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As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine) neural networks are
studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of
ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by usingOS-ELM (online
sequential extreme learning machine) neural networks. Based on data scope division, the problem that training process of ELM
neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data
corresponding to this rangewill be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when
the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the
neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive
control) will be used to improve the control performance. Simulation results are included to complement the theoretical results.

1. Introduction

Modeling and controlling of nonlinear systems are always
the main research field in control theory and engineering
[1–3]; great progresses in this field have been made in the
past 30 years, but many problems still exist. In the actual
industrial process, exact mathematical models are always
very difficult to get even with the existence of huge numbers
of input-output or state data. Therefore, data based control
of nonlinear systems has been concerned especially in recent
10 years. Artificial neural network has been recognized as a
powerful tool for the identification and control of nonlinear
systems since it was applied to nonlinear system [4]. Numer-
ous learning algorithms have been proposed for the training
of the network, among which BP algorithm [5] and RBF
algorithm are used very frequently. But it is generally known
that the BP faces some bottlenecks such as trivial manual
parameters tuning (leaning rate, learning epochs, etc.), local
minima, and poor computational scalability. Recently, a
new learning algorithm for single-hidden-layer feedforward
neural networks (SLFNs) named extreme learning machine

(ELM) has been proposed by Huang et al. [6, 7]. The essence
of ELM is that input weights and bias of hidden neurons are
generated randomly; the hidden layer of SLFNs need not be
tuned [8]. Furthermore, based on least-square scheme, the
smallest norm solution can be calculated analytically. Given
that ELM algorithm is free of trivial iterative tuning and
learning process is implemented through simple generalized
inverse operation, it can achieve a much faster learning speed
than other traditional algorithms.

The training of batch processing ELM algorithms can be
realized only after all the training samples are ready. But in
actual application, the training data may come one by one or
chunk by Huang et al. [8]. Therefore, Liang et al. proposed
the OS-ELM [9] algorithmwhich can adjust its output weight
adaptively when new observations are received. Unlike the
batch learning algorithms, as soon as the learning process for
particular training data is complemented, the data will be dis-
carded; thus it avoids retraining of the previous observations
[8].

To the best of our knowledge, a large number of
researches about ELM are focused on the regression and
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classification [10–12]. There are only few of published results
regarding identification and control of nonlinear dynamic
systems. In this paper, our interest will be kept in the identifi-
cation and control of nonlinear dynamic plants by using OS-
ELM neural networks. The adaptive controller based on OS-
ELMneural networkmodel can be constructed. In simulation
process, on one hand, since the training process of OS-
ELM neural network is sensitive to the initial training data,
different regions of the initial data can cause large diversity
of control result. Thus, large numbers of initial data can be
classified previously into multiple regions. Then, according
to the range of expected output of the controlled plant, we
can choose the corresponding initial data to initialize OS-
ELM neural networks. On the other hand, multiple model
switching strategy will be used for the adaptive control by
using OS-ELM neural network when a system with jumping
parameters is controlled. Based on the two aspects which are
maintained in the above, OS-ELM algorithm is extended to
the field of control.

The paper is organized as follows. The structure of
ELM neural network and OS-ELM algorithm are introduced
in Section 2. Then, adaptive control of nonlinear dynamic
system by using OS-ELM is stated in Section 3. Considering
that OS-ELM is sensitive to the initial training data, the
relationship between control performance and the selection
of the initial training data is discussed for OS-ELM neural
network; furthermore, simulation results about OS-ELM
control and multiple OS-ELMmodels control are also shown
in Section 4. Finally some conclusions are drawn in Section 5.

2. ELM Neural Networks

Let us consider standard single-hidden-layer feedforward
neural networks (SLFNs) with 𝐿 hidden nodes and activation
function 𝐺(a

𝑖
, 𝑏
𝑖
, x); the structure is shown in Figure 1. Given

𝑁 arbitrary distinct samples {(x
𝑖
, t
𝑖
)}
𝑁

𝑖=1
⊂ R𝑛 ×R𝑚, then the

network can be mathematically modeled as

𝑓
𝐿 (x) =

𝐿

∑

𝑖=1

𝛽
𝑖
h
𝑖 (x) =

𝐿

∑

𝑖=1

𝛽
𝑖
𝐺 (a
𝑖
, 𝑏
𝑖
, x) , (1)

where a
𝑖
is the weight vector connecting the 𝑖th hidden

neuron and the input neurons, 𝛽
𝑖
is the weight vector

connecting the 𝑖th hidden neuron and the output neurons,
𝑏
𝑖
is the bias of the 𝑖th hidden neuron, and 𝐺(a

𝑖
, 𝑏
𝑖
, x) denotes

the output function of the 𝑖th hidden node which is bounded.
To approximate these 𝑁 samples {(x

𝑖
, t
𝑖
)}
𝑁

𝑖=1
⊂ R𝑛 ×R𝑚

with zero error is to search for a solution of (a
𝑖
, 𝑏
𝑖
) and 𝛽

𝑖

satisfying

𝑓
𝐿
(x
𝑗
) =

𝐿

∑

𝑖=1

𝛽
𝑖
𝐺(a
𝑖
, 𝑏
𝑖
, x
𝑗
) = t
𝑗

𝑗 = 1, 2, . . . , 𝑁. (2)

The above𝑁 equation can be written compactly as

H𝛽 = T, (3)

whereH is the hidden-layer output matrix

H =
[
[

[

h (x
1
)

...
h (x
𝑁
)

]
]

]

=
[
[

[

𝐺 (a
1
, 𝑏
1
, x
1
) ⋅ ⋅ ⋅ 𝐺 (a

𝐿
, 𝑏
𝐿
, x
1
)

...
...

