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Two new algorithms are proposed to compute the nonsingular square root of a matrix A. Convergence theorems and stability
analysis for these new algorithms are given. Numerical results show that these new algorithms are feasible and effective.

1. Introduction

Consider the following nonlinear matrix equation:

𝐹 (𝑋) = 𝑋
2
− 𝐴 = 0, (1)

where 𝐴 is an 𝑛 × 𝑛 nonsingular complex matrix. A solution
𝑋 of (1) is called a square root of 𝐴. The matrix square roots
have many applications in the boundary value problems [1]
and the computation of the matrix logarithm [2, 3].

In the last few years there has been a constantly increasing
interest in developing the theory and numerical methods for
the matrix square roots. The existence and uniqueness of the
matrix square root can be found in [4–6]. Here, it is worth-
while to point out that any nonsingular matrix has a square
root, and the square root is also nonsingular [4]. A number
of methods have been proposed for computing square root
of a matrix [5, 7–16]. The computational methods for the
matrix square root can be generally separated into two classes.
The first class is the so-called direct methods, for example,
Schur algorithm developed by Björck and Hammarling [7].
The second class is the iterative methods. Matrix iterations
𝑋
𝑘+1

= 𝑓(𝑋
𝑘
), where 𝑓 is a polynomial or a ration function,

are attractive alternatives for computing square roots [9, 11–
13, 15, 17]. A well-known iterative method for computing
matrix square root is Newton’s method. It has nice numer-
ical behavior, for example, quadratic convergence. Newton’s
method for solving (1) was proposed in [18]. Later, some
simplified Newton’s methods were developed in [11, 19, 20].

Unfortunately, these simplified Newton’s methods have poor
numerical stability.

In this paper, we propose two new algorithms to compute
the nonsingular square root of a matrix, which have good
numerical stability. We first apply Samanskill technique,
especially, proposed in [21] to compute the matrix square
root. Convergence theorems and stability analysis for these
new algorithms are given in Sections 3 and 4. In Section 5,
we use some numerical examples to show that these new
algorithms are more effective than the known ones in some
aspects. And the final conclusions are given in Section 6.

2. Two New Algorithms

In order to compute the square root of matrix 𝐴, a natural
approach is to apply Newton’s method to (1), and this can be
stated as follows.

Algorithm 1 (see [11, 19] (Newton’s method for (1))). We
consider the following.

Step 0. Given𝑋
0
and 𝜀, set 𝑘 = 0.

Step 1. Let Res(𝑋
𝑘
) = ‖𝑋

2

𝑘
− 𝐴‖/‖𝐴‖. If Res(𝑋

𝑘
) < 𝜀, stop.

Step 2. Solve for𝐻
𝑘
in Sylvester equation:

𝑋
𝑘
𝐻
𝑘
+ 𝐻
𝑘
𝑋
𝑘
= −𝐹 (𝑋

𝑘
) . (2)

Step 3. Update𝑋
𝑘+1

= 𝑋
𝑘
+ 𝐻
𝑘
, 𝑘 = 𝑘 + 1, and go to Step 1.
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Applying the standard local convergence theorem to
Algorithm 1 [19, P. 148], we deduce that the sequence {𝑋

𝑘
}

generated by Algorithm 1 converges quadratically to a square
root 𝑋

∗
of 𝐴 if the starting matrix 𝑋

0
is sufficiently close to

𝑋
∗
.
In this paper, we propose two new algorithms to compute

the nonsingular square root of the matrix 𝐴. Our idea can
be stated as follows. If (1) has a nonsingular solution𝑋, then
we can transform (1) into an equivalent nonlinear matrix
equation:

𝐺 (𝑋) = 𝑋 − 𝐴𝑋
−1
= 0. (3)

Then we apply Newton’s method to (3) for computing the
nonsingular square root of 𝐴.

