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Circulantmatrix family is used formodelingmany problems arising in solving various differential equations.The RSFPLR circulant
matrices and RSLPFL circulant matrices are two special circulant matrices. The techniques used herein are based on the inverse
factorization of polynomial. The exact determinants of these matrices involving Perrin, Padovan, Tribonacci, and the generalized
Lucas number are given, respectively.

1. Introduction

Circulant matrix family is used for modeling many problems
arising in solving various differential equations. Therefore,
studying algorithms and various properties of new classes of
problems to such patterned matrices is crucial for applica-
tions. It is important to develop new theories and methods
and to modify and refine the well-known techniques, for
solving differential equations.

Lei and Sun [1] proposed the preconditioned CGNR
(PCGNR) method with a circulant preconditioner to solve
suchToeplitz-like systems. Pang et al. [2] used the normalized
preconditioned conjugate gradient method with Strang’s
circulant preconditioner to solve a nonsymmetric Toeplitz
system 𝐴

𝑛
𝑥 = 𝑏. By using a Strang-type block-circulant pre-

conditioner, Zhang et al. [3] speeded up the convergent rate of
boundary-value methods. Delgado et al. [4] developed some
techniques to obtain global hyperbolicity for a certain class
of endomorphisms of (𝑅𝑝)𝑛 with 𝑝, 𝑛 ≥ 2; this kind of endo-
morphisms is obtained from vectorial difference equations
where the mapping defining these equations satisfies a cir-
culant matrix condition.The Strang-type preconditioner was
also used to solve linear systems from differential-algebraic
equations and delay differential equations; see [5–8]. In [9],
a semicirculant preconditioner applied to a problem, subject
to Dirichlet boundary conditions at the inflow boundaries,

was examined. A method was described for obtaining finite
difference approximation solutions of multidimensional par-
tial differential equations satisfying boundary conditions
specified on irregularly shaped boundaries by using circulant
matrices and fast Fourier transform (FFT) convolutions in
[10]. Brockett and Willems [11] showed how the important
problems of linear system theory can be solved concisely for
a particular class of linear systems, namely, block-circulant
systems, by exploiting the algebraic structure.

Circulantmatrices have important applications in various
disciplines including image processing, communications,
and signal processing. The circulant matrices, a long fruitful
subject of research, have in recent years been extended in
many directions [12, 13]. The 𝑓(𝑥)-circulant matrices are
another natural extension of this well-studied class and can
be found in [14–24]. The 𝑓(𝑥)-circulant matrix has a wide
application, especially on the generalized cyclic codes [14].
The properties and structures of the 𝑥𝑛 − 𝑥 + 1-circulant
matrices, which are called RSFPLR circulant matrices, are
better than those of the general 𝑓(𝑥)-circulant matrices, so
there are good algorithms for determinants.

There are many interests in properties and generalization
of some special matrices with famous numbers. Jaiswal
evaluated some determinants of circulant whose elements are
the generalized Fibonacci numbers [25]. Lin gave the deter-
minant of the Fibonacci-Lucas quasi-cyclic matrices [26].

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 273680, 12 pages
http://dx.doi.org/10.1155/2014/273680

http://dx.doi.org/10.1155/2014/273680


2 Abstract and Applied Analysis

Lind presented the determinants of circulant and skew-
circulant involving Fibonacci numbers in [27]. Shen et al.
[28] discussed the determinant of circulant matrix involving
Fibonacci and Lucas numbers. Akbulak and Bozkurt [29]
gave the norms of Toeplitz involving Fibonacci and Lucas
numbers. The authors [30, 31] discussed some properties of
Fibonacci and Lucas matrices. Stanimirović gave generalized
Fibonacci and Lucas matrix in [32]. Z. Zhang and Y. Zhang
[33] investigated the Lucas matrix and some combinatorial
identities.

The determinant problems of the RSFPLR circulant
matrices and RSLPFL circulantmatrices involving the Perrin,
Padovan, Tribonacci, and the generalized Lucas number
are considered in this paper. The explicit determinants are
presented by using some terms of these numbers. The
techniques used herein are based on the inverse factorization
of polynomial. Firstly, we introduce the definitions of the
RSFPLR circulant matrices and RSLPFL circulant matrices
and properties of the related famous numbers. Then, we
present the main results and the detailed process.

Definition 1. A row skew first-plus-last right (RSFPLR) cir-
culant matrix with the first row (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), denoted by

RSFPLRcircfr(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), is a square matrix of the form

[
[
[
[
[
[

[

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑎
𝑛−1

−𝑎
𝑛−1

𝑎
0
+ 𝑎
𝑛−1

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−2

...
... d d

...
−𝑎
2

−𝑎
3
+ 𝑎
2
⋅ ⋅ ⋅ 𝑎

0
+ 𝑎
𝑛−1

𝑎
1

−𝑎
1

−𝑎
2
+ 𝑎
1
⋅ ⋅ ⋅ −𝑎

𝑛−1
+ 𝑎
𝑛−2

𝑎
0
+ 𝑎
𝑛−1

]
]
]
]
]
]

]

. (1)

The matrix with an arbitrary first row and the following
rule for obtaining any other row from the previous one can
be seen. Get the 𝑖 + 1st row by adding the last element of the
𝑖th row to the first element of the 𝑖th row and −1 times the last
element of the 𝑖th row and then shifting the elements of the
𝑖th row (cyclically) one position to the right.

Note that the RSFPLR circulant matrix is a 𝑥𝑛 − 𝑥 + 1
circulant matrix [14] and that is neither the extension of skew
circulant matrix [12, 13] nor its special case and they are two
different kinds of special matrices. Moreover, it is a FLS 𝑟-
circulant matrix [15–17] with 𝑟 = −1.

We define Θ
(−1,1)

as the basic RSFPLR circulant matrix;
that is,

Θ
(−1,1)

=(

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

... d d d
...

0 0 0 ⋅ ⋅ ⋅ 1

−1 1 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (2)

It is easily verified that 𝑔(𝑥) = 𝑥𝑛 − 𝑥 + 1 has no repeated
roots in its splitting field and 𝑔(𝑥) = 𝑥

𝑛

− 𝑥 + 1 is both
the minimal polynomial and the characteristic polynomial
of the matrix Θ

(−1,1)
. In addition, Θ

(−1,1)
is nonderogatory

and satisfiesΘ𝑗
(−1,1)

= RSFPLRcircfr (0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑗−1

) and

Θ
𝑛

(−1,1)
= I
𝑛
− Θ
(−1,1)

. Then a matrix A can be written in the
form

A = 𝑓 (Θ
(−1,1)

) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
Θ
𝑖

(−1,1)
(3)

if and only if A is a RSFPLR circulant matrix, where the
polynomial 𝑓(𝑥) = ∑

𝑛−1

𝑖=0
𝑎
𝑖
𝑥
𝑖 is called the representer of the

RSFPLR circulant matrix A.
It is clear that A is a RSFPLR circulant matrix if and only

if A commutes with theΘ
(−1,1)

; that is,

AΘ
(−1,1)

= Θ
(−1,1)

A. (4)

Definition 2. A row skew last-plus-first left (RSLPFL) circu-
lant matrix with the first row (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), denoted by

RSLPFLcircfr (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), is a square matrix of the form

[
[
[
[
[
[

[

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

+ 𝑎
0

−𝑎
0

...
... c

...
𝑎
𝑛−2

𝑎
𝑛−1

+ 𝑎
0

⋅ ⋅ ⋅ −𝑎
𝑛−3

𝑎
𝑛−1

+ 𝑎
0

⋅ ⋅ ⋅ −𝑎
𝑛−3

+ 𝑎
𝑛−2

−𝑎
𝑛−2

]
]
]
]
]
]

]

. (5)

The matrix with an arbitrary first row and the following
rule for obtaining any other row from the previous onecan be
seen. Get the 𝑖 + 1st row by adding the first element of the 𝑖th
row to the last element of the 𝑖th row and −1 times the first
element of the 𝑖th row and then shifting the elements of the
𝑖th row (cyclically) one position to the left.

Let A = RSFPLRcircfr (𝑎
𝑛
, 𝑎
𝑛−1
, . . . , 𝑎

1
) and B =

RSLPFLcircfr (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
). By explicit computation, we

find

A = BÎ
𝑛
, (6)

where Î
𝑛
is the backward identity matrix of the form

Î
𝑛
=(

0 0 ⋅ ⋅ ⋅ 0 1

0 ⋅ ⋅ ⋅ 0 1 0

... c c c
...

0 1 0 ⋅ ⋅ ⋅ 0

1 0 0 ⋅ ⋅ ⋅ 0

). (7)

The Perrin [34, 35] and Padovan [34, 36] numbers {𝑅
𝑛
}

and {P
𝑛
} are defined by a third-order recurrence

𝑅
𝑛
= 𝑅
𝑛−2

+ 𝑅
𝑛−3
, 𝑛 ≥ 3, (8)

P
𝑛
= P
𝑛−2

+ P
𝑛−3
, 𝑛 ≥ 3, (9)

with the initial conditions𝑅
0
= 3,𝑅

1
= 0,𝑅

2
= 2, andP

0
= 1,

P
1
= 1, and P

2
= 1.