𝐺 (a
1
, 𝑏
1
, x
𝑁
) ⋅ ⋅ ⋅ 𝐺 (a

𝐿
, 𝑏
𝐿
, x
𝑁
)

]
]

]𝑁×𝐿

𝛽 =
[
[

[

𝛽
𝑇

1

...
𝛽
𝑇

𝐿

]
]

]𝐿×𝑚

, T =
[
[

[

t𝑇
1

...
t𝑇
𝑁

]
]

]𝑁×𝑚

.

(4)

The Essence of ELM. The hidden layer of ELM need not be
iteratively tuned. According to feedforward neural network
theory both the training error ‖H𝛽 − T‖2 and the norm of
weights ‖𝛽‖ need to be minimized [8].

2.1. Basic ELM. The hidden node parameters (a
𝑖
, 𝑏
𝑖
) remain

fixed after being randomly generated.The training of a SLFNs
is equivalent to find a least-square solution 𝛽 of the linear
systemH𝛽 = T; that is,

󵄩󵄩󵄩󵄩󵄩
H𝛽̂ − T󵄩󵄩󵄩󵄩󵄩 = min

𝛽

󵄩󵄩󵄩󵄩H𝛽 − T󵄩󵄩󵄩󵄩 . (5)

The smallest norm least-squares solution of the above linear
system is

𝛽̂ = H+T, (6)

where H+ can be obtained by H+ = (H𝑇H)
−1H𝑇, if H𝑇H is

nonsingular, and H+ = H𝑇(HH𝑇)−1, if HH𝑇 is nonsingular
[8]. To summarize, the learning process can be demonstrated
as the following.

Basic ELM Algorithm. One is given a training set

{(x
𝑖
, t
𝑖
)}
𝑁

𝑖=1
⊂ R𝑛×R𝑚, output function𝐺(a

𝑖
, 𝑏
𝑖
, x) and

hidden node number 𝐿.

Step 1. Randomly assign hidden node parameters (a
𝑖
, 𝑏
𝑖
), 𝑖 =

1, . . . , 𝐿

Step 2. Calculate the hidden-layer output matrixH.

Step 3. Calculate the output weight 𝛽 using the equation 𝛽 =
H+T, where T = [t1 ⋅ ⋅ ⋅ t

𝑁]
𝑇.

2.2. OS-ELM. As mentioned above in Section 2.1, one of the
solutions of the output weight vector 𝛽 is

𝛽 = (H𝑇H)
−1

H𝑇T. (7)

This algorithm just needs one step learning. Indeed, basic
ELM algorithm is a batch learning algorithm. However, in
actual application environment the training data may come
one by one or chunk by Huang et al. [8]. Therefore, Liang
et al. proposed the OS-ELM [9] algorithm which can adjust
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Figure 1: Single-hidden-layer feedforward networks.

its output weight 𝛽 adaptively when new observations are
received. The algorithm can be summarized as follows.

OS-ELM Algorithm. One is given a training set

𝑆 = {(x
𝑖
, t
𝑖
) | x
𝑖
∈ R𝑛, t

𝑖
∈ R𝑚, 𝑖 = 1, . . .}, output

function 𝐺(a
𝑖
, 𝑏
𝑖
, x), and hidden node number 𝐿.

Step 1 Initialization Phase. From the given training set 𝑆, a
small chunk of training data 𝑆

0
= {(x

𝑖
, t
𝑖
)}
𝑁0

𝑖=1
is used to

initialize the learning, where,𝑁
0
≥ 𝐿.

(a) Assign random parameters of hidden nodes (a
𝑖
, 𝑏
𝑖
),

where 𝑖 = 1, . . . , 𝐿.
(b) Calculate the initial hidden-layer output matrixH

0
.

(c) Calculate the initial output weight 𝛽
0

= P
0
H𝑇
0
T
0
,

where P
0
= (H𝑇
0
H
0
)
−1 and T

0
= [t1 ⋅ ⋅ ⋅ t

𝑁0
]
𝑇.

(d) Set 𝑘 = 0, where 𝑘 is the number of chunks which is
trained currently.

Step 2 Sequential Learning Phase. (a) Present the (𝑘 + 1)th

chunk of new observations 𝑆
𝑘+1

= {(x
𝑖
, t
𝑖
)}
∑
𝑘+1

𝑗=0
𝑁𝑗

𝑖=(∑
𝑘

𝑗=0
𝑁𝑗)+1

; here
𝑁
𝑘+1

denotes the number of observations in the (𝑘 + 1)th
chunk.

(b) Calculate the partial hidden-layer output matrixH
𝑘+1

for the (𝑘 + 1)th chunk of data 𝑆
𝑘+1

:

H
𝑘+1

=

[
[
[
[

[

𝐺(a
1
, 𝑏
1
, x
(∑
𝑘

𝑗=0
𝑁𝑗)+1

) ⋅ ⋅ ⋅ 𝐺 (a
𝐿
, 𝑏
𝐿
, x
(∑
𝑘

𝑗=0
𝑁𝑗)+1

)

... ⋅ ⋅ ⋅
...

𝐺(a
1
, 𝑏
1
, x
∑
𝑘+1

𝑗=0
𝑁𝑗
) ⋅ ⋅ ⋅ 𝐺 (a

𝐿
, 𝑏
𝐿
, x
∑
𝑘+1

𝑗=0
𝑁𝑗
)

]
]
]
]

]

.

