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We study elliptic problems of Kirchhoff type in QO ¢ RN (N > 3). Using variational tools, we establish the existence of at least two

nontrivial and nonnegative solutions.

1. Introduction and Preliminaries

In this paper, we are concerned with the following problem:
- (al +b <J-Q [Vul® + a (x) |u|2) dx) (Au+ a (x)u)
= F, (x,u,v) + Ab () [uT?u  inQ,
- <a2 +0b, (JQ [Vv]> + a (x) |v|2) dx) (Av+a(x)v) @

=F, (%, u,v) + puc (x) [v]T%v inQ,

u=v=0 on 0Q,

where O ¢ RY (N > 3) is a bounded domain with the
smooth boundary 0Q such that 0 € Q, Au = div(Vu) is the
Laplacian operator, 1 < g < 2, A,u > 0,a;,b;, > 0 (i = 1,2),
and a,b,c € C(Q,R"), the function F € C}(Q x (R, R"),
is positively homogeneous of degree « = 4N/(N - 2)
which is the Sobolev critical exponent; that is, F(x, tu,tv) =
t*F(x,u,v), (t > 0) holds for all (x,u,v) € Q x (R")?
(F,F,) =VF.

In recent years, there have been many papers concerned
with the existence of the positive solutions for Kirchhoff
equation

M (L Vil dx> Au=Af (x,u) inQ o

u=Au=0 on o0Q,

which is related to the stationary analogue of the Kirchhoff
equation

u, — M (L |Vu|2 dx) Au = f(x,u), (3)

where M(s) = a + bs, a,b > 0. It was proposed by Kirchhoff
[1] as an extension of the classical D’Alembert wave equation
for free vibrations of elastic strings.

Some interesting studies on these problems by variational
methods can be found in [2-6]. As for perturbed fourth-
order Kirchhoft-type elliptic problems, in [7] the following
equation,

p-1
A (lAul‘D_2 Au) - [M (J;; [Vul? dx)] Aju+p [ulPu

=Af (x,u) in Q

u=Au=0 on 0Q,

(4)

where p > max{L,N/2}, A > 0, f : QxR — Ris
an Ll-Carathéodory function, and M : [0, +co[— R is
a continuous function, has been investigated. The authors
proved (4) has multiple nontrivial weak solutions.
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In [8] the authors established the existence of a weak
solution for the following system equation:

_ [Ml (JQ IVul? dx>]p71 Ayu=fuv)+p(x) inQ

_[qun |Vv|de>]p_lApv:f(u,v)+p2 (x) inQ

ou ov
—==—=0 20,
o~ on on

(5)

where M, (t), M, (t) > m, > 0.

Motivated by the results of the above cited papers, we will
attempt to treat problem (1) and extend the results for our
problem.

In this paper we make the following assumptions.

Let S be the best Sobolev embedding constant defined by

Jo (IVul? + a (x) [ul?) dx

(fo )™

and let |Q] be the Lebesgue measure of ; ||, denotes the
L®(Q) norm, § = min{b,, b,}, and

C(q.N,K,S,1Ql,a,,a,)

S= in
ueW,? (Q)\{0}

(6)

Aax—2) §4/2 (A (2 _ q) §*/2 >(2—q)/(<x—2)
= (“ B q) IQl(a—q)/a K ((X _ q) > (7)

C, = (g)C(q,N,K,S,lm,al,az),

where A = min{a,, a,}.
Also the following hold:

(FHF : OxR"xR" — R"isa C! function and
F(x,tu, tv) = t*F(x,u, v),

(F2) F(x,u,0) = F(x,0,v) = F,(x,u,0) = F,(x,0,v) =0
where u,v € R,

(F3) F,(x,u,v), F,(x,u,v) are strictly increasing function
about u, vforallu > 0,v > 0.

In addition, using assumption (F1), we have the so-called
Euler identity

(u,v) - VF (x,u,v) = aF (x,u,v) (8)

and, for a positive constant K,

af2

F(x,u,v) <K (|u|2 + |v|2) 9

Let WOI’Z(Q) be the completion of C;°(€2) with respect to the
norm (IQ |Vu|2)1/2.
It is easy to show that, for every u € W,**(Q), the above

norm is equivalent with [u| = (JQ |Vul* + a(x)|u|2)1/2.
Problem (1) is posed in the framework of the Sobolev space

E:{(u, v e (W2 @) | Jﬂa(x) (jul® + [v?) dx < +oo},
(10)
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with the standard norm

G, V)l

= (], (wu +a o) dx (1

+ L (9% + a (x) |oP) dx>1/2 .