The Tribonacci [36, 37] and the generalized Lucas num-
bers {𝑇

𝑛
} and {L

𝑛
} [37] are defined by a third-order recurrence

𝑇
𝑛
= 𝑇
𝑛−1

+ 𝑇
𝑛−2

+ 𝑇
𝑛−3
, 𝑛 ≥ 3,

L
𝑛
= L
𝑛−1

+ L
𝑛−2

+ L
𝑛−3
, 𝑛 ≥ 3,

(10)
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with the initial conditions 𝑇
0
= 0, 𝑇

1
= 1, 𝑇

2
= 1 and L

0
= 3,

L
1
= 1, and L

2
= 3.

Recurrences (8) and (9) involve the characteristic equa-
tion 𝑥3 − 𝑥 − 1 = 0, the roots of which are denoted by 𝑟

1
, 𝑟
2
,

and 𝑟
3
. Then

𝑟
1
+ 𝑟
2
+ 𝑟
3
= 0

𝑟
1
𝑟
2
+ 𝑟
1
𝑟
3
+ 𝑟
2
𝑟
3
= −1

𝑟
1
𝑟
2
𝑟
3
= 1.

(11)

Moreover, the Binet form for the Perrin [34, 35] number is

𝑅
𝑛
= 𝑟
𝑛

1
+ 𝑟
𝑛

2
+ 𝑟
𝑛

3
, (12)

and the Binet form for Padovan [34, 36] number is

P
𝑛
= 𝑎
1
𝑟
𝑛

1
+ 𝑎
2
𝑟
𝑛

2
+ 𝑎
3
𝑟
𝑛

3
, (13)

where

𝑎
𝑖
=

3

∏

𝑗=1,𝑗 ̸= 𝑖

𝑟
𝑗
− 1

𝑟
𝑖
− 𝑟
𝑗

, 𝑖 = 1, 2, 3. (14)

Recurrences (10) aswell imply the characteristic equation𝑥3−
𝑥
2

− 𝑥 − 1 = 0, and their roots are denoted by 𝑡
1
, 𝑡
2
, and 𝑡

3
.

Then

𝑡
1
+ 𝑡
2
+ 𝑡
3
= 1

𝑡
1
𝑡
2
+ 𝑡
1
𝑡
3
+ 𝑡
2
𝑡
3
= −1

𝑡
1
𝑡
2
𝑡
3
= 1.

(15)

Furthermore, the Binet form for the Tribonacci [36, 37]
number is

𝑇
𝑛
= 𝑏
1
𝑡
𝑛

1
+ 𝑏
2
𝑡
𝑛

2
+ 𝑏
3
𝑡
𝑛

3
, (16)

where 𝑏
𝑖
is the 𝑖th root of the polynomial 44𝑦3 − 2𝑦 − 1, and

the Binet form for the generalized Lucas [37] number is

L
𝑛
= 𝑡
𝑛

1
+ 𝑡
𝑛

2
+ 𝑡
𝑛

3
. (17)

If the first row of a RSFPLR circulant matrix
is (𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑛
), (P
1
,P
2
, . . . ,P

𝑛
), (𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
),

(L
1
,L
2
, . . . ,L

𝑛
), then the matrix is called Perrin, Padovan,

Tribonacci, and generalized Lucas RSFPLR circulant matrix,
respectively.

If the first row of a RSLPFL circulant matrix
is (𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑛
), (P

1
,P
2
, . . . ,P

𝑛
), (𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
),

(L
1
,L
2
, . . . ,L

𝑛
), then the matrix is called Perrin, Padovan,

Tribonacci, and generalized Lucas RSLPFL circulant matrix,
respectively.

2. Main Results

ByTheorem 1.1 in [15], we deduce the following lemma.

Lemma 3. Let A = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
). Then the

eigenvalues of A are given by

𝜆
𝑖
= 𝑓 (𝜅

𝑖
) =

𝑛

∑

𝑗=1

𝑎
𝑗
𝜅
𝑗−1

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (18)

and the determinant of 𝐴 is given by

detA =

𝑛

∏

𝑖=1

𝜆
𝑖
=

𝑛

∏

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑗
𝜅
𝑗−1

𝑖
, (19)

where 𝜅
𝑖
(𝑖 = 1, . . . , 𝑛) are the roots of the equation 𝑥𝑛−𝑥+1 =

0.

Lemma 4. Suppose that 𝜅
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the roots of the

equation 𝑥𝑛 − 𝑥 + 1 = 0. If 𝑎 = 0, then

𝑛

∏

𝑖=1

(𝑎𝜅
3

𝑖
+ 𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑)

=

𝑛

∏

𝑖=1

(𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑)

= 𝑑
𝑛

+ 𝑏
𝑛−1

(𝑏 + 𝑐 + 𝑑) − 𝑑 (𝑥
𝑛−1

1
+ 𝑥
𝑛−1

2
)

+ (𝑥
𝑛

1
+ 𝑥
𝑛

2
) ,

(20)

where 𝑎, 𝑏, 𝑐 ∈ R and

𝑥
1
=
−𝑐 + √𝑐2 − 4𝑏𝑑

2
; 𝑥

2
=
−𝑐 − √𝑐2 − 4𝑏𝑑

2
. (21)

If 𝑎 ̸= 0, then

𝑛

∏

𝑖=1

(𝑎𝜅
3

𝑖
+ 𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑)

=
(−1)
𝑛−1

𝑎
𝑛−1

2
𝑑 (2𝑋

𝑛−1
+ 𝑋
2

𝑛−1
− 2𝑋
2(𝑛−1)

)

+
(−1)
𝑛

𝑎
𝑛

2
(2𝑋
𝑛
+ 2𝑋
𝑛+1

+ 𝑋
2

𝑛
− 𝑋
2𝑛
+ 2)

+ (−1)
𝑛

𝑎
𝑛−1

(𝑏 + 𝑏 + 𝑐 + 𝑑) + 𝑑
𝑛

,

(22)

where𝑋
𝑛
= 𝛼
𝑛

1
+𝛼
𝑛

2
+𝛼
𝑛

3
and 𝛼

1
, 𝛼
2
, and 𝛼

3
are the roots of the

equation 𝑎𝜅3
𝑖
+ 𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑 = 0.

Proof. Since 𝜅
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the roots of the character-

istic polynomial of Θ
(−1,1)

, 𝑔(𝑥) = 𝑥𝑛 − 𝑥 + 1 can be factored
as

𝑥
𝑛

− 𝑥 + 1 =

𝑛

∏

𝑖=1

(𝑥 − 𝜅
𝑖
) . (23)

If 𝑎 = 0, please see [22] for details of the proof.
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If 𝑎 ̸= 0, then
𝑛

∏

𝑖=1

(𝑎𝜅
3

𝑖
+ 𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑)

= 𝑎
𝑛

𝑛

∏

𝑖=1

(𝜅
3

𝑖
+
𝑏

𝑎
𝜅
2

𝑖
+
𝑐

𝑎
𝜅
𝑖
+
𝑑

𝑎
)

= 𝑎
𝑛

𝑛

∏

𝑖=1

(𝜅
𝑖
− 𝛼
1
) (𝜅
𝑖
− 𝛼
2
) (𝜅
𝑖
− 𝛼
3
)

= (−𝑎)
𝑛

𝑛

∏

𝑖=1

(𝛼
1
− 𝜅
𝑖
)

𝑛

∏

𝑖=1

(𝛼
2
− 𝜅
𝑖
)

𝑛

∏

𝑖=1

(𝛼
3
− 𝜅
𝑖
)

= (−𝑎)
𝑛

(𝛼
𝑛

1
− 𝛼
1
+ 1) (𝛼

𝑛

2
− 𝛼
2
+ 1) (𝛼

𝑛

3
− 𝛼
3
+ 1)

= (−𝑎)
𝑛

{(𝛼
1
𝛼
2
𝛼
3
)
𝑛

+ 𝛼
1
𝛼
2
𝛼
3

× [(𝛼
1
𝛼
2
)
𝑛−1

+ (𝛼
1
𝛼
3
)
𝑛−1

+ (𝛼
2
𝛼
3
)
𝑛−1

+𝛼
𝑛−1

1
+ 𝛼
𝑛−1

2
+ 𝛼
𝑛−1

3
]

+ [(𝛼
1
𝛼
2
)
𝑛

+ (𝛼
1
𝛼
3
)
𝑛

+ (𝛼
2
𝛼
3
)
𝑛

+𝛼
1
𝛼
2
+ 𝛼
1
𝛼
3
+ 𝛼
2
𝛼
3
]

− 𝛼
1
𝛼
2
𝛼
3
+ 1 − [𝛼

𝑛

1
(𝛼
2
+ 𝛼
3
) + 𝛼
𝑛

2
(𝛼
1
+ 𝛼
3
)

+𝛼
𝑛

3
(𝛼
1
+ 𝛼
2
)]

+ [𝛼
𝑛

1
+ 𝛼
𝑛

2
+ 𝛼
𝑛

3
− (𝛼
1
+ 𝛼
2
+ 𝛼
3
)] } .