(8)

Set T
𝑘+1

= [t
(∑
𝑘

𝑗=0
𝑁𝑗)+1

, . . . , t
∑
𝑘+1

𝑗=0
𝑁𝑗
]
𝑇.

(c) Calculate the output weight

P
𝑘+1

= P
𝑘
− P
𝑘
H𝑇
𝑘+1

(I +H
𝑘+1

P
𝑘
H𝑇
𝑘+1

)
−1

H
𝑘+1

P
𝑘

𝛽
𝑘+1

= 𝛽
𝑘
+ P
𝑘+1

H𝑇
𝑘+1

(T
𝑘+1

−H
𝑘+1

𝛽
𝑘
) .

(9)

(d) Set 𝑘 = 𝑘 + 1. Go to Step 2(a).

It can be seen from the aboveOS-ELMalgorithm thatOS-
ELM becomes the batch ELMwhen𝑁

0
= 𝑁. For the detailed

description, readers can refer to Liang et al. [9]. From (9), it
can be seen that theOS-ELM algorithm is similar to recursive
least-squares (RLS) in [13]. Hence, all the convergence results
of RLS can be applied here.

3. Adaptive Control by Using OS-ELM
Neural Networks

3.1. Identification. Consider the following SISO nonlinear
discrete-time system:

𝑦
𝑘+1

= 𝑓
0 (⋅) + 𝑔

0 (⋅) 𝑢𝑘−𝑑+1, (10)

where𝑓
0
and 𝑔
0
are infinitely differentiable functions defined

on a compact set of 𝐹 ⊂ R𝑛+𝑚, 𝐺 ⊂ R𝑛+𝑚. Consider

𝑦
𝑘−𝑛+1

, . . . , 𝑦
𝑘
, 𝑢
𝑘−𝑑−𝑚+1

, . . . , 𝑢
𝑘−𝑑

. (11)

𝑦 is the output, 𝑢 is the input,𝑚 ≤ 𝑛, 𝑑 is the relative degree of
the system, and𝑔

0
is bounded away from zero.The arguments

of 𝑓
0
and 𝑔

0
are real variables. In this paper, we consider a

simplified formwith𝑑 = 1.Then the SISOnonlinear discrete-
time system can be described as

𝑦
𝑘+1

= 𝑓
0
[x
𝑘
] + 𝑔
0
[x
𝑘
] 𝑢
𝑘
, (12)

where x
𝑘

= [𝑦
𝑘−𝑛+1

, . . . , 𝑦
𝑘
, 𝑢
𝑘−𝑚

, . . . , 𝑢
𝑘−1

]. Let us first
assume that there exist exact weightsw∗ and k∗, the functions



4 Abstract and Applied Analysis

𝑓[x
𝑘
,w∗] and 𝑔[x

𝑘
, k∗]which can approximate the functions

𝑓
0
[x
𝑘
] and 𝑔

0
[x
𝑘
] without unmodelled dynamic.The nonlin-

ear system (12) can be described by the neural networks as
follows:

𝑦
𝑘+1

= 𝑓 [x
𝑘
,w∗] + 𝑔 [x

𝑘
, k∗] 𝑢

𝑘
, (13)

where the functions 𝑓[⋅, ⋅] and 𝑔[⋅, ⋅] can be selected as OS-
ELM neural networks; that is,

𝑓 [x
𝑘
,w∗] =

𝐿

∑

𝑖=1

w∗
𝑖
𝐺 (a
𝑖
, 𝑏
𝑖
, x
𝑘
)

𝑔 [x
𝑘
, k∗] =

2𝐿

∑

𝑖=𝐿

k∗
𝑖
𝐺 (a
𝑖
, 𝑏
𝑖
, x
𝑘
) .

(14)

a
𝑖
, 𝑏
𝑖
can be generated randomly and kept in constant. Then

(13) can be rewritten as

𝑦
𝑘+1

= Φ
𝑘
𝜃
∗

0
, (15)

where Φ
𝑘
= [𝐺(a

1
, 𝑏
1
, x
𝑘
) ⋅ ⋅ ⋅ 𝐺(a

𝐿
, 𝑏
𝐿
, x
𝑘
)𝐺(a
𝐿+1

, 𝑏
𝐿+1

, x
𝑘
)𝑢
𝑘

⋅ ⋅ ⋅ 𝐺(a
2𝐿
, 𝑏
2𝐿
, x
𝑘
)𝑢
𝑘
], 𝜃∗
0
= [w∗ k∗]𝑇.

Let w
𝑘
and k
𝑘
denote the estimates of w∗ and k∗ at time

𝑘. The neural network identification model can be shown as
follows:

𝑦
𝑘+1

= 𝑓 [x
𝑘
,w
𝑘
] + 𝑔 [x

𝑘
, k
𝑘
] 𝑢
𝑘

(16)

that is,

𝑦
𝑘+1

= Φ
𝑘
𝜃
𝑘
, (17)

where 𝜃
𝑘
= [

w𝑘
k𝑘 ]. Define 𝑒

∗

𝑘+1
as

𝑒
∗

𝑘+1
= 𝑦
𝑘+1

− 𝑦
𝑘+1

= 𝑦
𝑘+1

−Φ
𝑘
𝜃
𝑘
. (18)