By the definition of F-differentiable and some simple
calculations, we obtain that if the matrix 𝑋 is nonsingular,
then the mapping 𝐺 is F-differentiable at𝑋 and

𝐺


𝑋
(𝐻) = 𝐻 + 𝐴𝑋

−1
𝐻𝑋
−1
. (4)

Thus Newton’s method for (3) can be written as
Given 𝑋

0
, 𝑋
𝑘+1

= 𝑋
𝑘
− (𝐺


𝑋𝑘
)
−1

(𝐺 (𝑋
𝑘
)) ,

𝑘 = 0, 1, 2, . . . .

(5)

Combining (4), the iteration (5) is equivalent to the following.

Algorithm 2 (Newton’s method for (3)). We consider the
following.

Step 0. Given𝑋
0
and 𝜀, set 𝑘 = 0.

Step 1. Let Res(𝑋
𝑘
) = ‖𝑋

2

𝑘
− 𝐴‖/‖𝐴‖. If Res(𝑋

𝑘
) < 𝜀, stop.

Step 2. Solve for𝐻
𝑘
in generalized Sylvester equation:

𝐴𝑋
−1

𝑘
𝐻
𝑘
𝑋
−1

𝑘
+ 𝐻
𝑘
= −𝐺 (𝑋

𝑘
) . (6)

Step 3. Update 𝑋
𝑘+1

= 𝑋
𝑘
+ 𝐻
𝑘
, 𝑘 = 𝑘 + 1, and go to Step 1,

where Res(𝑋
𝑘
) = ‖𝑋

2

𝑘
− 𝐴‖/‖𝐴‖.

By using Samanskii technique [21] to Newton’s method
(5), we get the following algorithm.

Algorithm 3 (Newton’s method for (3) with Samanskii tech-
nique). We consider the following.

Step 0. Given𝑋
0
,𝑚, and 𝜀, set 𝑘 = 0.

Step 1. Let Res(𝑋
𝑘
) = ‖𝑋

2

𝑘
− 𝐴‖/‖𝐴‖. If Res(𝑋

𝑘
) < 𝜀, stop.

Step 2. Let𝑋
𝑘,0

= 𝑋
𝑘
, 𝑖 = 1.

Step 3. If 𝑖 > 𝑚, go to Step 6.

Step 4. Solve for𝐻
𝑘,𝑖−1

in generalized Sylvester equation:

𝐴𝑋
−1

𝑘
𝐻
𝑘,𝑖−1

𝑋
−1

𝑘
+ 𝐻
𝑘,𝑖−1

= −𝐺 (𝑋
𝑘,𝑖−1

) . (7)

Step 5.Update𝑋
𝑘,𝑖
= 𝑋
𝑘,𝑖−1

+𝐻
𝑘,𝑖−1

, 𝑖 = 𝑖 + 1, and go to Step
3.

Step 6. Update𝑋
𝑘+1

= 𝑋
𝑘,𝑚

, 𝑘 = 𝑘 + 1, and go to Step 1.

Remark 4. In this paper, we only consider the case that𝑚 = 2.
If𝑚 = 1, then Algorithm 3 is Algorithm 2.

Remark 5. Iteration (5) is more suitable for theoretical anal-
ysis such as the convergence theorems and stability analysis
in Sections 3 and 4, while Algorithms 2 and 3 are more
convenient for numerical computation in Section 5. In actual
computations, the Sylvester equation 𝐶𝑋𝐷 + 𝐸𝑋𝐹 = 𝐺 may
be solved by the algorithms developed in [22].

Although Algorithms 2 and 3 are also Newton’s methods,
Algorithms 2 and 3 are more effective than Algorithm 1.
Algorithm 3, especially, with 𝑚 = 2 has cubic convergence
rate.

3. Convergence Theorems

In this section, we establish local convergence theorems for
Algorithms 2 and 3. We begin with some lemmas.