(24)

Let 𝑋
𝑛
= 𝛼
𝑛

1
+ 𝛼
𝑛

2
+ 𝛼
𝑛

3
. We obtain (𝛼

1
𝛼
2
)
𝑛

+ (𝛼
1
𝛼
3
)
𝑛

+

(𝛼
2
𝛼
3
)
𝑛

= (𝛼
2

𝑛
− 𝑋
2𝑛
)/2 from (𝛼

𝑛

1
+ 𝛼
𝑛

2
+ 𝛼
𝑛

3
)
2

= 𝛼
2𝑛

1
+ 𝛼
2𝑛

2
+

𝛼
2𝑛

3
+ 2[(𝛼

1
𝛼
2
)
𝑛

+ (𝛼
1
𝛼
3
)
𝑛

+ (𝛼
2
𝛼
3
)
𝑛

]. Taking the relation of
roots and coefficients

𝛼
1
+ 𝛼
2
+ 𝛼
3
= −

𝑏

𝑎
,

𝛼
1
𝛼
2
+ 𝛼
1
𝛼
3
+ 𝛼
2
𝛼
3
=
𝑐

𝑎
,

𝛼
1
𝛼
2
𝛼
3
= −

𝑑

𝑎

(25)

into account, we deduce that
𝑛

∏

𝑖=1

(𝑎𝜅
3

𝑖
+ 𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑)

=
(−1)
𝑛−1

𝑎
𝑛−1

2
𝑑 (2𝑋

𝑛−1
+ 𝑋
2

𝑛−1
− 2𝑋
2(𝑛−1)

)

+
(−1)
𝑛

𝑎
𝑛

2
(2𝑋
𝑛
+ 2𝑋
𝑛+1

+ 𝑋
2

𝑛
− 𝑋
2𝑛
+ 2)

+ (−1)
𝑛

𝑎
𝑛−1

(𝑏 + 𝑏 + 𝑐 + 𝑑) + 𝑑
𝑛

,

(26)

where 𝑋
𝑛
= 𝛼
𝑛

1
+ 𝛼
𝑛

2
+ 𝛼
𝑛

3
and 𝛼

1
, 𝛼
2
, 𝛼
3
are the roots of the

equation 𝑎𝜅3
𝑖
+ 𝑏𝜅
2

𝑖
+ 𝑐𝜅
𝑖
+ 𝑑 = 0.

2.1. Determinants of the RSFPLR Circulant Matrices and
RSLPFL Circulant Matrices Involving Perrin Numbers

Theorem 5. Let C = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑛
) be a

Perrin RSFPLR circulant matrix. Then

detC =
𝑅
𝑛−1

𝑛
Δ
1
+ 𝑅
𝑛

𝑛
Δ
2
+ 2𝑅
𝑛

𝑛+1

Δ
3

, (27)

where

Δ
1
= 2𝑅
𝑛+1
𝑍
𝑛−1

+ 𝑅
𝑛+1
𝑍
2

𝑛−1
− 2𝑅
𝑛+1
𝑍
2(𝑛−1)

− 16 + 2𝑅
𝑛+2
,

Δ
2
= 2𝑍
𝑛
+ 2𝑍
𝑛+1

+ 𝑍
2

𝑛
− 𝑍
2𝑛
− 2,

Δ
3
= 𝑌
2

𝑛
+ 𝑌
2

𝑛−1
− 𝑌
2𝑛
− 2𝑌
2(𝑛−1)

+ 2𝑌
𝑛+1

+ 2𝑌
𝑛
+ 2𝑌
𝑛−1

+ 6,

𝑍
𝑛
= 𝛾
𝑛

1
+ 𝛾
𝑛

2
+ 𝛾
𝑛

3
,

𝑌
𝑛
= 𝛽
𝑛

1
+ 𝛽
𝑛

2
+ 𝛽
𝑛

3
.

(28)

𝛾
1
, 𝛾
2
, and 𝛾

3
are the roots of the equation −𝑅

𝑛
𝑥
3

+ (3 − 𝑅
𝑛+2

+

𝑅
𝑛
)𝑥
2 + (2 − 𝑅

𝑛+1
+ 𝑅
𝑛+2
)𝑥 + 𝑅

𝑛+1
= 0, and 𝛽

1
, 𝛽
2
, 𝛽
3
are the

roots of the equation 𝑦3 + 𝑦2 − 1 = 0.

Proof. Obviously, C has the form

C =
(
(
(

(

𝑅
1

𝑅
2

⋅ ⋅ ⋅ 𝑅
𝑛

−𝑅
𝑛

𝑅
1
+ 𝑅
𝑛

⋅ ⋅ ⋅ 𝑅
𝑛−1

...
... d

...
−𝑅
3
−𝑅
4
+ 𝑅
3
⋅ ⋅ ⋅ 𝑅

2

−𝑅
2
−𝑅
3
+ 𝑅
2
⋅ ⋅ ⋅ 𝑅
1
+ 𝑅
𝑛

)
)
)

)

. (29)

By Lemma 3, the Binet form (12), and (11), we have

detC =

𝑛

∏

𝑖=1

(𝑅
1
+ 𝑅
2
𝜅
𝑖
+ ⋅ ⋅ ⋅ + 𝑅

𝑛
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛

∑

𝑘=1

3

∑

𝑗=1

𝑟
𝑘

𝑗
𝜅
𝑘−1

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑟
𝑗
(1 − 𝑟

𝑛

𝑗
𝜅
𝑛

𝑖
)

1 − 𝑟
𝑗
𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

[
−𝑅
𝑛
𝜅
3

𝑖
+ (3 − 𝑅

𝑛+2
+ 𝑅
𝑛
) 𝜅
2

𝑖

−𝜅
3

𝑖
− 𝜅
2

𝑖
+ 1

+
(2 − 𝑅

𝑛+1
+ 𝑅
𝑛+2
) 𝜅
𝑖
+ 𝑅
𝑛+1

−𝜅
3

𝑖
− 𝜅
2

𝑖
+ 1

] .

(30)
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By Lemma 4 and the recurrence (8), we obtain
𝑛

∏

𝑖=1

[−𝑅
𝑛
𝜅
3

𝑖
+ (3 − 𝑅

𝑛+2
+ 𝑅
𝑛
) 𝜅
2

𝑖

+ (2 − 𝑅
𝑛+1

+ 𝑅
𝑛+2
) 𝜅
𝑖
+ 𝑅
𝑛+1
]

=
𝑅
𝑛−1

𝑛

2
(2𝑅
𝑛+1
𝑍
𝑛−1

+ 𝑅
𝑛+1
𝑍
2

𝑛−1
− 2𝑅
𝑛+1
𝑍
2(𝑛−1)

−16 + 2𝑅
𝑛+2
) + 𝑅
𝑛

𝑛+1

+
𝑅
𝑛

𝑛

2
(2𝑍
𝑛
+ 2𝑍
𝑛+1

+ 𝑍
2

𝑛
− 𝑍
2𝑛
− 2) ,

(31)

where 𝑍
𝑛
= 𝛾
𝑛

1
+ 𝛾
𝑛

2
+ 𝛾
𝑛

3
and 𝛾
1
, 𝛾
2
, 𝛾
3
are the roots of the

equation −𝑅
𝑛
𝑥
3 + (3 − 𝑅

𝑛+2
+ 𝑅
𝑛
)𝑥
2 + (2 − 𝑅

𝑛+1
+ 𝑅
𝑛+2
)𝑥 +

𝑅
𝑛+1

= 0 and
𝑛

∏

𝑖=1

(−𝜅
3

𝑖
− 𝜅
2

𝑖
+ 1)

=
1

2
(𝑌
2

𝑛
+ 𝑌
2

𝑛−1
− 𝑌
2𝑛
) + 𝑌
𝑛−1

+ 𝑌
𝑛
+ 𝑌
𝑛+1

− 𝑌
2(𝑛−1)

+ 3,

(32)

where 𝑌
𝑛
= 𝛽
𝑛

1
+ 𝛽
𝑛

2
+ 𝛽
𝑛

3
and 𝛽

1
, 𝛽
2
, 𝛽
3
are the roots of the

equation 𝑦3 + 𝑦2 − 1 = 0. Consequently,

detC =
𝑅
𝑛−1

𝑛
Δ
1
+ 𝑅
𝑛

𝑛
Δ
2
+ 2𝑅
𝑛

𝑛+1

Δ
3

, (33)

where
Δ
1
= 2𝑅
𝑛+1
𝑍
𝑛−1

+ 𝑅
𝑛+1
𝑍
2

𝑛−1
− 2𝑅
𝑛+1
𝑍
2(𝑛−1)

− 16 + 2𝑅
𝑛+2
,

Δ
2
= 2𝑍
𝑛
+ 2𝑍
𝑛+1

+ 𝑍
2

𝑛
− 𝑍
2𝑛
− 2,

Δ
3
= 𝑌
2

𝑛
+ 𝑌
2

𝑛−1
− 𝑌
2𝑛
− 2𝑌
2(𝑛−1)

+ 2𝑌
𝑛+1

+ 2𝑌
𝑛
+ 2𝑌
𝑛−1

+ 6.

(34)

Theorem 6. Let D = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (𝑅
𝑛
, 𝑅
𝑛−1
, . . . , 𝑅

1
) be a

Perrin RSFPLR circulant matrix. Then

detD = 2[
(𝑅
𝑛
+ 3)
𝑛

+ 𝑅
𝑛+5
(𝑅
𝑛+1

− 2)
𝑛−1

𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛
− 2𝑅
2(𝑛−1)

+ 2𝑅
𝑛+4

+

− (𝑅
𝑛
+ 3) (𝜌

𝑛−1

1
+ 𝜌
𝑛−1

2
) + (𝜌

𝑛

1
+ 𝜌
𝑛

2
)

𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛
− 2𝑅
2(𝑛−1)

+ 2𝑅
𝑛+4

] ,

(35)

where

𝜌
1
=
1 − 𝑅
𝑛+2

+ Δ
4

2
,

𝜌
2
=
1 − 𝑅
𝑛+2

− Δ
4

2
,

Δ
4
= √(1 − 𝑅

𝑛+2
)
2

− 4 (𝑅
𝑛+1

− 2) (𝑅
𝑛
+ 3).