We will look for solutions of (1) by finding critical points of
the energy functional J, , : E — R given by

a, 2, B 2 b 4
wv)= —lul|l"+=|vI"+ = u
Jou W v) 2|| | 2I| [ 4I| l

2= [ Pl 2K (0,
(12

where K, , : E — R is the functional defined by
K, = J;) (Ab () [ul? + pe (x) [v|T) dx. (13)

It is well known that the functional J, , € C'(E,R). For any
(@1, 9,) € E, there holds

<]/,W (u,v), (u, v)>
- (“1 th (L (IVul® +a (x) |u|2)dx))

X (L (VuVe, +a(x)ugp,) dx)

+ <a2 +b, (JQ (|V1/|2 +a(x) |v|2) dx))

x JQ (VvVe, +a(x) ugp,) dx)

- é L (F, (x,u,v) @, + F, (x,u,v) @,) dx

-2 J b (x) |u|? up,dx — j ¢ (x) V|17 vg,dx.
Q Q
(14)
Consider the Nehari manifold

Ny, = {@v) € EN{0,0} (T}, (w,v), (w,v)) =0} (15)

Note that (u,v) € N P if and only if

ay |ull® + a, IV + by lull* + b, |Iv]* - j F (x,u,v) dx
o (16)

- KA’.‘" (u, V) =0.

So N, , contains all nontrivial weak solutions of (1).
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Define (D/W(u, y) = U/’\,.u(”’ v), (u, v)). Then, for (u,v) €
Ny

<CD1W (u,v), (u, v)>
= 2ay |ul® + 2a, |IvI* + 4b; [lull*

+ 4b, ||v||4 -« J F(x,u,v)dx - qKy, (u,v)
Q

=2b, |lull* + 2b, |V|* - (« - 2) jQ F (x,u,v)dx
-(q-2)K,, (u,v)
= —2a, |lull® - 2a, |Iv|* - (& - 4) L F (x,u,v)dx
- (g-4) Ky, (w,v)
=Q2-a) (ay ul® +a, Iv*)
+ (4= a) (b ul* + b, IvI") - (g - &) Ky, (,v)
= (2-q) (a Iul* + a, IvI)

+@—@@WW+%MW—M—@Lmeww.
(17)

Now, we split N ) into three parts:

Ny, ={@v) € Ny, [ (@), (wv), @,v)) > 0}

Ng,# {(“’ V) € Ny, | @’A,ﬂ (w,v), (u,v)) = 0}; (18)

Ny, = {@v) € Ny, [ (@), (w,7), (7)) < 0}.

2. Statement of the Main Results

Let us first define g, , = (Albloo)”*™® + (ulclo,)*/*"? and the
main results read as follows.

Theorem 1. If (A, y) satisfy 0 < ¢, < C(q,N,K,S, |0, a,,
a,) and (F1)-(F3) hold, then problem (1) has at least one
positive solution.

Theorem 2. If (A, y) satisfy 0 < O < C, and (F1)-(F3) hold,
then problem (1) has at least two positive solutions.

Note that, using assumption (F3), we have that F, F, €

C(Qx(R*)*, R*) are positively homogeneous of degree o — 1.
This implies that

|Fu (x, u, v)| <M (|u|"‘_1 + |v|“_1) ,

|E, (x,u,v)| < M(|u|°‘71 + |V|°H) , VxeQ, u,veRY,
(19)

for some positive constant M. Similar to Willem [9, Theorem
A.2], we consider the continuity of the superposition operator

A:L*(Q) — LU(Q) : () — f (x,u,v). (20)

Lemma 3. Assume that |Q)] < co, v < 00, f € C(Q x R%, R),
and

|f (e, u,v)| SC(I +|u|2/r+|v|2/r). (21)
Then, for every (u,v) € L3(Q), fGu,v) € L'(Q) and the
operator A : LP(Q) — L'(Q) : (u,v) — flx,uv)is

continuous.

Now, we consider the functional y(u, v) = IQF (o, u, v)dx;
then we have the following result.

Lemma 4. Assume that |Q < oo, F € C(Q x (R")%R")
satisfying (F3); then the functional v is of class C'(E,R*) and

W W), (p1,9,)) = L (E, (x,u,v) @1 + F, (x,1,v) ) dx,
(22)

where (u,v), (¢;, ¢,) € E.