Referring to the OS-ELM algorithm, taking into account
the existence of time-series in control system, the on-line
observation data comes one by one; if we choose𝑁

𝑗
≡ 1, the

updating ruler can be rewritten as

P
𝑘
= P
𝑘−1

−
P
𝑘−1
Φ𝑇
𝑘
Φ
𝑘
P
𝑘−1

1 +Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘

𝜃
𝑘+1

= 𝜃
𝑘
+ P
𝑘
Φ
𝑇

𝑘
𝑒
∗

𝑘+1
,

(19)

where 𝜃
0
= 𝜃
0
and P

0
= (Φ𝑇
0
Φ
0
)
−1 can be obtained in OS-

ELM Step 1 Initialization Phase.
Due to the existence of unmodelling dynamics, the

nonlinear system (15) can be represented as

𝑦
𝑘+1

= Φ
𝑘
𝜃
∗

0
+ Δ
𝑓
, (20)

where Δ
𝑓
is the model error and satisfies sup |Δ

𝑓
| ≤ 𝜀. Then

a deed-zone algorithm will be used:

P
𝑘
= P
𝑘−1

−
𝜎
𝑘
P
𝑘−1
Φ𝑇
𝑘
Φ
𝑘
P
𝑘−1

1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘

(21)

𝜃
𝑘+1

= 𝜃
𝑘
+ 𝜎
𝑘
P
𝑘
Φ
𝑇

𝑘
𝑒
∗

𝑘+1
, (22)

where

𝜎
𝑘
=

{{{

{{{

{

1

󵄨󵄨󵄨󵄨𝑒
∗

𝑘+1

󵄨󵄨󵄨󵄨

2

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
> 𝜀
2

0 otherwise.
(23)

Theorem 1. Given the system described by (20), if the updating
ruler described by (21)–(23), we have the following results:

(i)
󵄩󵄩󵄩󵄩󵄩
𝜃
∗

0
− 𝜃
𝑘

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜃
∗

0
− 𝜃
𝑘−1

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜃
∗

0
− 𝜃
1

󵄩󵄩󵄩󵄩󵄩

2

, (24)

(ii)

lim
𝑁→∞

𝑁

∑

𝑘=1

𝜎
𝑘
[

[

𝑒
∗2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
− 𝜀
2]

]

< ∞ (25)

and this implies

(a)

lim
𝑘→∞

𝜎
𝑘
[

[

𝑒
∗2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
− 𝜀
2]

]

= 0, (26)

(b)

lim
𝑘→∞

sup
𝑒
∗2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
≤ 𝜀
2
. (27)

For the detailed proof of Theorem 1, readers can refer to [14];
it can also be found in the appendix.

3.2. Adaptive Control Using OS-ELM. In this section we
discuss the adaptive control problem using OS-ELM neural
networks. For the system described as

𝑦
𝑘+1

= 𝑓
0
[x
𝑘
] + 𝑔
0
[x
𝑘
] 𝑢
𝑘
, (28)

OS-ELM neural network identification model as

𝑦
𝑘+1

= 𝑓 [x
𝑘
,w
𝑘
] + 𝑔 [x

𝑘
, k
𝑘
] 𝑢
𝑘
, (29)

control 𝑢
𝑘
can be given as below:

𝑢
𝑘
=
−𝑓 [x

𝑘
,w
𝑘
] + 𝑟
𝑘+1

𝑔 [x
𝑘
, k
𝑘
]

, (30)

where 𝑟
𝑘+1

appears as desired output.The control𝑢
𝑘
is applied

to both the plant and the neural network model.

3.2.1. OS-ELM Adaptive Control Algorithm

Step 1 Initialization Phase. Given a random input sequence
𝑢
𝑘
, where 𝑘 = 1, . . . , 𝑁

0
, from the controlled plant (12), we can

get a small chunk of off-line training data 𝑆
0
= {(x
𝑖
, 𝑦
𝑖+1

)}
𝑁0

𝑖=1
⊂

R𝑛 ×R1. Given output function 𝐺(a
𝑖
, 𝑏
𝑖
, x) and hidden node

number 2𝐿 which are used to initialize the learning, where
𝑁
0
≥ 2𝐿.
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(a) Assign random parameters of hidden nodes (a
𝑖
, 𝑏
𝑖
),

where 𝑖 = 1, . . . , 2𝐿.

(b) Calculate the initial hidden-layer output matrixΦ
0
:

Φ
0
=
[
[

[

𝜙
1

...
𝜙
𝑁0

]
]

]𝑁0×2𝐿

, (31)

where 𝜙
𝑖
= [𝐺(a

1
, 𝑏
1
, x
𝑖
) ⋅ ⋅ ⋅ 𝐺(a

1
, 𝑏
1
, x
𝑖
)𝐺(a
𝐿+1

, 𝑏
𝐿+1

,

x
𝑖
)𝑢
𝑖
⋅ ⋅ ⋅ 𝐺(a

2𝐿
, 𝑏
2𝐿
, x
𝑖
)𝑢
𝑖
], 𝑖 = 1, . . . , 𝑁

0
.

(c) Calculate the initial output weight as follows:

𝜃
0
= P
0
Φ
𝑇

0
Y
0
, (32)

where P
0

= (Φ𝑇
0
Φ
0
)
−1

, 𝜃
0

= [
w0
k0 ], and Y

0
=

[𝑦2 ⋅ ⋅ ⋅ 𝑦
𝑁0+1

]
𝑇.

(d) Set 𝑘 = 𝑁
0
+ 1.

