))𝑤

−1/𝑝(𝑥)

→ 𝐴(𝑥, 𝑢(𝑥))𝑤
−1/𝑝(𝑥)

a.e. in Ω. Under the conditions (H2) and (H4), we
know that 𝐴(𝑥, 𝑑𝑢

𝑖𝑗
)𝑤
−1/𝑝(𝑥) and 𝐵(𝑥, 𝑑𝑢

𝑖𝑗
)𝑤
−1/𝑝(𝑥)

are uniformly bounded in 𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

), and we have
𝐴(𝑥, 𝑑𝑢

𝑖𝑗
)𝑤
−1/𝑝(𝑥)

→ 𝐴(𝑥, 𝑑𝑢)𝑤
−1/𝑝(𝑥) weakly in

𝐿
𝑝(𝑥)

(Ω, Λ
𝑙+1

, 𝜇) and 𝐵(𝑥, 𝑑𝑢
𝑖𝑗
)𝑤
−1/𝑝(𝑥)

→ 𝐵(𝑥, 𝑑𝑢
𝑖𝑗
)𝑤
−1/𝑝(𝑥)

weakly in 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇).
Since the weak limit is independent of the choice of the

subsequence, it follows that

𝐴 (𝑥, 𝑑𝑢
𝑖
) 𝑤
−1/𝑝(𝑥)

󳨀→ 𝐴 (𝑥, 𝑑𝑢)𝑤
−1/𝑝(𝑥)

,

𝐵 (𝑥, 𝑑𝑢
𝑖
) 𝑤
−1/𝑝(𝑥)

󳨀→ 𝐵 (𝑥, 𝑑𝑢)𝑤
−1/𝑝(𝑥)

(21)

for all 𝑢 ∈ 𝐿𝑝(𝑥)(Ω, Λ𝑙, 𝜇), 𝑑𝑢𝑤1/𝑝(𝑥) ∈ 𝐿𝑝(𝑥)(Ω, Λ𝑙+1).
Then we have

⟨A𝑢
𝑖
, V⟩

= ∫
Ω

(𝐴 (𝑥, 𝑑𝑢
𝑖
) 𝑤
−1/𝑝(𝑥)

⋅ 𝑑V𝑤1/𝑝(𝑥)) 𝑑𝑥

+ ∫
Ω

(𝐵 (𝑥, 𝑑𝑢
𝑖
) 𝑤
−1/𝑝(𝑥)

⋅ V𝑤1/𝑝(𝑥)) 𝑑𝑥

󳨀→ ∫
Ω

(𝐴 (𝑥, 𝑑𝑢)𝑤
−1/𝑝(𝑥)

⋅ 𝑑V𝑤1/𝑝(𝑥)) 𝑑𝑥

+ ∫
Ω

(𝐵 (𝑥, 𝑑𝑢)𝑤
−1/𝑝(𝑥)

⋅ V𝑤1/𝑝(𝑥)) 𝑑𝑥 = ⟨A𝑢, V⟩ .

(22)

Hence A is weakly continuous on K
𝜓,𝜃

. This ends the proof
of Lemma 11.

Proof of Theorem 5. We can apply Proposition 6 and the
above lemmas to obtain the existence. If there are two weak
solutions 𝑢

1
, 𝑢
2
∈ K
𝜓,𝜃

to obstacle problem (1)-(2), then we
have

∫
Ω

(𝐴 (𝑥, 𝑑𝑢
1
) ⋅ 𝑑 (𝑢

2
− 𝑢
1
) + 𝐵 (𝑥, 𝑑𝑢

1
) ⋅ (𝑢
2
− 𝑢
1
)) 𝑑𝑥 ≥ 0,

∫
Ω

(𝐴 (𝑥, 𝑑𝑢
2
) ⋅ 𝑑 (𝑢

1
− 𝑢
2
) + 𝐵 (𝑥, 𝑑𝑢

2
) ⋅ (𝑢
1
− 𝑢
2
)) 𝑑𝑥 ≥ 0,

(23)

so

∫
Ω

((𝐴 (𝑥, 𝑑𝑢
2
) − 𝐴 (𝑥, 𝑑𝑢

1
)) ⋅ 𝑑 (𝑢

2
− 𝑢
1
)

+ (𝐵 (𝑥, 𝑑𝑢
2
) − 𝐵 (𝑥, 𝑑𝑢

1
)) ⋅ (𝑢

2
− 𝑢
1
)) 𝑑𝑥 ≤ 0.