(36)

Proof. ThematrixD has the form

D =
(
(
(

(

𝑅
𝑛

𝑅
𝑛−1

⋅ ⋅ ⋅ 𝑅
1

−𝑅
1

𝑅
1
+ 𝑅
𝑛

⋅ ⋅ ⋅ 𝑅
2

...
... d

...
−𝑅
𝑛−2

−𝑅
𝑛−3

+ 𝑅
𝑛−2

⋅ ⋅ ⋅ 𝑅
𝑛−1

−𝑅
𝑛−1

−𝑅
𝑛−2

+ 𝑅
𝑛−1

⋅ ⋅ ⋅ 𝑅
1
+ 𝑅
𝑛

)
)
)

)

. (37)

According to Lemma 3, the Binet form (12), and (11), we have

detD =

𝑛

∏

𝑖=1

(𝑅
𝑛
+ 𝑅
𝑛−1
𝜅
𝑖
+ ⋅ ⋅ ⋅ + 𝑅

1
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛−1

∑

𝑘=0

3

∑

𝑗=1

𝑟
𝑛−𝑘

𝑗
𝜅
𝑘

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑟
𝑛+1

𝑗
− 𝑟
𝑗
𝜅
𝑛

𝑖

𝑟
𝑗
− 𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

(𝑅
𝑛+1

− 2) 𝜅
2

𝑖
+ (𝑅
𝑛+2

− 1) 𝜅
𝑖
+ 𝑅
𝑛
+ 3

−𝜅
3

𝑖
+ 𝜅
𝑖
+ 1

.

(38)

Using Lemma 4 and the recurrence (8), we obtain

𝑛

∏

𝑖=1

[(𝑅
𝑛+1

− 2) 𝜅
2

𝑖
+ (𝑅
𝑛+2

− 1) 𝜅
𝑖
+ 𝑅
𝑛
+ 3]

= (𝑅
𝑛
+ 3)
𝑛

+ 𝑅
𝑛+5
(𝑅
𝑛+1

− 2)
𝑛−1

− (𝑅
𝑛
+ 3) (𝜌

𝑛−1

1
+ 𝜌
𝑛−1

2
) + (𝜌

𝑛

1
+ 𝜌
𝑛

2
) ,

(39)

where

𝜌
1
=
1 − 𝑅
𝑛+2

+ Δ
4

2
,

𝜌
2
=
1 − 𝑅
𝑛+2

− Δ
4

2
,

Δ
4
= √(1 − 𝑅

𝑛+2
)
2

− 4 (𝑅
𝑛+1

− 2) (𝑅
𝑛
+ 3),

(40)

𝑛

∏

𝑖=1

(−𝜅
3

𝑖
+ 𝜅
𝑖
+ 1)

=
1

2
(𝑅
2

𝑛−1
+ 𝑅
2

𝑛
− 𝑅
2𝑛
) − 𝑅
2(𝑛−1)

+ 𝑅
𝑛+4
.

(41)

Therefore,

detD = 2[
(𝑅
𝑛
+ 3)
𝑛

+ 𝑅
𝑛+5
(𝑅
𝑛+1

− 2)
𝑛−1

𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛
− 2𝑅
2(𝑛−1)

+ 2𝑅
𝑛+4

+

− (𝑅
𝑛
+ 3) (𝜌

𝑛−1

1
+ 𝜌
𝑛−1

2
) + (𝜌

𝑛

1
+ 𝜌
𝑛

2
)

𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛
− 2𝑅
2(𝑛−1)

+ 2𝑅
𝑛+4

] .

(42)
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Theorem 7. Let E = 𝑅𝑆𝐿𝑃𝐹𝐿𝑐𝑖𝑟𝑐𝑓𝑟 (𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑛
) be a

Perrin RSLPFL circulant matrix. Then

detE = 2[
(𝑅
𝑛
+ 3)
𝑛

+ 𝑅
𝑛+5
(𝑅
𝑛+1

− 2)
𝑛−1

𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛
− 2𝑅
2(𝑛−1)

+ 2𝑅
𝑛+4

+

− (𝑅
𝑛
+ 3) (𝜌

𝑛−1

1
+ 𝜌
𝑛−1

2
) + (𝜌

𝑛

1
+ 𝜌
𝑛

2
)

2𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛
− 2𝑅
2(𝑛−1)

+ 2𝑅
𝑛+4

]

× (−1)
𝑛(𝑛−1)/2

,

(43)

where

𝜌
1
=
1 − 𝑅
𝑛+2

+ Δ
4

2
,

𝜌
2
=
1 − 𝑅
𝑛+2

− Δ
4

2
,

Δ
4
= √(1 − 𝑅

𝑛+2
)
2

− 4 (𝑅
𝑛+1

− 2) (𝑅
𝑛
+ 3).

(44)

Proof. Since

det Î
𝑛
= (−1)

𝑛(𝑛−1)/2

, (45)

the result can be derived fromTheorem 6 and (6).

2.2. Determinants of the RSFPLR Circulant Matrices and
RSLPFL Circulant Matrices Involving Padovan Numbers

Theorem 8. Let F = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (P
1
,P
2
, . . . ,P

𝑛
) be a

Padovan RSFPLR circulant matrix. Then

det F =
P𝑛
𝑛
Δ
5
+ (1 + P

𝑛+1
) Δ
6
+ Δ
7

Δ
8

, (46)

where

Δ
5
= 𝑈
2

𝑛
− 𝑈
2𝑛
+ 2𝑈
𝑛+1

+ 2𝑈
𝑛
,

Δ
6
= P
𝑛−1

𝑛
(𝑈
2

𝑛−1
− 2𝑈
2(𝑛−1)

+ 2𝑈
𝑛−1
) ,

Δ
7
= 2P
𝑛−1

𝑛
(P
𝑛+2

− P
𝑛
− 4) + 2(1 + P

𝑛+1
)
𝑛

,

Δ
8
= 𝑌
2

𝑛
+ 𝑌
2

𝑛−1
− 𝑌
2𝑛
− 2𝑌
2(𝑛−1)

+ 2𝑌
𝑛+1

+ 2𝑌
𝑛

+ 2𝑌
𝑛−1

+ 6,

𝑈
𝑛
= 𝛿
𝑛

1
+ 𝛿
𝑛

2
+ 𝛿
𝑛

3
,

𝑌
𝑛
= 𝛽
𝑛

1
+ 𝛽
𝑛

2
+ 𝛽
𝑛

3
.

(47)

𝛿
1
, 𝛿
2
, 𝛿
3
are the roots of the equation−P

𝑛
𝑥
3 + (1+P

𝑛
−P
𝑛+2
)𝑥
2

+ (1−P
𝑛+1

+P
𝑛+2
)𝑥 + 1+P

𝑛+1
= 0 and 𝛽

1
, 𝛽
2
, 𝛽
3
are the roots

of the equation 𝑦3 + 𝑦2 − 1 = 0.

Proof. Thematrix F has the form

F =
(
(
(

(

P
1

P
2

⋅ ⋅ ⋅ P
𝑛

−P
𝑛

P
1
+ P
𝑛

⋅ ⋅ ⋅ P
𝑛−1

...
... d

...
−P
3
−P
4
+ P
3
⋅ ⋅ ⋅ P

2

−P
2
−P
3
+ P
2
⋅ ⋅ ⋅ P

1
+ P
𝑛

)
)
)

)

,

det F =
𝑛

∏

𝑖=1

(P
1
+ P
2
𝜅
𝑖
+ ⋅ ⋅ ⋅ + P

𝑛
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛

∑

𝑘=1

3

∑

𝑗=1

𝑎
𝑗
𝑟
𝑘

𝑗
𝜅
𝑘−1

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑎
𝑗
𝑟
𝑗
(1 − 𝑟

𝑛

𝑗
𝜅
𝑛

𝑖
)

1 − 𝑟
𝑗
𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

[
−P
𝑛
𝜅
3

𝑖
+ (1 + P

𝑛
− P
𝑛+2
) 𝜅
2

𝑖

−𝜅
3

𝑖
− 𝜅
2

𝑖
+ 1

+
(1 − P

𝑛+1
+ P
𝑛+2
) 𝜅
𝑖
+ 1 + P

𝑛+1

−𝜅
3

𝑖
− 𝜅
2

𝑖
+ 1

] ,

(48)

from Lemma 3, the Binet form (13), and (11).
Using Lemma 4 and the recurrence (9), we obtain
𝑛

∏

𝑖=1

[−P
𝑛
𝜅
3

𝑖
+ (1 + P

𝑛
− P
𝑛+2
) 𝜅
2

𝑖

+ (1 − P
𝑛+1

+ P
𝑛+2
) 𝜅
𝑖
+ 1 + P

𝑛+1
]

=
P𝑛
𝑛

2
(𝑈
2

𝑛
− 𝑈
2𝑛
+ 2𝑈
𝑛+1

+ 2𝑈
𝑛
)

+
(1 + P

𝑛+1
)P𝑛−1
𝑛

2
(𝑈
2

𝑛−1
− 2𝑈
2(𝑛−1)

+ 2𝑈
𝑛−1
)

+ (1 + P
𝑛+1
)
𝑛

+ P
𝑛−1

𝑛
(P
𝑛+2

− P
𝑛
− 4) ,

(49)

where𝑈
𝑛
= 𝛿
𝑛

1
+𝛿
𝑛

2
+𝛿
𝑛

3
, 𝛿
1
, 𝛿
2
, 𝛿
3
are the roots of the equation

−P
𝑛
𝑥
3

+(1+P
𝑛
−P
𝑛+2
)𝑥
2

+(1−P
𝑛+1

+P
𝑛+2
)𝑥+1+P

𝑛+1
= 0.