Step 2 Adaptive Control Phase. (a) Calculate the control 𝑢
𝑘

and the output of the plant 𝑦
𝑘+1

:

𝑢
𝑘
=
−𝑓 [x

𝑘
,w
𝑘
] + 𝑟
𝑘+1

𝑔 [x
𝑘
, k
𝑘
]

𝑦
𝑘+1

= 𝑓
0
[x
𝑘
] + 𝑔
0
[x
𝑘
] 𝑢
𝑘
,

(33)

where 𝜃
𝑁0+1

= [
w𝑁0+1
k𝑁0+1 ] ≜ 𝜃

0
, x
𝑘
= [𝑦
𝑘−𝑛+1

, . . . , 𝑦
𝑘
, 𝑢
𝑘−𝑚

, . . . ,

𝑢
𝑘−1

].
(b) Calculate the partial hidden-layer output matrix Φ

𝑘

for the 𝑘th observation data:

Φ
𝑘
= [𝐺 (a

1
, 𝑏
1
, x
𝑘
) ⋅ ⋅ ⋅ 𝐺 (a

𝐿
, 𝑏
𝐿
, x
𝑘
) 𝐺 (a

𝐿+1
, 𝑏
𝐿+1

, x
𝑘
) 𝑢
𝑘

⋅ ⋅ ⋅ 𝐺 (a
2𝐿
, 𝑏
2𝐿
, x
𝑘
) 𝑢
𝑘] . (34)

(c) Calculate the output weight

P
𝑘
= P
𝑘−1

−
𝜎
𝑘
P
𝑘−1
Φ𝑇
𝑘
Φ
𝑘
P
𝑘−1

1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘

𝜃
𝑘+1

= 𝜃
𝑘
+ 𝜎
𝑘
P
𝑘
Φ
𝑇

𝑘
𝑒
∗

𝑘+1
,

(35)

where P
𝑁0

≜ P
0

𝜎
𝑘
=

{{{

{{{

{

1

󵄨󵄨󵄨󵄨𝑒
∗

𝑘+1

󵄨󵄨󵄨󵄨

2

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
> 𝜀
2

0 otherwise.
(36)

(d) Set 𝑘 = 𝑘 + 1. Go to Step 2(a).

3.3. Stability Analysis. Define the error between the neural
network identification state and the reference model state as

𝑒
𝑘+1

= 𝑦
𝑘+1

− 𝑟
𝑘+1

; (37)

that is,

𝑒
𝑘+1

= 𝑓 [x
𝑘
,w
𝑘
] + 𝑔 [x

𝑘
, k
𝑘
] 𝑢
𝑘
− 𝑟
𝑘+1

. (38)

By (30), we have

𝑒
𝑘+1

= 𝑟
𝑘+1

− 𝑟
𝑘+1

= 0. (39)

The control error is defined as

𝑒
𝑘+1

= 𝑦
𝑘+1

− 𝑟
𝑘+1

; (40)

that is,

𝑒
𝑘+1

= 𝑦
𝑘+1

− 𝑦
𝑘+1

+ 𝑦
𝑘+1

− 𝑟
𝑘+1

, (41)

so,

𝑒
𝑘+1

= 𝑒
∗

𝑘+1
+ 𝑒
𝑘+1

= 𝑒
∗

𝑘+1
. (42)

Using the properties of the parameter estimation algorithm
stated inTheorem 1, we immediately have

lim
𝑘→∞

𝜎
𝑘
[

[

𝑒
2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
− 𝜀
2]

]

= 0. (43)

Because the activation function𝐺(a
𝑖
, 𝑏
𝑖
, x) is bounded, then𝑓

and𝑔 are bounded. If 𝑢
𝑘
is chosen as (30), then 𝑢

𝑘
is bounded;

henceΦ
𝑘
is bounded. From (43) we have

lim
𝑘→∞

sup
𝑒
2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
≤ 𝜀
2
. (44)

Considering thatΦ
𝑘
is bounded, then 𝑒

2

𝑘+1
is bounded. From

(40), 𝑦
𝑘+1

= 𝑒
𝑘+1

+ 𝑟
𝑘+1

, 𝑟
𝑘
is bounded; then 𝑦

𝑘+1
is bounded

too.
To sum up, we find that OS-ELM neural networks have

the capability of identification of and controling nonlinear
systems. However, as we know, the conventional adaptive
control systems are usually based on a fixed or slowly adaptive
model. It cannot react quickly to abrupt changes and will
result in large transient errors before convergence. In this
case, MMAC algorithm is presented as a useful tool. We
can construct multiple OS-ELM neural networks to cover
the uncertainty of the parameters of the plant by initializing
OS-ELM neural network, respectively, in different position.
Meanwhile, an effective index function can be used to select
the optimal identification model and the optimal controller.
MMACbased onOS-ELMalgorithm can improve the control
property of the system greatly and avoid the influence of
jumping parameter on the plant.
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3.4. Multiple Model Adaptive Control. Multiple model adap-
tive control can be regarded as an extension of conventional
indirect adaptive control. The control system contains 𝑀

identification models, denoted by 𝐼
𝑙
, 𝑙 ∈ {1, 2, . . . ,𝑀}.