Lemma 6 (see [23, P. 21]). Let 𝑇 be an (nonlinear) operator
from a Banach space 𝐸 into itself and let 𝑥∗ ∈ 𝐸 be a solution
of 𝑥 = 𝑇𝑥. If 𝑇 is Frechet differentiable at 𝑥∗ with 𝜌(𝑇

𝑥
∗) < 1,

then the iteration 𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 = 0, 1, 2, . . ., converges to 𝑥∗,

provided that 𝑥
0
is sufficiently close to 𝑥∗.

Lemma 7 (see [17, P. 45]). Let𝐴, 𝐵 ∈ 𝐶
𝑛×𝑛 and assume that𝐴

is invertible with ‖𝐴−1‖ ≤ 𝛼. If ‖𝐴 − 𝐵‖ ≤ 𝛽 and 𝛼𝛽 < 1, then
𝐵 is also invertible, and


𝐵
−1

≤
𝛼

1 − 𝛼𝛽
. (8)

Lemma 8. If the matrix 𝑋 ∈ 𝐶
𝑛×𝑛 is nonsingular, then there

exist 𝛾 > 0 and 𝐿 > 0 such that, for all𝑋,𝑌 ∈ 𝐵(𝑋, 𝛾), it holds
that


𝐺


𝑋
− 𝐺


𝑌


≤ 𝐿 ‖𝑋 − 𝑌‖ , (9)

where 𝐵(𝑋, 𝑟) = {𝑋 | ‖𝑋 − 𝑋‖ < 𝛾} and 𝐺
𝑋
, 𝐺
𝑌
are the F-

derivative of the mapping 𝐺 defined by (4) at𝑋, 𝑌.

Proof. Let 𝛼 = ‖𝑋
−1
‖, and we select 0 < 𝛾 < 𝛼

−1.
From Lemma 7 it follows that 𝑋 is nonsingular and

‖𝑋
−1
‖ ≤ 𝛼/(1 − 𝛼𝛾) for each 𝑋 ∈ 𝐵(𝑋

0
, 𝛾). Then 𝐺

𝑋
is well

defined, and so does 𝐺
𝑌
, where 𝑌 ∈ 𝐵(𝑋, 𝛾). According to

(4), we have

𝐺


𝑋
(𝐻) − 𝐺



𝑌
(𝐻)



=

(𝐻 + 𝐴𝑋

−1
𝐻𝑋
−1
) − (𝐻 + 𝐴𝑌

−1
𝐻𝑌
−1
)


=

𝐴𝑋
−1
𝐻𝑋
−1
− 𝐴𝑌
−1
𝐻𝑌
−1

=

𝐴 [(𝑋

−1
𝐻𝑋
−1
− 𝑋
−1
𝐻𝑌
−1
)

+ (𝑋
−1
𝐻𝑌
−1
− 𝑌
−1
𝐻𝑌
−1
)]


=

𝐴 [𝑋
−1
𝐻(𝑋
−1
− 𝑌
−1
) + (𝑋

−1
− 𝑌
−1
)𝐻𝑌
−1
]
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=

𝐴 [𝑋
−1
𝐻𝑌
−1
(𝑌 − 𝑋)𝑋

−1

+ 𝑌
−1
(𝑌 − 𝑋)𝑋

−1
𝐻𝑌
−1
]


≤ ‖𝐴‖ (

𝑋
−1

2 
𝑌
−1

‖𝑌 − 𝑋‖ ‖𝐻‖

+

𝑌
−1

2 
𝑋
−1

‖𝑌 − 𝑋‖ ‖𝐻‖)

= ‖𝐴‖

𝑋
−1


𝑌
−1

(

𝑋
−1

+

𝑌
−1

) ‖𝑋 − 𝑌‖ ‖𝐻‖

≤
𝛼

1 − 𝛼𝛾

𝛼

1 − 𝛼𝛾
(

𝛼

1 − 𝛼𝛾
+

𝛼

1 − 𝛼𝛾
) ‖𝐴‖ ‖𝑋 − 𝑌‖ ‖𝐻‖

= 2(
𝛼

1 − 𝛼𝛾
)

3

‖𝐴‖ ‖𝑋 − 𝑌‖ ‖𝐻‖

= 𝐿 ‖𝑋 − 𝑌‖ ‖𝐻‖ ,

(10)

where 𝐿 = 2(𝛼/(1 − 𝛼𝛾))
3
‖𝐴‖.