Proof. The proof is almost the same as that in [10]. O

Lemma 5. The energy functional ], , is coercive and bounded
below on Ny ,,.

Proof. If (u,v) € N, ,, then by the Holder inequality and the
Sobolev embedding theorem

oa—2
Ty (11,7) = (ay lull® + ay IvI*)

oa—4 4 4
+—— (b lul|” + b6 ||v|") -
o (Bl + b, 1v1)

o

-4
o Ky, w,v)

o—2 2 2 a—4 4 4
> allull”+a, IvII° )+ —— (b llul”+b, |v
= (all’ +ay 107 )+ = — (by Il *+; 1)

X =g 2-9)/2¢-q/2)~(@-q)]a q
-— SEQ u,v)|g-
e R TR (O]
(23)
Thus, ], is coercive and bounded below on N ,,. O

Lemma 6. Suppose that (uy,v,) is a local minimizer for ] ,
on Ny, and that (u,,v,) ¢ Ng)y. Then ])'W(uo, Vo) = 0in E*
(the dual space of the Sobolev space E).

Proof. If (uy,v,) is a local minimizer for ], , on N, ,, then
(uy, vy) is a solution of the optimization problem minimizer
J)u(u; v) subject to @, ,(u,v) = 0. Hence, by the theory of
Lagrange multipliers, there exists &, € R, such that

]),L,M (ug,vp) = Elq)jx,ﬂ (up>vy) in ET(Q), (24)
and thus,

<]),L,,4 (140> v5) > (0> v)) = & <q);,,4 (40> v0) » (g %)) (25)



Since (uy,vy) € N, we have <]A,,4(”0’V0)>(”0’V0)) = 0.
Moreover, ((Df\,ﬂ(uo,vo), (g, vp)) # 0,50 & = 0. This
completes the proof. O

Lemma?7. If0 < ¢y, < C(g, N, K, S, |Q, a, a,), then Ng)ﬂ =
0.

Proof. Suppose otherwise that 0 < ¢, , < C(g, N, K, S, €|,
a,,a,) such that Ng)ﬂ #0.
Then, for (u,v) € NS’W

0= (D}, V), 7))
= (2- o) (ay ul® +a V) + (4 = &) (by llul* + By ¥
-(q-a) Ky, (w,v)
= (2-q) (a 1l + ay IVI?) + (by lull* + by V]
“(a-q) JQF(x, ) dx.
(26)

By the Holder inequality and the Sobolev embedding theo-
rem

(o= 2) (ay ul’® +ay [vI*) + (e = 4) (by ull* + b, [Iv]]*)
= ((X - q) K)L,y (u,v)

< (a-q) g, S 10" I
@)

So,
Al =2) w3 < (@ —2) (ay lul® + a, Iv]*)

< (q-«) o, S 10 .
(28)

Thus,

@-9)/2 /2 | yi(a-q)fa \ Y @D
(a—q) 07?5792 |
It Ml < < b 29)

Ala-2)

and, by the Minkowski inequality, the Sobolev embedding
theorem, and (9),

F(x,u,v)dx <K lul* + |v|? “/? dx
I (] 1))

([ ) ([ o))

< KS™ |l (u, v)[%.

(2/a)(«/2)

Thus,
_ /2 \ V(a=2)
M) 31)

”(M,V)“E 2 ( K(Oé—q)
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This implies that

o1u 2 C(g N, K, 5,10, a1,a,), (32)

which is a contradiction. Thus, we can conclude that if
0<01, <C(qN,KS10l,a,a,), (33)
we have NAO)M =0. O

By Lemma 7, we write N, , = NX)H UN,, and define

0 Ay — inf

u,v);
# (u,v)eNA,M]A’ﬂ( s

6f = inf u,v);
hu (u,v)EN;L IA’” ( ) (34)

O =

inf Jy, (u,v).
(wv)eNy, Aop ( )

Then we have the following result.
Lemma 8. Consider the following.