(24)

In view of (H6), we can further infer that

∫
Ω

((𝐴 (𝑥, 𝑑𝑢
2
) − 𝐴 (𝑥, 𝑑𝑢

1
)) ⋅ 𝑑 (𝑢

2
− 𝑢
1
)

+ (𝐵 (𝑥, 𝑑𝑢
2
) − 𝐵 (𝑥, 𝑑𝑢

1
))

⋅ (𝑢
2
− 𝑢
1
)) 𝑑𝑥 = 0 a.e. on Ω,

(25)

which means that 𝑢
1
= 𝑢
2
a.e. on Ω, and now we complete

the proof.

Corollary 12. Let Ω be a bounded domain and 𝜃 ∈

𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙−1

, 𝜇). Under the conditions (H1)–(H6), there is
a differential form 𝑢 ∈ 𝑊

𝑝(𝑥)

𝑑
(Ω, Λ
𝑙−1

, 𝜇) with 𝑢 − 𝜃 ∈

𝑊
𝑝(𝑥)

𝑑
(Ω, Λ
𝑙−1

, 𝜇) such that

𝑑
⋆

𝐴 (𝑥, 𝑑𝑢) = 𝐵 (𝑥, 𝑑𝑢) , weakly in Ω; (26)

that is, ∫
Ω

(𝐴(𝑥, 𝑑𝑢) ⋅ 𝑑𝜑 + 𝐵(𝑥, 𝑑𝑢) ⋅ 𝜑)𝑑𝑥 = 0, whenever 𝜑 ∈
𝑊
𝑝(𝑥)

0𝑑
(Ω, Λ
𝑙−1

, 𝜇), 𝑙 = 1, 2, . . . , 𝑛.

Proof. Choose𝜓
𝐼
≡ −∞ and let𝑢 be the solution to the obsta-

cle problem (1)-(2) in K
𝜓,𝜃

. For any 𝜑 ∈ 𝑊
𝑝(𝑥)

0𝑑
(Ω, Λ
𝑙−1

, 𝜇),
since 𝑢 + 𝜑 and 𝑢 − 𝜑 both belong toK

𝜓,𝜃
, we have

−(∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑𝜑 + 𝐵 (𝑥, 𝑑𝑢) ⋅ 𝜑) 𝑑𝑥) ≥ 0,

∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑𝜑 + 𝐵 (𝑥, 𝑑𝑢) ⋅ 𝜑) 𝑑𝑥 ≥ 0.

(27)

Thus

∫
Ω

(𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑𝜑 + 𝐵 (𝑥, 𝑑𝑢) ⋅ 𝜑) 𝑑𝑥 = 0, (28)

as desired.

Remark 13. If 𝑝(𝑥) = 𝑝, then ‖𝑢‖
𝐿
𝑝(𝑥)
(Ω,Λ
𝑙
,𝜇)
= ‖𝑢‖

𝐿
𝑝
(Ω,Λ
𝑙
,𝜇)
=

‖𝑢‖
𝑝,Ω,𝜇

= (∫
Ω

|𝑢|
𝑝

𝑑𝜇)
1/𝑝 and the Luxemburg norm reduces

to the 𝐿𝑝 norm. So (26) is the extension of the equation in
[2–5].

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. P. Agarwal and S. Ding, “Advances in differential forms
and the 𝐴-harmonic equation,” Mathematical and Computer
Modelling, vol. 37, no. 12-13, pp. 1393–1426, 2003.

[2] S. Ding, “Two-weight Caccioppoli inequalities for solutions
of nonhomogeneous 𝐴-harmonic equations on Riemannian
manifolds,” Proceedings of the American Mathematical Society,
vol. 132, no. 8, pp. 2367–2375, 2004.

[3] S. Ding and C. A. Nolder, “Weighted Poincaré inequalities
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