According to (32), we have the following results:

det F =
P𝑛
𝑛
Δ
5
+ (1 + P

𝑛+1
) Δ
6
+ Δ
7

Δ
8

, (50)

where

Δ
5
= 𝑈
2

𝑛
− 𝑈
2𝑛
+ 2𝑈
𝑛+1

+ 2𝑈
𝑛
,

Δ
6
= P
𝑛−1

𝑛
(𝑈
2

𝑛−1
− 2𝑈
2(𝑛−1)

+ 2𝑈
𝑛−1
) ,

Δ
7
= 2P
𝑛−1

𝑛
(P
𝑛+2

− P
𝑛
− 4) + 2(1 + P

𝑛+1
)
𝑛

,

Δ
8
= 𝑌
2

𝑛
+ 𝑌
2

𝑛−1
− 𝑌
2𝑛
− 2𝑌
2(𝑛−1)

+ 2𝑌
𝑛+1

+ 2𝑌
𝑛

+ 2𝑌
𝑛−1

+ 6.

(51)
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Theorem 9. Let G = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (P
𝑛
,P
𝑛−1
, . . . ,P

1
) be a

Padovan RSFPLR circulant matrix. Then

detG =
2(P
𝑛
+ 1)
𝑛

+ (P
𝑛
+ 1) Δ

9
+ Δ
10

2 (𝑅
𝑛+4

− 𝑅
2(𝑛−1)

) + 𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛

, (52)

where
Δ
9
= 𝑉
2

𝑛−1
− 2𝑉
2(𝑛−1)

+ 2𝑉
𝑛−1
,

Δ
10
= (2𝑉

𝑛+1
+ 𝑉
2

𝑛
+ 2𝑉
𝑛
− 𝑉
2𝑛
)

− 2 (1 + P
𝑛+1

+ P
𝑛+5
) ,

𝑉
𝑛
= 𝜁
𝑛

1
+ 𝜁
𝑛

2
+ 𝜁
𝑛

3

(53)

and 𝜁
1
, 𝜁
2
, 𝜁
3
are the roots of the equation−𝑥3+P

𝑛+1
𝑥
2

+(P
𝑛+2
+

1)𝑥 + P
𝑛
+ 1 = 0.

Proof. Thematrix G has the form

G =
(
(

(

P
𝑛

P
𝑛−1

⋅ ⋅ ⋅ P
1

−P
1

P
1
+ P
𝑛

⋅ ⋅ ⋅ P
2

...
... d

...
−P
𝑛−2

−P
𝑛−3

+ P
𝑛−2

⋅ ⋅ ⋅ P
𝑛−1

−P
𝑛−1

−P
𝑛−2

+ P
𝑛−1

⋅ ⋅ ⋅ P
1
+ P
𝑛

)
)

)

. (54)

According to Lemma 3, the Binet form (13), and (11), we have

detG =

𝑛

∏

𝑖=1

(P
𝑛
+ P
𝑛−1
𝜅
𝑖
+ ⋅ ⋅ ⋅ + P

1
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛−1

∑

𝑘=0

3

∑

𝑗=1

𝑎
𝑗
𝑟
𝑛−𝑘

𝑗
𝜅
𝑘

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑎
𝑗
𝑟
𝑛+1

𝑗
− 𝑎
𝑗
𝑟
𝑗
𝜅
𝑛

𝑖

𝑟
𝑗
− 𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

−𝜅
3

𝑖
+ P
𝑛+1
𝜅
2

𝑖
+ (P
𝑛+2

+ 1) 𝜅
𝑖
+ P
𝑛
+ 1

−𝜅
3

𝑖
+ 𝜅
𝑖
+ 1

.

(55)

Using Lemma 4 and (13), we obtain
𝑛

∏

𝑖=1

[−𝜅
3

𝑖
+ P
𝑛+1
𝜅
2

𝑖
+ (P
𝑛+2

+ 1) 𝜅
𝑖
+ P
𝑛
+ 1]

= (P
𝑛
+ 1)
𝑛

+
(P
𝑛
+ 1)

2
(𝑉
2

𝑛−1
− 2𝑉
2(𝑛−1)

+ 2𝑉
𝑛−1
)

+
1

2
(2𝑉
𝑛
+ 2𝑉
𝑛+1

+ 𝑉
2

𝑛
− 𝑉
2𝑛
) − (1 + P

𝑛+1
+ P
𝑛+5
) ,

(56)

where𝑉
𝑛
= 𝜁
𝑛

1
+𝜁
𝑛

2
+𝜁
𝑛

3
, 𝜁
1
, 𝜁
2
, 𝜁
3
are the roots of the equation

−𝑥
3

+P
𝑛+1
𝑥
2

+ (P
𝑛+2

+ 1)𝑥 +P
𝑛
+ 1 = 0. Employing (41), we

have the following results:

detG =
2(P
𝑛
+ 1)
𝑛

+ (P
𝑛
+ 1) Δ

9
+ Δ
10

2 (𝑅
𝑛+4

− 𝑅
2(𝑛−1)

) + 𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛

, (57)

where

Δ
9
= 𝑉
2

𝑛−1
− 2𝑉
2(𝑛−1)

+ 2𝑉
𝑛−1
,

Δ
10
= (2𝑉

𝑛+1
+ 𝑉
2

𝑛
+ 2𝑉
𝑛
− 𝑉
2𝑛
)

− 2 (1 + P
𝑛+1

+ P
𝑛+5
) ,

𝑉
𝑛
= 𝜁
𝑛

1
+ 𝜁
𝑛

2
+ 𝜁
𝑛

3

(58)

and 𝜁
1
, 𝜁
2
, 𝜁
3
are the roots of the equation −𝑥3 + P

𝑛+1
𝑥
2

+

(P
𝑛+2

+ 1)𝑥 + P
𝑛
+ 1 = 0.

Theorem 10. Let H = 𝑅𝑆𝐿𝑃𝐹𝐿𝑐𝑖𝑟𝑐𝑓𝑟 (P
1
,P
2
, . . . ,P

𝑛
) be a

Padovan RSLPFL circulant matrix. Then

detH =
2(P
𝑛
+ 1)
𝑛

+ (P
𝑛
+ 1) Δ

9
+ Δ
10

2 (𝑅
𝑛+4

− 𝑅
2(𝑛−1)

) + 𝑅
2

𝑛−1
+ 𝑅2
𝑛
− 𝑅
2𝑛

× (−1)
𝑛(𝑛−1)/2

,

(59)

where

Δ
9
= 𝑉
2

𝑛−1
− 2𝑉
2(𝑛−1)

+ 2𝑉
𝑛−1
,

Δ
10
= (2𝑉

𝑛+1
+ 𝑉
2

𝑛
+ 2𝑉
𝑛
− 𝑉
2𝑛
)

− 2 (1 + P
𝑛+1

+ P
𝑛+5
)

𝑉
𝑛
= 𝜁
𝑛

1
+ 𝜁
𝑛

2
+ 𝜁
𝑛

3
,

(60)

and 𝜁
1
, 𝜁
2
, 𝜁
3
are the roots of the equation−𝑥3+P

𝑛+1
𝑥
2

+(P
𝑛+2
+

1)𝑥 + P
𝑛
+ 1 = 0.

Proof. The theorem can be proved by using Theorem 9 and
(6).

2.3. Determinants of RSFPLR Circulant Matrices and RSLPFL
Circulant Matrices Involving Tribonacci Numbers

Theorem 11. Let J = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a

Tribonacci RSFPLR circulant matrix. Then

det J =
𝑇
𝑛

𝑛
Δ
11
+ 2𝑇
𝑛−1

𝑛
(𝑇
𝑛+2

− 𝑇
𝑛
− 2) + Δ

12

Δ
13

, (61)

where

Δ
11
= 𝑊
2

𝑛
−𝑊
2𝑛
+ 2𝑊
𝑛+1

+ 2𝑊
𝑛

Δ
12
= 𝑇
𝑛−1

𝑛
(1 + 𝑇

𝑛+1
) (𝑊
2

𝑛−1
− 2𝑊
2(𝑛−1)

+ 2𝑊
𝑛−1
)

+ 2(1 + 𝑇
𝑛+1
)
𝑛

Δ
13
= 2𝐸
𝑛−1

+ 𝐸
2

𝑛−1
− 2𝐸
2(𝑛−1)

+ 𝐸
2

𝑛
− 𝐸
2𝑛

+ 2𝐸
𝑛+1

+ 2𝐸
𝑛
+ 8,

𝑊
𝑛
= 𝜂
𝑛

1
+ 𝜂
𝑛

2
+ 𝜂
𝑛

3
,

𝐸
𝑛
= 𝜉
𝑛

1
+ 𝜉
𝑛

2
+ 𝜉
𝑛

3

(62)
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and 𝜂
1
, 𝜂
2
, 𝜂
3
are the roots of the equation−𝑇

𝑛
𝑥
3

−(𝑇
𝑛+2
−𝑇
𝑛
)𝑥
2

+ (1 − 𝑇
𝑛+1

+ 𝑇
𝑛+2
)𝑥 + 1 + 𝑇

𝑛+1
= 0 and 𝜉

1
, 𝜉
2
, 𝜉
3
are the roots

of the equation 𝑦3 + 𝑦2 + 𝑦 − 1 = 0.