According to (16) and (30), multiple models set can be est-
ablished as the following:

𝐼
𝑙
: 𝑦
𝑙

𝑘+1
= 𝑓
𝑙
[x
𝑘
,w𝑙
𝑘
] + 𝑔
𝑙
[x
𝑘
, k𝑙
𝑘
] 𝑢
𝑙

𝑘
, (45)

where

𝑓
𝑙
[x
𝑘
,w𝑙
𝑘
] =

𝐿

∑

𝑖=1

𝑤
𝑙

𝑖
𝐺 (a
𝑖
, 𝑏
𝑖
, x
𝑘
)

𝑔
𝑙
[x
𝑘
, k𝑙
𝑘
] =

2𝐿

∑

𝑖=𝐿

V𝑙
𝑖
𝐺 (a
𝑖
, 𝑏
𝑖
, x
𝑘
) .

(46)

The control 𝑢𝑙
𝑘
can be rewritten as

𝑢
𝑙

𝑘
=

−𝑓
𝑙
[x
𝑘
,w𝑙
𝑘
] + 𝑟
𝑘+1

𝑔𝑙 [x
𝑘
, k𝑙
𝑘
]

. (47)

Define 𝑒∗𝑙
𝑘+1

≜ 𝑦
𝑘+1

−𝑦
𝑙

𝑘+1
. In any instant, one of the models 𝐼

𝑙

is selected by a switching rule, and the corresponding control
input is used to control the plant. Referring toTheorem 1 the
index function has the form

𝐽
𝑙

𝑘
=

𝑘

∑

𝜏=1

𝜎
𝜏
[

[

𝑒
∗2

𝜏+1

(1 + 𝜎
𝜏
Φ
𝜏
P
𝜏−1
Φ𝑇
𝜏
)
2
− 𝜀
2]

]

. (48)

At every sample time, the model that corresponds to the
minimum 𝐽

𝑙

𝑘
is chosen; that is, 𝐼

𝑖
is chosen if

𝐽
𝑖

𝑘
= min
𝑙

𝐽
𝑙

𝑘 (49)

and 𝑢
𝑖

𝑘
is used as the control input at that instant. The

structure of multiple models adaptive control can be shown
in Figure 2.

Referring to paper [15], Narendra and Xiang established
4 kinds of structure of MMAC. (1) All models are fixed; (2)
all models are adaptive; (3) (𝑀 − 1) fixed models and one
adaptive model; (4) (𝑀 − 2) fixed models, one free running
adaptivemodel, and one reinitialized adaptivemodel.We can
get a similar result of the stability. For the detailed proof of
stability of MMAC, the reader can refer to [15–17].

4. Simulation Results

4.1. Adaptive Control. In this section, we present results
of simulations of adaptive control nonlinear discrete-time
systems by using OS-ELM neural networks. The nonlinear
systems will be considered as below:

𝑦
𝑘+1

=
𝑦
𝑘
∗ (1 − 0.5 ∗ 𝐹) + 0.5 ∗ 𝐹

1 + 𝑦
2

𝑘

− 0.5 ∗ (1 + 𝑦
𝑘
) 𝑢
𝑘
,

(50)

where we define 𝑓[𝑦
𝑘
] = (𝑦

𝑘
∗(1−0.5∗𝐹)+0.5∗𝐹)/(1+𝑦

2

𝑘
)

and 𝑔[𝑦
𝑘
] = −0.5 ∗ (1 + 𝑦

𝑘
); 𝐹 = 0.1 is a scalar. The control

goal is to force the system states to track a reference model
trajectory. We select the reference model as

𝑟
𝑘
= 0.2 ∗ sin(2𝜋𝑘

100
) . (51)

The single-input/single-output nonlinear discrete-time sys-
tem can be modeled by

𝑦
𝑘+1

= 𝑓 [𝑦
𝑘
,w
𝑘
] + 𝑔 [𝑦

𝑘
, k
𝑘
] 𝑢
𝑘
, (52)

where 𝑓 and 𝑔 are OS-ELM neural networks. The neural
networks 𝑓 and 𝑔 have the same structure ℵ

1,50,1
. Based on

the OS-ELM adaptive control algorithm, the parameters of
the neural networks w

𝑘
and k
𝑘
are updated to w

𝑘+1
and k
𝑘+1

using OS-ELM Algorithm.
ForOS-ELM control algorithm, in Step 1, we choose𝑁

0
=

300; the control 𝑢
𝑘
is selected randomly from [0, 0.2]. A small

chunk of off-line training data is used to calculate the initial
output weights w

0
and k

0
. Since ELM algorithm just adjusts

the output weight, it shows fast and accurate identification
results.

Following this, in Step 2, both identification and control
are implemented.The response of the controlled system with
a reference input 𝑟

𝑘
= sin(2𝜋𝑘/100) by using OS-ELM

algorithm is shown in Figure 3.We can see that the controlled
system can track the reference model rapidly. The control
error is shown in Figure 4.

4.2. Choice of the Data Set. In simulation process, we find
that OS-ELM is sensitive to the initial training data. Initial
training data determine the initial value of adaptive control
directly. When we select different initial training samples,
the performance of the control results varies greatly. Figure
5 shows the control results using OS-ELM neural networks
with different initial training samples.

In Figure 6 we select 6 different ranges of random input-
output pair. We can find that different ranges of input values
and the corresponding output values concentrate in a single
area. According to the output ranges of the controlled plant,
we can choose a specific data area to train the neural network.
In Figure 5, the output range of the controlled system is in
the [−0.2, 0.2]. If we adopt [0, 0.2] random input (red area in
Figure 6(b), initializing OS-ELM by using this set data), the
control result is shown in Figure 5(b). On the contrary, if the
random input in the other area (Green, Blue, yellow area, and
so on in Figure 6(b)) is used to initialize OS-ELM, the control
result is poor (Figure 5(a)).