(i) Ifo < O < C(g,N,K,S,1Ql,a,,a,), then one has
Orp <03, <0

(i) If 0 < gy, < Cy. then 0, , > d, for some constant

dy =dy (9N, K,S$,|Q, 01, @153, by, by) > 0. (35)

Proof. (i) Let (u,v) € N/{ﬂ. Then
(2-q) (a, lul® +ay Iv1*) + (4 = q) (by lull* + by I1v1)*)

—(a—q) LF(x,u,v)dx> 0

(36)
and so
T () = (1 - 1) (ay Il +a I1?)
/\’/'4 ’ 2 q 1 2
1 1
+ (Z - 5) (by llul* + b, Iv1I*)
+<l—l)J F (x,u,v)dx (37)
q «/lo

-2/1 1
<T2(5-) (@l < 1)

-4/1 1
i q (5-) Gl + b °) <.

Thus, from the definition of 6, , and 6;{)#’ we can deduce that
+
O <6y, <0.
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(ii) Let (u,v) € N/{,H. Then
(2-q) (ay lul® +ay IvI*) + (4 = q) (by lull* + by v]]*)

—(oc—q)J F(x,u,v)dx < 0.
’ (38)

By (8) we have
(2-q) (@ lul’* + ay Iv17) + (4= @) (By lull* + by 11"

<(a-9q) JQF(x,u,v)dx

< (a—q) KS™ |, ).

(39)
This implies that
A(2-q)s*/a e
s )l > (ﬁ) N
K(a-q)
By (23) in the proof of Lemma 5,
Jau W5 v)
1
L
1 (2-q)/2 c—q/2 a-q)/a q
<E ;)e g |0 D oy ) |
>a(z- ) (5 A(q 28“"1 e (41)
2 «
<l _ l) q)/ZS(N q)/2 IQl(a Q)
q «
( A(q-2)8"1 )q’ o
x| ————— .
K(a-q)
Thus, if 0 < A < C,, then
]/\’# (u,v)>d, Y(uv)e N);#, (42)
for some dy = dy (A, u,q, N, K, S, |Ql, |bloys Icloos a1 a5 by,
b,) > 0. This completes the proof. O
For each (u, v) € E with _[Q F(x,u,v)dx > 0, set
Fomax = ( (- a) (@ 1ut® + o 11?)
(=) (b lul + b ") )
(43)

X <(oc -q) JQ F(x,u,v) dx>_1>1/(q_2)

> 0.

Then we have the following.

Lemma 9 (see [11, Lemma 2.6]). For each (u,v) € E with
o Flx,u,v)dx > 0, there are unique 0 < tT <t <t such

that (t*u,t*v) € NX)H,(t_u, tv) € Ny, and Nt ut™y) =

infogey Iy u(tus tv); ), (8 s t7v) = sup,o)y , (tus tv).

max

3. Proof of the Main Theorems
We will need the following lemma.

Lemma 10 (see [12]). Consider the following.

(i) Ifo < Q;z’;q)/z < C(q,N,K,S,IQl,gA,M,al,az), then

there exists a (PS)QM—sequence {(u,, v} c Ny, in E
for] P
(ii) If 0 < gy, < C,, then there exists a (PS)g, -sequence
o

{(u,,v,)} C NX’# in E for ]M.

Theorem 11. If 0 < ¢, < C(q, N, K, S,[Ql, 03, a1, a,) and
(F1)-(F3) hold, then ], , has a minimizer (ug,vy) in N/{,# and
it satisfies the following:

(i) Jhu(ug,vp) = 0y, = GI,W'

(ii) (ug,vy) is a positive solution of (1).

Proof. By Lemma 10(i), there exists a minimizing sequence
{(u,, v,)} for Jj , on N, , such that

I (s v,) = 6y, +0(1), ])'w (u,,v,) =0(1). (44)
Then by Lemma5 and the compact imbedding theorem,
there exist a subsequence {(u,,, v,)} and (1, vy) € E such that

+ . 1,2
u, — u, weaklyin Wy,

u, — uy stronglyin L7(Q),
(45)
v, — vy weaklyinW,”,

v, — v, stronglyinL(Q).