Proof. Obviously, J has the form

J =
(
(
(

(

𝑇
1

𝑇
2

⋅ ⋅ ⋅ 𝑇
𝑛

−𝑇
𝑛

𝑇
1
+ 𝑇
𝑛

⋅ ⋅ ⋅ 𝑇
𝑛−1

...
... d

...
−𝑇
3
−𝑇
4
+ 𝑇
3
⋅ ⋅ ⋅ 𝑇

2

−𝑇
2
−𝑇
3
+ 𝑇
2
⋅ ⋅ ⋅ 𝑇
1
+ 𝑇
𝑛

)
)
)

)

. (63)

According to Lemma 3, the Binet form (16), and (15), we have

det J =
𝑛

∏

𝑖=1

(𝑇
1
+ 𝑇
2
𝜅
𝑖
+ ⋅ ⋅ ⋅ + 𝑇

𝑛
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛

∑

𝑘=1

3

∑

𝑗=1

𝑏
𝑗
𝑡
𝑘

𝑗
𝜅
𝑘−1

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑖=1

𝑏
𝑗
𝑡
𝑗
(1 − 𝑡

𝑛

𝑗
𝜅
𝑛

𝑖
)

1 − 𝑡
𝑗
𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

[
−𝑇
𝑛
𝜅
3

𝑖
− (−𝑇

𝑛
+ 𝑇
𝑛+2
) 𝜅
2

𝑖

−𝜅
3

𝑖
− 𝜅
2

𝑖
− 𝜅
𝑖
+ 1

+
(1 − 𝑇

𝑛+1
+ 𝑇
𝑛+2
) 𝜅
𝑖
+ 1 + 𝑇

𝑛+1

−𝜅
3

𝑖
− 𝜅
2

𝑖
− 𝜅
𝑖
+ 1

] .

(64)

From Lemma 4 it follows that
𝑛

∏

𝑖=1

[−𝑇
𝑛
𝜅
3

𝑖
− (−𝑇

𝑛
+ 𝑇
𝑛+2
) 𝜅
2

𝑖

+ (1 − 𝑇
𝑛+1

+ 𝑇
𝑛+2
) 𝜅
𝑖
+ 1 + 𝑇

𝑛+1
]

=
1

2
𝑇
𝑛

𝑛
(𝑊
2

𝑛
−𝑊
2𝑛
+ 2𝑊
𝑛+1

+ 2𝑊
𝑛
)

+ 𝑇
𝑛−1

𝑛
(𝑇
𝑛+2

− 𝑇
𝑛
− 2) + (1 + 𝑇

𝑛+1
)
𝑛

+
1

2
𝑇
𝑛−1

𝑛
(1 + 𝑇

𝑛+1
) (𝑊
2

𝑛−1
− 2𝑊
2(𝑛−1)

+ 2𝑊
𝑛−1
) ,

(65)

where𝑊
𝑛
= 𝜂
𝑛

1
+𝜂
𝑛

2
+𝜂
𝑛

3
, 𝜂
1
, 𝜂
2
, 𝜂
3
are the roots of the equation

−𝑇
𝑛
𝑥
3

− (−𝑇
𝑛
+ 𝑇
𝑛+2
)𝑥
2 + (1 − 𝑇

𝑛+1
+ 𝑇
𝑛+2
)𝑥 + 1 + 𝑇

𝑛+1
= 0

and
𝑛

∏

𝑖=1

(−𝜅
3

𝑖
− 𝜅
2

𝑖
− 𝜅
𝑖
+ 1)

=
1

2
[2𝐸
𝑛−1

+ 𝐸
2

𝑛−1
− 2𝐸
2(𝑛−1)

+ (𝐸
2

𝑛
− 𝐸
2𝑛
+ 2𝐸
𝑛+1

+ 2𝐸
𝑛
+ 2)] + 3,

(66)

where 𝐸
𝑛
= 𝜉
𝑛

1
+𝜉
𝑛

2
+𝜉
𝑛

3
, 𝜉
1
, 𝜉
2
, 𝜉
3
are the roots of the equation

𝑦
3

+ 𝑦
2

+ 𝑦 − 1 = 0. Consequently, we have the following
results:

det J =
𝑇
𝑛

𝑛
Δ
11
+ 2𝑇
𝑛−1

𝑛
(𝑇
𝑛+2

− 𝑇
𝑛
− 2) + Δ

12

Δ
13

, (67)

where
Δ
11
= 𝑊
2

𝑛
−𝑊
2𝑛
+ 2𝑊
𝑛+1

+ 2𝑊
𝑛

Δ
12
= 𝑇
𝑛−1

𝑛
(1 + 𝑇

𝑛+1
) (𝑊
2

𝑛−1
− 2𝑊
2(𝑛−1)

+ 2𝑊
𝑛−1
)

+ 2(1 + 𝑇
𝑛+1
)
𝑛

Δ
13
= 2𝐸
𝑛−1

+ 𝐸
2

𝑛−1
− 2𝐸
2(𝑛−1)

+ 𝐸
2

𝑛
− 𝐸
2𝑛

+ 2𝐸
𝑛+1

+ 2𝐸
𝑛
+ 8.

(68)

Theorem 12. Let K = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (𝑇
𝑛
, 𝑇
𝑛−1
, . . . , 𝑇

1
) be a

Tribonacci RSFPLR circulant matrix. Then

detK =
2𝑇
𝑛

𝑛
+ 𝑇
𝑛
Δ
14
+ Δ
15

L2
𝑛
+ L2
𝑛−1

+ L
2𝑛
− 2L
2(𝑛−1)

+ 2L
𝑛+2

− 4
, (69)

where
Δ
14
= 𝐺
2

𝑛−1
− 2𝐺
2(𝑛−1)

+ 2𝐺
𝑛−1

− 2,

Δ
15
= −4𝑇

𝑛+1
− 𝑇
𝑛+2

+ 2𝐺
𝑛
− 2𝐺
𝑛+1

+ 𝐺
2

𝑛
− 𝐺
2𝑛
,

𝐺
𝑛
= 𝜐
𝑛

1
+ 𝜐
𝑛

2
+ 𝜐
𝑛

3

(70)

and 𝜐
1
, 𝜐
2
, 𝜐
3
are the roots of the equation−𝑥3+𝑇

𝑛+1
𝑥
2

+(𝑇
𝑛+2
+

1)𝑥 + 𝑇
𝑛
= 0.

Proof. Thematrix K has the form

K =
(
(

(

𝑇
𝑛

𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
1

−𝑇
1

𝑇
1
+ 𝑇
𝑛

⋅ ⋅ ⋅ 𝑇
2

...
... d

...
−𝑇
𝑛−2

−𝑇
𝑛−3

+ 𝑇
𝑛−2

⋅ ⋅ ⋅ 𝑇
𝑛−1

−𝑇
𝑛−1

−𝑇
𝑛−2

+ 𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
1
+ 𝑇
𝑛

)
)

)

. (71)

According to Lemma 3, the Binet form (16), and (15), we
have

detK =

𝑛

∏

𝑖=1

(𝑇
𝑛
+ 𝑇
𝑛−1
𝜅
𝑖
+ ⋅ ⋅ ⋅ + 𝑇

1
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛−1

∑

𝑘=0

3

∑

𝑗=1

𝑏
𝑗
𝑡
𝑛−𝑘

𝑗
𝜅
𝑘

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑏
𝑗
𝑡
𝑛+1

𝑗
− 𝑏
𝑗
𝑡
𝑗
𝜅
𝑛

𝑖

𝑡
𝑗
− 𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

−𝜅
3

𝑖
+ 𝑇
𝑛+1
𝜅
2

𝑖
+ (𝑇
𝑛+2

+ 1) 𝜅
𝑖
+ 𝑇
𝑛

−𝜅
3

𝑖
+ 𝜅
2

𝑖
+ 𝜅
𝑖
+ 1

.