Hence, we have


𝐺


𝑋
− 𝐺


𝑌


≤ 𝐿 ‖𝑋 − 𝑌‖ . (11)

Theorem 9. If (3) has a nonsingular solution 𝑋
∗
and the

mapping 𝐺
𝑋∗

: 𝐶
𝑛×𝑛

→ 𝐶
𝑛×𝑛 is invertible, then there exists a

close ball 𝑆 = 𝐵(𝑋
∗
, 𝛿), such that, for all 𝑋

0
∈ 𝑆, the sequence

{𝑋
𝑘
} generated by Algorithm 2 converges at least quadratically

to the solution𝑋
∗
.

Proof. Let 𝜑(𝑋) = 𝑋 − (𝐺


𝑋
)
−1
(𝐺(𝑋)). By Taylor formula in

Banach space [24, P. 67], we have

lim
‖𝐻‖→0

𝜑 (𝑋∗ + 𝐻) − 𝜑 (𝑋
∗
)


‖𝐻‖

= lim
‖𝐻‖→0

(

[𝑋
∗
+ 𝐻 − (𝐺



𝑋∗+𝐻
)
−1

(𝐺 (𝑋
∗
+ 𝐻))]

− [𝑋
∗
− (𝐺


𝑋∗
)
−1

(𝐺 (𝑋
∗
))]


× ‖𝐻‖

−1
)

= lim
‖𝐻‖→0

(

𝐻 + (𝐺



𝑋∗
)
−1

(𝐺 (𝑋
∗
)) − (𝐺



𝑋∗+𝐻
)
−1

× (𝐺 (𝑋
∗
+ 𝐻))


× ‖𝐻‖

−1
)

= lim
‖𝐻‖→0

(


𝐻 + (𝐺



𝑋∗
)
−1

(𝐺 (𝑋
∗
)) − (𝐺



𝑋∗+𝐻
)
−1

× [𝐺 (𝑋
∗
) + 𝐺


𝑋∗
(𝐻) +

1

2
𝐺


𝑋∗
(𝐻
2
) + ⋅ ⋅ ⋅ ]



× ‖𝐻‖
−1
)

= lim
‖𝐻‖→0

(

𝐻 + (𝐺



𝑋∗
)
−1

(𝐺 (𝑋
∗
)) − (𝐺



𝑋∗+𝐻
)
−1

× (𝐺 (𝑋
∗
)) + (𝐺



𝑋∗+𝐻
)
−1

× (𝐺


𝑋∗
(𝐻)) +

1

2
(𝐺


𝑋∗+𝐻
)
−1

(𝐺


𝑋∗
(𝐻
2
))

+ ⋅ ⋅ ⋅

× ‖𝐻‖

−1
)

= 0.

(12)

Hence, the F-derivative of 𝜑 at 𝑋
∗
is 0. By Lemma 6, we

derive that the sequence {𝑋
𝑘
} generated by the iteration (5)

converges to 𝑋
∗
. It is also obtained that the sequence {𝑋

𝑘
}

generated by Algorithm 2 converges to𝑋
∗
.