This implies that K, ,(u,,, v,,) — K, , (47, vy)asn — 00.By
(44) and (45), it is easy to prove that (1, v,
of (1). Since

) is s weak solution

(N +2) 2 2
Ta (o v) = == (a hudl® + a IV11?)
1
+ o (bl + b 1v])
o a (46)
- (X_qKA’” (un’ Vn)
“ f—
2 - (quKA,y (un’ Vn)
and by Lemma 8(i),

I Uy ) — 0), <0 as n— co. (47)



Lettingn — 00, we see that K;W(u;;, vg) > 0. Thus, (ug,vy)
is a nontrivial solution of problem (1). Now it follows that
u, — ug stronglyin W)»* and v, — v strongly in W,* and
Inu(ug>vg) = 6y, By (ug,vg) € N, and applying Fatou’s
lemma, we get

N+2
010 < Ing (1,78) = == (a1 + o I9317)
1 4 4
x o (Bl + s )
o«
%o Ko )

n— 00

L N+2
< lim mf( N (a) |, + @ ||Vn”2)

1 4 4
+ o (Bl + by Ivl)

@—q
- Ky, (u,,
q /L,u( n vn))

<lim inf J, , (1, v,,) = -
(48)

This implies that

lim_ [, |* = s

n— 00

])L,y (”g’ V:)—) = e)t,y;
2 2 (49)
lim v, ]" = v "

n— 00

Letii, = u, —u,, v, = v, — vy; then by the Brezis-Lieb lemma
[13], this implies

~ 2
" = ol = o
—~ 2
[7all” = vl = 15 17

Therefore, u,, — ug strongly in W, and v, — v}
strongly in Wy*. Moreover, we have (ug, v;) € Ny . In fact,

(50)

if (ug,vy) € N; . by Lemma 9, there are unique ¢, and f,
such that (tyu,,t5v,) € N;[M and (tyuy,t,vy) € Ny, In
particular, we have ¢, < t; = 1. Since
2
L) =0, g (ud i) > 0, (6D
E]A,y oUo>toVe) = U5 ﬁ]/\,y oUo>toVo) > U
Ehere exists t; < t <t such that ] Lultotgstove) < J A,M(fug,
tvy). By Lemma 9,

]A,y (tgug’tgvg) < ]A,p. (zu:)—’fvg) £ ]A,‘u (t5“o+>fa"o+)
.. (52)
= ]A,y (uO’VO)

which is a contradiction. It follows from the maximum
principle that (u,v;) is a positive solution of problem (1).
This completes the proof.
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The following two lemmas are similar to those in [14].

Lemma 12. If {(u,, v,)} C E is a (PS).-sequence for ], , with
(u,,v,) — (u,v) in E, then ]/'W(u, v) = 0, and there exists a
positive constant A, such that ], ,(u,v) > —Ag) ..

Lemma 13. If {(u,,v,)} C E is a (PS),-sequence for | A then
{(u,,,v,)} is bounded in E.

Define
2 2 4 4
Som ay lull” + a, [vI” + by ul™ + b, |Iv]
= inf :
(u,v)€E

(IQ F(x,u,v) dx)z/“
(53)

J F(x,u,v)dx >0

Q

In addition, we need the following version of the Brezis-Lieb
lemma [13].

Lemma 14. Consider F € C'(Q, (R")*) with F(x,0,0) = 0
and

‘BP (x,u,v) < Cy (Jul +v)) (54)

ou

‘ OF (x,u,v)
’ ov

for some C; > 0. Let {(uy,v)} be a bounded sequence in
L*(Q, (R)?) such that (ug, vi.) — (u,v) weakly in E. Then as
k — oo,

j- F(x,uy, vi) dx — J F(x,u —u, v —v)dx
o “ (55)
+J F (x,u,v)dx.
Q

Lemma 5. ], , satisfies the (PS), condition with c satisfying

(1 1Y\ Ny
—oo<c<coo—<£—1—;)SF = Ay (56)
Proof. Let{(u,,v,)} C E bea (PS).-sequence for Thu with ¢ €
(—00, ¢y, ). It follows from Lemma 13 that {(u,,, v,,)} is bounded
in E, and then (u,,v,) — (u4,v) up to a subsequence, where
(u,v) is a critical point of ], ,. Furthermore, we may assume

. 12
u, —u, v,—v inW,

u, —u, v,—v inL1(Q) (57)

u, —u, v,— v ae onll

Hence we have that J )'W(u, v) =0and

K/\,M (un’ Vn) - K}L,H (H, V) . (58)

Let #, = u, — u, v, = v, — v. Then by the Brezis-Lieb lemma
[13], we obtain

| — eeal” = 1l 77— [vall” = IV 2s n— o0,
(59)
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and by Lemma 14,
J F(x,1,,7,)dx — J F(x,u,,v,)dx - J F (x,u,v)dx.
Q Q Q
(60)

Since I/W(un, v,) =c+o(1), ])'W(un, v,) = o(1) and (58)-(60),
we can deduce that

ay ay - b . _ b,
O R L1 TN

1 J F(x,@,7,)dx (61)
@ Jo

=c—]A)H(u,v)+o(1).