(72)
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Considering Lemma 4 and (17), we obtain
𝑛

∏

𝑖=1

[−𝜅
3

𝑖
+ 𝑇
𝑛+1
𝜅
2

𝑖
+ (𝑇
𝑛+2

+ 1) 𝜅
𝑖
+ 𝑇
𝑛
]

= 𝑇
𝑛

𝑛
+
𝑇
𝑛

2
(𝐺
2

𝑛−1
− 2𝐺
2(𝑛−1)

+ 2𝐺
𝑛−1

− 2)

+
1

2
(−4𝑇
𝑛+1

− 𝑇
𝑛+2

+ 2𝐺
𝑛
− 2𝐺
𝑛+1

+ 𝐺
2

𝑛
− 𝐺
2𝑛
) ,

(73)

where𝐺
𝑛
= 𝜐
𝑛

1
+𝜐
𝑛

2
+𝜐
𝑛

3
, 𝜐
1
, 𝜐
2
, 𝜐
3
are the roots of the equation

−𝑥
3 + 𝑇
𝑛+1
𝑥
2 + (𝑇

𝑛+2
+ 1)𝑥 + 𝑇

𝑛
= 0 and

𝑛

∏

𝑖=1

(−𝜅
3

𝑖
+ 𝜅
2

𝑖
+ 𝜅
𝑖
+ 1)

=
1

2
[(2L
𝑛
+ 2L
𝑛+1

+ L
2

𝑛
+ L
2𝑛
− 4)

+L
2

𝑛−1
− 2L
2(𝑛−1)

+ 2L
𝑛−1
]

=
1

2
[L
2

𝑛
+ L
2𝑛
+ L
2

𝑛−1
− 2L
2(𝑛−1)

+ 2L
𝑛+2

− 4] .

(74)

Consequently,

detK =
2𝑇
𝑛

𝑛
+ 𝑇
𝑛
Δ
14
+ Δ
15

L2
𝑛
+ L2
𝑛−1

+ L
2𝑛
− 2L
2(𝑛−1)

+ 2L
𝑛+2

− 4
, (75)

where
Δ
14
= 𝐺
2

𝑛−1
− 2𝐺
2(𝑛−1)

+ 2𝐺
𝑛−1

− 2,

Δ
15
= −4𝑇

𝑛+1
− 𝑇
𝑛+2

+ 2𝐺
𝑛
− 2𝐺
𝑛+1

+ 𝐺
2

𝑛
− 𝐺
2𝑛
,

𝐺
𝑛
= 𝜐
𝑛

1
+ 𝜐
𝑛

2
+ 𝜐
𝑛

3

(76)

and 𝜐
1
, 𝜐
2
, 𝜐
3
are the roots of the equation −𝑥3 + 𝑇

𝑛+1
𝑥
2 +

(𝑇
𝑛+2

+ 1)𝑥 + 𝑇
𝑛
= 0.

Theorem 13. Let L = 𝑅𝑆𝐿𝑃𝐹𝐿𝑐𝑖𝑟𝑐𝑓𝑟 (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a

Tribonacci RSLPFL circulant matrix. Then

det L =
2𝑇
𝑛

𝑛
+ 𝑇
𝑛
Δ
14
+ Δ
15

L2
𝑛
+ L2
𝑛−1

+ L
2𝑛
− 2L
2(𝑛−1)

+ 2L
𝑛+2

− 4

× (−1)
𝑛(𝑛−1)/2

,

(77)

where
Δ
14
= 𝐺
2

𝑛−1
− 2𝐺
2(𝑛−1)

+ 2𝐺
𝑛−1

− 2,

Δ
15
= −4𝑇

𝑛+1
− 𝑇
𝑛+2

+ 2𝐺
𝑛
− 2𝐺
𝑛+1

+ 𝐺
2

𝑛
− 𝐺
2𝑛
,

𝐺
𝑛
= 𝜐
𝑛

1
+ 𝜐
𝑛

2
+ 𝜐
𝑛

3

(78)

and 𝜐
1
, 𝜐
2
, 𝜐
3
are the roots of the equation−𝑥3+𝑇

𝑛+1
𝑥
2

+(𝑇
𝑛+2
+

1)𝑥 + 𝑇
𝑛
= 0.

Proof. The theorem can be proved by using Theorem 12 and
(6).

2.4. Determinants of the RSFPLR Circulant
Matrices and RSLPFL Circulant Matrices Involving
Generalized Lucas Numbers

Theorem 14. Let M = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (L
1
,L
2
, . . . ,L

𝑛
) be a

generalized Lucas RSFPLR circulant matrix. Then

detM =
L𝑛
𝑛
Δ
16
+ 2L𝑛−1
𝑛

(L
𝑛+2

− L
𝑛
− 11) + Δ

17

Δ
18

, (79)

where

Δ
16
= 𝐻
2

𝑛
− 𝐻
2𝑛
+ 2𝐻
𝑛+1

+ 2𝐻
𝑛
,

Δ
17
= L
𝑛−1

𝑛
(3 + L

𝑛+1
) (2𝐻

𝑛−1
+ 𝐻
2

𝑛−1
− 2𝐻
2(𝑛−1)

)

+ 2(3 + L
𝑛+1
)
𝑛

,

Δ
18
= 2𝐸
𝑛
+ 2𝐸
𝑛+1

+ 𝐸
2

𝑛
− 𝐸
2𝑛
+ 𝐸
2

𝑛−1
− 2𝐸
2(𝑛−1)

+ 2𝐸
𝑛−1

+ 8,

𝐻
𝑛
= 𝜇
𝑛

1
+ 𝜇
𝑛

2
+ 𝜇
𝑛

3
,

𝐸
𝑛
= 𝜉
𝑛

1
+ 𝜉
𝑛

2
+ 𝜉
𝑛

3
,

(80)

𝜇
1
,𝜇
2
,𝜇
3
are the roots of the equation−L

𝑛
𝑥
3 + (3−L

𝑛+2
+L
𝑛
)𝑥
2

+ (2−L
𝑛+1

+L
𝑛+2
)𝑥 + 3 + L

𝑛+1
= 0, and 𝜉

1
, 𝜉
2
, 𝜉
3
are the roots

of the equation 𝑦3 + 𝑦2 + 𝑦 − 1 = 0.

Proof. ThematrixM has the form

M =(

L
1

L
2

⋅ ⋅ ⋅ L
𝑛

−L
𝑛

L
1
+ L
𝑛

⋅ ⋅ ⋅ L
𝑛−1

...
... d

...
−L
3
−L
4
+ L
3
⋅ ⋅ ⋅ L

2

−L
2
−L
3
+ L
2
⋅ ⋅ ⋅ L
1
+ L
𝑛

). (81)

According to Lemma 3, the Binet form (17), and (15), we have

detM =

𝑛

∏

𝑖=1

(L
1
+ L
2
𝜅
𝑖
+ ⋅ ⋅ ⋅ + L

𝑛
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛

∑

𝑘=1

3

∑

𝑗=1

𝑡
𝑘

𝑗
𝜅
𝑘−1

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑡
𝑗
(1 − 𝑡

𝑛

𝑗
𝜅
𝑛

𝑖
)

1 − 𝑡
𝑗
𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

[
−L
𝑛
𝜅
3

𝑖
+ (3 − L

𝑛+2
+ L
𝑛
) 𝜅
2

𝑖

−𝜅
3

𝑖
− 𝜅
2

𝑖
− 𝜅
𝑖
+ 1

+
(2 − L

𝑛+1
+ L
𝑛+2
) 𝜅
𝑖
+ 3 + L

𝑛+1

−𝜅
3

𝑖
− 𝜅
2

𝑖
− 𝜅
𝑖
+ 1

] .

(82)
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From Lemma 4 and (17), we obtain

𝑛

∏

𝑖=1

[−L
𝑛
𝜅
3

𝑖
+ (3 − L

𝑛+2
+ L
𝑛
) 𝜅
2

𝑖

+ (2 − L
𝑛+1

+ L
𝑛+2
) 𝜅
𝑖
+ 3 + L

𝑛+1
]

=
1

2
L
𝑛

𝑛
(𝐻
2

𝑛
− 𝐻
2𝑛
+ 2𝐻
𝑛+1

+ 2𝐻
𝑛
)

+ L
𝑛−1

𝑛
(L
𝑛+2

− L
𝑛
− 11)

+
1

2
L
𝑛−1

𝑛
(3 + L

𝑛+1
) (𝐻
2

𝑛−1
− 2𝐻
2(𝑛−1)

+ 2𝐻
𝑛−1
)

+ (3 + L
𝑛+1
)
𝑛

,

(83)

where𝐻
𝑛
= 𝜇
𝑛

1
+𝜇
𝑛

2
+𝜇
𝑛

3
,𝜇
1
,𝜇
2
,𝜇
3
are the roots of the equation

−L
𝑛
𝑥
3 + (3 −L

𝑛+2
+L
𝑛
)𝑥
2 + (2 −L

𝑛+1
+L
𝑛+2
)𝑥 + 3 + L

𝑛+1
= 0

and
𝑛

∏

𝑖=1

(−𝜅
3

𝑖
− 𝜅
2

𝑖
− 𝜅
𝑖
+ 1)

=
1

2
[2𝐸
𝑛
+ 2𝐸
𝑛+1

+ 𝐸
2

𝑛
− 𝐸
2𝑛

+𝐸
2

𝑛−1
− 2𝐸
2(𝑛−1)

+ 2𝐸
𝑛−1

+ 8] ,

(84)

where 𝐸
𝑛
= 𝜉
𝑛

1
+𝜉
𝑛

2
+𝜉
𝑛

3
, 𝜉
1
, 𝜉
2
, 𝜉
3
are the roots of the equation

𝑦
3

+ 𝑦
2

+ 𝑦 − 1 = 0. Hence,

detM =
L𝑛
𝑛
Δ
16
+ 2L𝑛−1
𝑛

(L
𝑛+2

− L
𝑛
− 11) + Δ

17

Δ
18

, (85)

where

Δ
16
= 𝐻
2

𝑛
− 𝐻
2𝑛
+ 2𝐻
𝑛+1

+ 2𝐻
𝑛
,

Δ
17
= L
𝑛−1

𝑛
(3 + L

𝑛+1
) (2𝐻

𝑛−1
+ 𝐻
2

𝑛−1
− 2𝐻
2(𝑛−1)