Let ‖(𝐺
𝑋∗
)
−1

‖ = 𝛽, according to 𝑋
𝑘
→ 𝑋

∗
(𝑘 → ∞)

and Lemma 7; for large enough 𝑘, we have

(𝐺


𝑋𝑘
)
−1

≤
𝛽

1 − 𝛽 (1/2𝛽)
= 2𝛽. (13)

By Lemma 8, we have

𝐺


𝑋𝑘
(𝑋
𝑘
− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
)

≤ 𝐿

𝑋𝑘 − 𝑋∗


2

. (14)

By making use of Taylor formula once again, for all 𝑡 ∈
[0, 1], we have


𝐺 (𝑋
𝑘
) − 𝐺 (𝑋

∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
)


≤


∫ (𝐺


𝑋𝑘+𝑡(𝑋∗−𝑋𝑘)
(𝑋
𝑘
− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
)) 𝑑𝑡



≤ ∫

𝐺


𝑋𝑘+𝑡(𝑋∗−𝑋𝑘)
− 𝐺


𝑋∗


𝑑𝑡
𝑋𝑘 − 𝑋∗



≤ 𝐿
𝑋𝑘 + 𝑡 (𝑋∗ − 𝑋𝑘) − 𝑋∗



𝑋𝑘 − 𝑋∗


= 𝐿 (1 − 𝑡)
𝑋𝑘 − 𝑋∗



2

≤ 𝐿
𝑋𝑘 − 𝑋∗



2

.

(15)

Hence,
𝑋𝑘+1 − 𝑋∗



=

𝑋
𝑘
− (𝐺


𝑋𝑘
)
−1

(𝐺 (𝑋
𝑘
)) − 𝑋

∗



=

(𝐺


𝑋𝑘
)
−1

[𝐺


𝑋𝑘
(𝑋
𝑘
− 𝑋
∗
) − 𝐺𝑋

𝑘
]


=

(𝐺


𝑋𝑘
)
−1

[(𝐺


𝑋𝑘
(𝑋
𝑘
− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
))

− (𝐺 (𝑋
𝑘
) − 𝐺 (𝑋

∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
))]



≤

(𝐺


𝑋𝑘
)
−1

[

𝐺


𝑋𝑘
(𝑋
𝑘
− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
)


+

𝐺 (𝑋
𝑘
) − 𝐺 (𝑋

∗
) − 𝐺


𝑋∗
(𝑋
𝑘
− 𝑋
∗
)

] .

(16)
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Combining (13)–(16), we have

𝑋𝑘+1 − 𝑋∗
 ≤ 2𝛽𝐿

𝑋𝑘 − 𝑋∗


2

+ 2𝛽𝐿
𝑋𝑘 − 𝑋∗



2

= 4𝛽𝐿
𝑋𝑘 − 𝑋∗



2

,

(17)

which implies that the sequence {𝑋
𝑘
} generated by

Algorithm 2 converges at least quadratically to the solution
𝑋
∗
.

Theorem 10. If (1) has a nonsingular solution 𝑋
∗
and the

mapping 𝐺
𝑋∗

: 𝐶
𝑛×𝑛

→ 𝐶
𝑛×𝑛 is invertible, then there exists a

close ball 𝑆 = 𝐵(𝑋
∗
, 𝛿), such that, for all 𝑋

0
∈ 𝑆, the sequence

{𝑋
𝑘
} generated by Algorithm 3 converges at least cubically to

the solution𝑋
∗
.

Proof. Let 𝜑(𝑋) = 𝑋 − (𝐺


𝑋
)
−1
(𝐺(𝑋)). By Taylor formula in

Banach space [24, P. 67], we have

lim
‖𝐻‖→0

𝜑 (𝑋∗ + 𝐻) − 𝜑 (𝑋
∗
)


‖𝐻‖

= lim
‖𝐻‖→0

(

[𝑋
∗
+ 𝐻 − (𝐺



𝑋∗+𝐻
)
−1

(𝐺 (𝑋
∗
+ 𝐻))]

− [𝑋
∗
− (𝐺


𝑋∗
)
−1

(𝐺 (𝑋
∗
))]


× ‖𝐻‖

−1
)