So
1 _ _ _ _
2 @@l + e [7l + by @] + b [7,]°)

1

-—| F(x,4,7v,)d
R RICERATE

a~za~2b~4
<D Jal + 2l + 2 e

b, ,_ 1 o (62)
+ ZZ ||1/n||4 - L F(x,i,,7,)dx
=c—Nuwv)+o(1),
ay [,])" + o [7" + by 5] + s |7
- J F(x,#,,7,)dx=0(1).
Q
Hence, we may assume that
ay [@,|]* + s |7l + by )" + s 7] — 1
(63)

J F(x,u,,7,)dx — L.
Q

If I = 0, the proof is complete. Assume [ > 0; then from (63),
we obtain

2/«
SeIH% = 8, lim (J F(x, ﬁn,v,,)dx>
n— 00 Q

< Jim_(ay @] + a [7] + by [ + by [7,]") = 1
(64)

which implies that/ > S;N/ (N+2) 1 addition, from Lemma 12,
(61), and (63), we get

1 1 I 1Y\ N+
CZ(Z—;>Z+])L,M(M,‘V)Z<Z—E>SF _AQ/LM’
(65)

which contradicts ¢ < (1/4 -1 /(x)S;N/ (N+2) _ Mgy, O

Lemma 16. There exists a nonnegative function (u,v) € E \
{(0,0)} and C* > 0 such that, for o € (0, C*), one has

supJy , (tu, tv) < ¢
tz(P), b (66)

In particular, 0}, < c, for all g, , € (0,C").

Proof. Since 0 € Q, there is p, > 0 such that BN(0;2p,) ¢ Q.
Now, we consider the functional I : E — R defined by

1
TG v) =2 Jul2+ 2 ) - —j Flouv)dx V() eE
2 2 « Jo
(67)

and define a cut-off function 5(x) € C;°(Q) such that #(x) =
1 for |x| < py, y(x) = 0 for |x| > 2p,,0 <% < 1,and |Vy| < C.
For e > 0, let

(x)
%- (68)

u, (x) =
(e +|x*)

From [14], we have the following estimates:

2/«
(], bl ax) " =P Ry + 0@,

2, (N-2))2 2
L} Vi [* dx = & VU + O (g0

_[Q (|Vu€|2 +a(x) |u£|2) dx

(f | )™

=S+0 (N7,

where U(x) = (1 + |x|* )_(N_Z)/2 e WH(RY) is a minimizer
of

o (IVul’ +a () luf”) dx
. ;0 (70)
Metll e v WEW!2(RY)\ (0}
that is,
Jo (VUP + 2 () UF) dx
[Lof s
(71)
Cor oy (VP raGlr)ds
=S= inf 2
ueWb2(RN)\{0} [l L¥(RN)



Set uy, = eyu,, v, = eyu, and (u,,v,) € E, where (e}, e,) €
(R")* and inf,_5F(x,e;,e;) > K. Then, by (F1), (9), the
definition of Sy, and (69), we obtain that

supl (te,u,, te,u,)

0
2 2 2N/(N+2)
_N+2 ay |leyue||” + a, leyue
< .
W (JQ F(x,equ,, eyut,) dx) *
2N/(N+2)
_N+2 (alef + azeg) ||us||2
o (JQ |ue|* F (, el’ez)dx)zm
2N/(N+2)
N +2 [ (@] +aye3) *
= 4N K2/oc
2 2N/(N+2)
T .

(fo b )™

ezl rad)

2N/(N+2)

4N K2/

x($+0 (g(N*Z)/Z))ZN/(Nn)

_ N +2 <(“16f +aze§)>

2N/(N+2)

4N K2/
% (SZN/(N+2) +0 (s(N—Z)/Z))

N+2 _ _
< SEZQNIND L o (N2,
4N

where the following fact has been used:

t? £ N+2/ A \N22
(0 2a) 52 ()

—_— A,B > 0.
t>0 (29 4N

(73)

We can choose &, > 0 such that, for all g, , € (0,6,), we have

11
Coo = <Z - ;> S _ gy, > 0. (74)

Using the definitions of J , and (1, v,), we get

t* max {a,,
Iy (tuag, tvg) < 2{ 0] IGtgs v V=0, A, > 0,
(75)
which implies that there exists ¢, € (0, 1) satisfying
sup J) , (totgs to¥o) < oo Voru € (0,8,). (76)