)

+ 2(3 + L
𝑛+1
)
𝑛

,

Δ
18
= 2𝐸
𝑛
+ 2𝐸
𝑛+1

+ 𝐸
2

𝑛
− 𝐸
2𝑛
+ 𝐸
2

𝑛−1
− 2𝐸
2(𝑛−1)

+ 2𝐸
𝑛−1

+ 8,

𝐻
𝑛
= 𝜇
𝑛

1
+ 𝜇
𝑛

2
+ 𝜇
𝑛

3
,

𝐸
𝑛
= 𝜉
𝑛

1
+ 𝜉
𝑛

2
+ 𝜉
𝑛

3
,

(86)

𝜇
1
, 𝜇
2
, 𝜇
3
are the roots of the equation −L

𝑛
𝑥
3 + (3 − L

𝑛+2
+

L
𝑛
)𝑥
2 + (2 − L

𝑛+1
+ L
𝑛+2
)𝑥 + 3 + L

𝑛+1
= 0, and 𝜉

1
, 𝜉
2
, 𝜉
3
are

the roots of the equation 𝑦3 + 𝑦2 + 𝑦 − 1 = 0.

Theorem 15. Let N = 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 (L
𝑛
,L
𝑛−1
, . . . ,L

1
) be a

generalized Lucas RSFPLR circulant matrix. Then

detN =
Δ
19
+ (L
𝑛
+ 3) Δ

20
+ 2(L

𝑛
+ 3)
𝑛

− 2L
𝑛

L2
𝑛−1

− 2L
2(𝑛−1)

+ L2
𝑛
+ L
2𝑛
+ 2L
𝑛+2

− 4
, (87)

where

Δ
19
= 𝐾
2

𝑛
− 𝐾
2𝑛
+ 2𝐾
𝑛+1

+ 2𝐾
𝑛
− 4L
𝑛+1

− 2L
𝑛+2

+ 2,

Δ
20
= 𝐾
2

𝑛−1
− 2𝐾
2(𝑛−1)

+ 2𝐾
𝑛−1
,

(88)

𝐾
𝑛
= ]𝑛
1
+ ]𝑛
2
+ ]𝑛
3
, ]
1
, ]
2
, ]
3
are the roots of the equation −𝑥3 +

(L
𝑛+1

− 1)𝑥
2

+ (L
𝑛+2

− 1)𝑥 + L
𝑛
+ 3 = 0.

Proof. Thematrix N has the form

N =
(
(
(

(

L
𝑛

L
𝑛−1

⋅ ⋅ ⋅ L
1

−L
1

L
1
+ L
𝑛

⋅ ⋅ ⋅ L
2

...
... d

...
−L
𝑛−2

−L
𝑛−3

+ L
𝑛−2

⋅ ⋅ ⋅ L
𝑛−1

−L
𝑛−1

−L
𝑛−2

+ L
𝑛−1

⋅ ⋅ ⋅ L
1
+ L
𝑛

)
)
)

)

. (89)

According to Lemma 3, (17), and (15), we have

detN =

𝑛

∏

𝑖=1

(L
𝑛
+ L
𝑛−1
𝜅
𝑖
+ ⋅ ⋅ ⋅ + L

1
𝜅
𝑛−1

𝑖
)

=

𝑛

∏

𝑖=1

[

[

𝑛−1

∑

𝑘=0

3

∑

𝑗=1

𝑡
𝑛−𝑘

𝑗
𝜅
𝑘

𝑖

]

]

=

𝑛

∏

𝑖=1

[

[

3

∑

𝑗=1

𝑡
𝑛+1

𝑗
− 𝑡
𝑗
𝜅
𝑛

𝑖

𝑡
𝑗
− 𝜅
𝑖

]

]

=

𝑛

∏

𝑖=1

[
−𝜅
3

𝑖
+ (L
𝑛+1

− 1) 𝜅
2

𝑖

−𝜅
3

𝑖
+ 𝜅
2

𝑖
+ 𝜅
𝑖
+ 1

+
(L
𝑛+2

− 1) 𝜅
𝑖
+ L
𝑛
+ 3

−𝜅
3

𝑖
+ 𝜅
2

𝑖
+ 𝜅
𝑖
+ 1

] .

(90)

By Lemma 4 and the Binet form (17), we obtain

𝑛

∏

𝑖=1

[−𝜅
3

𝑖
+ (L
𝑛+1

− 1) 𝜅
2

𝑖
+ (L
𝑛+2

− 1) 𝜅
𝑖
+ L
𝑛
+ 3]

=
1

2
(𝐾
2

𝑛
− 𝐾
2𝑛
+ 2𝐾
𝑛+1

+ 2𝐾
𝑛

−2L
𝑛+1

− 2L
𝑛+1

− 2L
𝑛+2

+ 2)

+
1

2
(L
𝑛
+ 3) (𝐾

2

𝑛−1
− 2𝐾
2(𝑛−1)

+ 2𝐾
𝑛−1
)

+ (L
𝑛
+ 3)
𝑛

− L
𝑛
,

(91)
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where𝐾
𝑛
= ]𝑛
1
+]𝑛
2
+]𝑛
3
, ]
1
, ]
2
, ]
3
are the roots of the equation

−𝑥
3 + (L

𝑛+1
− 1)𝑥
2 + (L

𝑛+2
− 1)𝑥 + L

𝑛
+ 3 = 0 and

𝑛

∏

𝑖=1

(−𝜅
3

𝑖
+ 𝜅
2

𝑖
+ 𝜅
𝑖
+ 1)

=
1

2
(2L
𝑛−1

+ L
2

𝑛−1
− 2L
2(𝑛−1)

)

+
1

2
(2L
𝑛
+ L
2

𝑛
+ L
2𝑛
+ 2L
𝑛+1

− 4)

=
1

2
[L
2

𝑛−1
− 2L
2(𝑛−1)

+ L
2

𝑛
+ L
2𝑛
+ 2L
𝑛+2

− 4] .

(92)

Thus,

detN =
Δ
19
+ (L
𝑛
+ 3) Δ

20
+ 2(L

𝑛
+ 3)
𝑛

− 2L
𝑛

L2
𝑛−1

− 2L
2(𝑛−1)

+ L2
𝑛
+ L
2𝑛
+ 2L
𝑛+2

− 4
, (93)

where

Δ
19
= 𝐾
2

𝑛
− 𝐾
2𝑛
+ 2𝐾
𝑛+1

+ 2𝐾
𝑛
− 4L
𝑛+1

− 2L
𝑛+2

+ 2,

Δ
20
= 𝐾
2

𝑛−1
− 2𝐾
2(𝑛−1)

+ 2𝐾
𝑛−1
,

𝐾
𝑛
= ]𝑛
1
+ ]𝑛
2
+ ]𝑛
3

(94)

and ]
1
, ]
2
, ]
3
are the roots of the equation −𝑥3+(L

𝑛+1
−1)𝑥
2

+

(L
𝑛+2

− 1)𝑥 + L
𝑛
+ 3 = 0.

Theorem 16. Let P = 𝑅𝑆𝐿𝑃𝐹𝐿𝑐𝑖𝑟𝑐𝑓𝑟 (L
1
,L
2
, . . . ,L

𝑛
) be a

generalized Lucas RSLPFL circulant matrix. Then

detP =
Δ
19
+ (L
𝑛
+ 3) Δ

20
+ 2(L

𝑛
+ 3)
𝑛

− 2L
𝑛

L2
𝑛−1

− 2L
2(𝑛−1)

+ L2
𝑛
+ L
2𝑛
+ 2L
𝑛+2

− 4

× (−1)
𝑛(𝑛−1)/2

,

(95)

where

Δ
19
= 𝐾
2

𝑛
− 𝐾
2𝑛
+ 2𝐾
𝑛+1

+ 2𝐾
𝑛
− 4L
𝑛+1

− 2L
𝑛+2

+ 2,

Δ
20
= 𝐾
2

𝑛−1
− 2𝐾
2(𝑛−1)

+ 2𝐾
𝑛−1
,

𝐾
𝑛
= ]𝑛
1
+ ]𝑛
2
+ ]𝑛
3

(96)

and ]
1
, ]
2
, ]
3
are the roots of the equation −𝑥3 + (L

𝑛+1
− 1)𝑥
2

+ (L
𝑛+2

− 1)𝑥 + L
𝑛
+ 3 = 0.

Proof. The theorem can be proved by using Theorem 15 and
(6).

3. Conclusion

The determinant problems of the RSFPLR circulant matri-
ces and RSLPFL circulant matrices involving the Perrin,
Padovan, Tribonacci, and the generalized Lucas number

are considered in this paper. The explicit determinants are
presented by using some terms of these numbers. The
techniques used herein are based on the inverse factorization
of polynomial. It is important to develop new theories
and methods and to modify and refine the well-known
techniques, for solving differential equations. On the basis of
existing application situation [1–11], we will exploit solving
some differential equations based on the RSFPLR circulant
matrices and RSLPFL circulant matrices.
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