= lim
‖𝐻‖→0

(

𝐻 + (𝐺



𝑋∗
)
−1

(𝐺 (𝑋
∗
)) − (𝐺



𝑋∗+𝐻
)
−1

× (𝐺 (𝑋
∗
+ 𝐻))


× ‖𝐻‖

−1
)

= lim
‖𝐻‖→0

(


𝐻 + (𝐺



𝑋∗
)
−1

(𝐺 (𝑋
∗
)) − (𝐺



𝑋∗+𝐻
)
−1

× [𝐺 (𝑋
∗
) + 𝐺


𝑋∗
(𝐻) +

1

2
𝐺


𝑋∗
(𝐻
2
) + ⋅ ⋅ ⋅ ]



× ‖𝐻‖
−1
)

= lim
‖𝐻‖→0

(


𝐻 + (𝐺



𝑋∗
)
−1

(𝐺 (𝑋
∗
)) − (𝐺



𝑋∗+𝐻
)
−1

× (𝐺 (𝑋
∗
)) + (𝐺



𝑋∗+𝐻
)
−1

(𝐺


𝑋∗
(𝐻))

+
1

2
(𝐺


𝑋∗+𝐻
)
−1

(𝐺


𝑋∗
(𝐻
2
)) + ⋅ ⋅ ⋅


× ‖𝐻‖

−1
)

= 0.

(18)

Hence, the F-derivative of 𝜑 at 𝑋
∗
is 0. By Lemma 6,

we derive that the sequence {𝑋
𝑘
} generated by iteration (5)

converges to 𝑋
∗
. It is also obtained that the sequence {𝑋

𝑘
}

generated by Algorithm 3 converges to𝑋
∗
.

Let ‖(𝐺
𝑋∗
)
−1

‖ = 𝛽, according to 𝑋
𝑘
→ 𝑋

∗
(𝑘 → ∞)

and Lemma 7; for large enough 𝑘, we have


(𝐺


𝑋𝑘
)
−1

≤
𝛽

1 − 𝛽 (1/2𝛽)
= 2𝛽. (19)

By Lemma 8, we have

𝐺


𝑋𝑘
(𝑋
𝑘,1

− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
)


≤ 𝐿
𝑋𝑘 − 𝑋∗



𝑋𝑘,1 − 𝑋∗
 .

(20)

By making use of Taylor formula once again, for all 𝑡 ∈
[0, 1], we have

𝐺 (𝑋
𝑘,1
) − 𝐺 (𝑋

∗
) − 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
)


≤


∫ (𝐺


𝑋𝑘,1+𝑡(𝑋∗−𝑋𝑘,1)
(𝑋
𝑘,1

− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
)) 𝑑𝑡



≤ ∫

𝐺


𝑋𝑘,1+𝑡(𝑋∗−𝑋𝑘,1)
− 𝐺


𝑋∗


𝑑𝑡
𝑋𝑘,1 − 𝑋∗



≤ 𝐿
𝑋𝑘,1 + 𝑡 (𝑋∗ − 𝑋𝑘,1) − 𝑋∗



𝑋𝑘,1 − 𝑋∗


= 𝐿 (1 − 𝑡)
𝑋𝑘,1 − 𝑋∗



2

≤ 𝐿
𝑋𝑘,1 − 𝑋∗



2

.

(21)

Hence,
𝑋𝑘+1 − 𝑋∗



=

𝑋
𝑘,1

− (𝐺


𝑋𝑘
)
−1

(𝐺 (𝑋
𝑘,1
)) − 𝑋

∗



=

(𝐺


𝑋𝑘
)
−1

[𝐺


𝑋𝑘
(𝑋
𝑘,1

− 𝑋
∗
) − 𝐺 (𝑋

𝑘,1
)]


=

(𝐺


𝑋𝑘
)
−1

× [(𝐺


𝑋𝑘
(𝑋
𝑘,1

− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
))

− (𝐺 (𝑋
𝑘,1
) − 𝐺 (𝑋

∗
)

− 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
))]



≤

(𝐺


𝑋𝑘
)
−1

× [

𝐺


𝑋𝑘
(𝑋
𝑘,1

− 𝑋
∗
) − 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
)


+

𝐺 (𝑋
𝑘,1
) − 𝐺 (𝑋

∗
) − 𝐺


𝑋∗
(𝑋
𝑘,1

− 𝑋
∗
)

] .