On one hand, in the actual production process, we have
a large number of field data which is distributed over a large
range. On the other hand, we generally know the objective
output range of the controlled plant. Then, according to the
output range of the controlled plant, we can choose a specific
data area to train the neural network. In this way, the accuracy
of control can be improved and the computation time can be
saved.
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Figure 2: Structure of multiple models adaptive control.
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Figure 3: Nonlinear systems adaptive control by using OS-ELM.

4.3. Multiple Models Adaptive Control. From the above sim-
ulation result, we find that OS-ELM neural networks show
perfect capability of identification. But from the OS-ELM
adaptive control algorithm we can see that it contains two
steps (initialization phase and adaptive control phase). This
algorithm just shows the perfect capability of identification
with fixed or slowly time-varying parameters. For the system
with jumping parameters, once the change of parameters
happens, the OS-ELM adaptive control algorithm needs to
implement Step 1 again or the control performance will be
very poor. To solve this kind of problem, MMAC (multiple
models adaptive control) will be presented as a very useful
tool.

0 100 200 300 400 500 600 700 800

k

0.05

0

−0.05

Figure 4: Control error.

Consider the controlled plant as follows:

𝑦
𝑘+1

=
𝑦
𝑘
∗ (1 − 0.5 ∗ 𝐹) + 0.5 ∗ 𝐹

1 + 𝑦
2

𝑘

− 0.5 ∗ (1 + 𝑦
𝑘
) 𝑢
𝑘
,

(53)

where

𝐹 =

{{

{{

{

0.1, 1 ≤ 𝑘 < 500

0.15, 500 ≤ 𝑘 < 1000

0.355, 1000 ≤ 𝑘 ≤ 1500.

(54)

We choose the index function as (48) and construct 4 OS-
ELM neural network models. Among them, the weights
of 1# model are reinitialized ones; 2#, 3# models are fixed
models which are formed according to the environment of
the changing parameters. 4# is free running adaptive model.
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(a) (−0.2, 0) random input
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Figure 5: OS-ELM control results with different initial training samples.
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Figure 6: Data set. (a) Output results with different input data. (b) Different ranges of input values and the corresponding output values
concentrate in a single area.

In any sample time, 1#model chooses the optimalmodel from
the models set which is formed by models (2#, 3#, and 4

#

model). Figure 7 shows the response of multiple models and
signal model.

In Figure 7(a), we can see that signal model adaptive
control shows poor control quality for the system with
jumping parameters. Once the parameters change abruptly,
the neural network model needs to adjust its weight which
is far from the true value. Figure 7(c) shows the bad control
input. InMMAC, the reinitialized adaptivemodel can initiate
the weights by choosing the best weights of a set of models
based on the past performance of the plant. At every sample
time, based on the index function, one of the best models
in model set is selected; the parameters of reinitialized
model can be updated from the paraments of this model.
From Figure 7(b), we can see that MMAC can improve
the control quality dramatically compared to Figure 7(a).

Figure 7(d) shows the control sequence and Figure 7(e)
shows the switching procedure of controlling MMAC.

5. Conclusion

The application of OS-ELM in the identification and control
of nonlinear dynamic system is studied carefully. OS-ELM
neural network can improve the accuracy of identification
and the control quality dramatically. Since the training
process of OS-ELM neural network is sensitive to the initial
training data, different scope of training data can be used to
initialize OS-ELM neural network based on the output range
of the system. The topological structure of OS-ELM neural
network can be adjusted dynamically by usingmultiplemodel
switching strategy, when it is used to control systems with
jumping parameters. Simulation results show that MMAC
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Figure 7: Multiple OS-ELM neural network models adaptive control.

based on OS-ELM which is presented in this paper can
improve the control performance dramatically.

Appendix

Lemma A.1 (matrix inversion lemma, see [18]). If

P−1
𝑘

= P−1
𝑘−1

+Φ
𝑇

𝑘
Φ
𝑘
𝜎
𝑘
, (A.1)

where the scalar 𝜎
𝑘
> 0, then P

𝑘
is related to P

𝑘−1
via

P
𝑘
= P
𝑘−1

−
𝜎
𝑘
P
𝑘−1
Φ𝑇
𝑘
Φ
𝑘
P
𝑘−1

1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘

. (A.2)

Also,

P
𝑘
Φ
𝑇

𝑘
=

P
𝑘−1
Φ𝑇
𝑘

1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘

. (A.3)
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Proof of Theorem 1. Defining 𝛽
𝑘
≜ 1/(1+𝜎

𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
), then

from (20), (22), and (A.3) we have

𝜃
𝑘+1

= 𝜃
𝑘
− 𝜎
𝑘
𝛽
𝑘
P
𝑘−1
Φ
𝑇

𝑘
𝑒
∗

𝑘+1
, (A.4)

where 𝜃
𝑘+1

≜ 𝜃
∗

0
− 𝜃
𝑘+1

. Then, from (A.4) we can obtain

Φ
𝑘
𝜃
𝑘+1

+ Δ
𝑓
= 𝛽
𝑘
𝑒
∗

𝑘+1
. (A.5)