0<t<t,
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On the other hand,

sup/y . (tug, tvy)

t>t,

b b
sup (1 t3) + % e + 2 Jo

t>t,

t1
_EKA)H (uO’ VO))

N+2 _ _
P Si*N/(N 2, O(S(N 2)/2)

max {b;, b} t* (e} + ¢3)

+ 5 el (77)

te 4
- 2 (eI, + €l J u|ldx
q (e{Aby + e5uc,) BN(O,p0)| |
- 1‘; ;:7 2 SINION2) | (¢N-D12)
max {b,, b} t* (e;1 + eg)

4
: : o

tq
- 2m (Ab, + HCO)J
q

. |u£|q dx,
>Po

where m = minfe?, 1}, b, = minb(x), and ¢; = minc(x) on

B(0, py)-
Let0<e< pg;we get

1

q
|u | dx = J dx
JBN(O,PO) € BN(O,pU) (8 + lez)((N—Z)/Z)q

1 (78)
o [
BN(0,p,) (ng)((N—Z)/Z)q

=C, (N, g py) -

Combining with (77) and the above inequality, for all ¢ =
gi,/liN_ZP ) € (0, p%), we have the following.

According to properties of u, and F((F,)-(F;), 4.4), we
can conclude that there exists the positive constant C; such

that ||u£||4 < Cj, so we have

sup/y, (1o, tv,)

t>t,

N +2 onyive2)
<N SF +0(ai,) (79)
max {b, b, } t* (e‘l1 + e‘zl) £
+ 5 3 — Eg)mez.

There exists a constant A |, such that (N + 2) /4N )S;N/ (N+2)_
A 100 < Coor
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Hence, we can choose 8, > 0 such that, for all g, , €
(0, 6,), we obtain

max {b;, b} t* (e} + ¢3) £
2 37 EQA,,/”CZ

O
(Q/LM) + (80)

< —A IQ/\,}A‘

If we see C* = min{8,,p) >, 8,} and & = gi{;N_ZP), then for
A € (0,C*) we have

sup/y, (1o, 1) < Coor (81)
t>t,

Finally, we prove that 6) , < ¢, forall g, , € (0, C"). Recall
that (1, vy) = (e;u,, e;u,). It is easy to see that

J F(x,uy,vy) dx > 0. (82)

Combining this with Lemma 9, from the definition of 8, ,
and (81), we get that there exists £, > 0 such that (t,u,, t,v,) €
N, . and

00 < T (tothos tovo) < St‘iOP]/\,y (tothor tovo) < o (83)

forall g, € (0,C"). O

Theorem 17. If ¢y, € (0,C;) and (F1)~(F3) hold, then J, ,
has a minimizer (u,,v,) in N, , and it satisfies the following:

(1) Jau(ttg>vg) = 6y
(ii) (uy,v,) is a positive solution of problem (1),

where C; = min{C", C,}.

Proof. By Lemma 10(ii), there is a (PS)9; -sequence {(u,,,
H
v} € N, ,inEfor ]y  forallg, , € (0,Cy). From Lemmas15,
16, and 8(ii), for Oau € 0,C*), Ihu satisfies (PS)(a; condition
44
and @, , > 0.Since ], , is coercive on N, ,, we get that (u,,, v,)
is bounded in E. Therefor, there exists a subsequence still
denoted by (u,,v,) and (1, v,) € N, , such that (u,,v,) —
(uy,v,) strongly in E and ]/W(ua,vo_) = (9;’” > 0 for all
0ru € (0,Cp). Finally, by the same arguments as in the proof

of Theorem 11, for all g, , € (0,Cp), we have that u; is a
positive solution of problem (1). O

Now, we complete the proof of Theorems 1 and 2. By
Theorem 11, we obtain that, for all g, , € C(g, N, K, S, [, a;,
a,), problem (1) has a positive solution (u;,v,) € NI)H. On
the other hand, from Theorem 17, we get the second positive
solution (uy,v;) € Ny, forall0 < ¢, < Cj < C(g,N,
K,S,1Ql,a,,a,). Since NX’M NNy, =0 this implies that
(uy,vy) and (uy, v, ) are distinct. This completes the proof of
Theorems 1 and 2.
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