Introducing Lyapunov function as𝑉
𝑘+1

= 𝜃
𝑇

𝑘+1
P−1
𝑘
𝜃
𝑘+1

, taking
(A.1) into it, hence, we can obtain

𝑉
𝑘+1

= 𝜃
𝑇

𝑘+1
P−1
𝑘−1

𝜃
𝑘+1

+ 𝜃
𝑇

𝑘+1
Φ
𝑇

𝑘
Φ
𝑘
𝜎
𝑘
𝜃
𝑘+1

= [𝜃
𝑘
− 𝜎
𝑘
𝛽
𝑘
P
𝑘−1
Φ
𝑇

𝑘
𝑒
∗

𝑘+1
]
𝑇

P−1
𝑘−1

[𝜃
𝑘
− 𝜎
𝑘
𝛽
𝑘
P
𝑘−1
Φ
𝑇

𝑘
𝑒
∗

𝑘+1
]

+ 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

)
2

= 𝜃
𝑇

𝑘
P−1
𝑘−1

𝜃
𝑘
− 2𝜎
𝑘
Φ
𝑘
𝜃
𝑘
𝛽
𝑘
𝑒
∗

𝑘+1

+ 𝜎
2

𝑘
𝛽
2

𝑘
𝑒
∗2

𝑘+1
Φ
𝑘
P
𝑘−1
Φ
𝑇

𝑘
+ 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

)
2

.

(A.6)

Submitting (A.5) in the above equation,

𝑉
𝑘+1

= 𝑉
𝑘
− 2𝜎
𝑘
Φ
𝑘
𝜃
𝑘
(Φ
𝑘
𝜃
𝑘+1

+ Δ
𝑓
)

+ 𝜎
2

𝑘
Φ
𝑘
P
𝑘−1
Φ
𝑇

𝑘
(Φ
𝑘
𝜃
𝑘+1

+ Δ
𝑓
)
2

+ 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

)
2

.

(A.7)

Referring to [14], we can obtain

𝑉
𝑘+1

= 𝑉
𝑘
− 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

)
2

− 2𝜎
𝑘
Φ
𝑘
𝜃
𝑘+1

Δ
𝑓

− 𝜎
2

𝑘
Φ
𝑘
P
𝑘−1
Φ
𝑇

𝑘
(Φ
𝑘
𝜃
𝑘+1

+ Δ
𝑓
)
2

≤ 𝑉
𝑘
− 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

)
2

− 2𝜎
𝑘
Φ
𝑘
𝜃
𝑘+1

Δ
𝑓
;

(A.8)

that is,

𝑉
𝑘+1

≤ 𝑉
𝑘
− 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

)
2

− 2𝜎
𝑘
Φ
𝑘
𝜃
𝑘+1

Δ
𝑓

= 𝑉
𝑘
+ 𝜎
𝑘
Δ
2

𝑓
− 𝜎
𝑘
(Φ
𝑘
𝜃
𝑘+1

+ Δ
𝑓
)
2

= 𝑉
𝑘
+ 𝜎
𝑘
Δ
2

𝑓
− 𝜎
𝑘
𝛽
2

𝑘
𝑒
∗2

𝑘+1

= 𝑉
𝑘
− 𝜎
𝑘
(𝛽
2

𝑘
𝑒
∗2

𝑘+1
− Δ
2

𝑓
) .

(A.9)

Finally, if we choose 𝜎
𝑘
as (36), we have

𝑉
𝑘+1

≤ 𝑉
𝑘
− 𝜎
𝑘
(𝛽
2

𝑘
𝑒
∗2

𝑘+1
− 𝜀
2
) ; (A.10)

that is,

𝑉
𝑘+1

− 𝑉
𝑘
≤ −𝜎
𝑘
(𝛽
2

𝑘
𝑒
∗2

𝑘+1
− 𝜀
2
) ≤ 0. (A.11)

𝑉
𝑘
is nonnegative; then

𝜃
𝑇

𝑘+1
P−1
𝑘
𝜃
𝑘+1

≤ 𝜃
𝑇

𝑘
P−1
𝑘−1

𝜃
𝑘
≤ 𝜃
𝑇

1
P−1
0
𝜃
1
. (A.12)

Now from the matrix inversion lemma, it follows that

𝜆min (P
−1

𝑘
) ≥ 𝜆min (P

−1

𝑘−1
) ≥ 𝜆min (P

−1

0
) ; (A.13)

this implies

𝜆min (P
−1

0
)
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜆min (P
−1

𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜃
𝑇

𝑘+1
P−1
𝑘
𝜃
𝑘+1

≤ 𝜃
𝑇

1
P−1
0
𝜃
1
≤ 𝜆min (P

−1

0
)
󵄩󵄩󵄩󵄩󵄩
𝜃
1

󵄩󵄩󵄩󵄩󵄩

2

.

(A.14)

This establishes part (i).
Summing both sides of (A.11) from 1 to 𝑁 with 𝑉

𝑘
being

nonnegative, we have

𝑉
𝑘+1

≤ 𝑉
1
− lim
𝑁→∞

𝑁

∑

𝑘=1

𝜎
𝑘
(𝛽
2

𝑘
𝑒
∗2

𝑘+1
− 𝜀
2
) ; (A.15)

we immediately get

lim
𝑁→∞

𝑁

∑

𝑘=1

𝜎
𝑘
[

[

𝑒
∗2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
− 𝜀
2]

]

< ∞. (A.16)

(ii) holds. Then

lim
𝑘→∞

𝜎
𝑘
[

[

𝑒
∗2

𝑘+1

(1 + 𝜎
𝑘
Φ
𝑘
P
𝑘−1
Φ𝑇
𝑘
)
2
− 𝜀
2]

]

= 0. (A.17)

(a) and (b) hold.
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