(22)

Combining (19)–(22) andTheorem 9, we have
𝑋𝑘+1 − 𝑋∗



≤ 2𝛽 [𝐿
𝑋𝑘 − 𝑋∗



𝑋𝑘,1 − 𝑋∗
 + 𝐿

𝑋𝑘,1 − 𝑋∗


2

]

≤ 2𝛽𝐿 [4𝛽𝐿
2𝑋𝑘 − 𝑋∗



3

+ 16𝛽
2
𝐿
3𝑋𝑘 − 𝑋∗



4

]

= (8𝛽
2
𝐿
3
+ 32𝛽

3
𝐿
4 𝑋𝑘 − 𝑋∗

)
𝑋𝑘 − 𝑋∗



3

≤ (8𝛽
2
𝐿
3
+ 32𝛽

3
𝐿
4
𝛿)

𝑋𝑘 − 𝑋∗


3

= 𝑀
𝑋𝑘 − 𝑋∗



3

,

(23)
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where 𝑀 = 8𝛽
2
𝐿
3
+ 32𝛽

3
𝐿
4
𝛿. Therefore, the sequence {𝑋

𝑘
}

generated by Algorithm 3 converges at least cubically to the
solution𝑋

∗
.

4. Stability Analysis

In accordance with [2] we define an iteration 𝑋
𝑘+1

= 𝑓(𝑋
𝑘
)

to be stable in a neighborhood of a solution𝑋 = 𝑓(𝑋), if the
error matrix 𝐸

𝑘
= 𝑋
𝑘
− 𝑋
∗
satisfies

𝐸
𝑘+1

= 𝐿 (𝐸
𝑘
) + 𝑂 (

𝐸𝑘


2

) , (24)

where 𝐿 is a linear operator that has bounded power; that is,
there exists a constant 𝑐 > 0 such that, for all 𝑛 > 0 and
arbitrary𝐸 of unit norm, ‖𝐿𝑛(𝐸)‖ < 𝑐.Thismeans that a small
perturbation introduced in a certain stepwill not be amplified
in the subsequent iterations.

Note that this definition of stability is an asymptotic
property and is different from the usual concept of numerical
stability, which concerns the global error propagation, aiming
to bound the minimum relative error over the computed
iterates.

Now we consider the iteration (5) and define the error
matrix 𝐸

𝑘
= 𝑋
𝑘
− 𝑋
∗
; that is,

𝑋
𝑘
= 𝐸
𝑘
+ 𝑋
∗
. (25)

For the sake of simplicity, we perform a first order error
analysis; that is, we omit all the terms that are quadratic in
the errors. Equality up to second order terms is denoted with
the symbol ≐.

Substituting (25) into (5) we get

𝐸
𝑘+1

+ 𝑋
∗
= 𝐸
𝑘
+ 𝑋
∗
− (𝐺


𝐸𝑘+𝑋∗
)
−1

(𝐺 (𝐸
𝑘
+ 𝑋
∗
)) ; (26)

combining (4) we have

(𝐸
𝑘+1

+ 𝑋
∗
) (𝐸
𝑘
+ 𝑋
∗
) + 𝐴(𝐸

𝑘
+ 𝑋
∗
)
−1

(𝐸
𝑘+1

+ 𝑋
∗
) = 2𝐴,

(27)

which implies that

𝐸
𝑘+1

𝐸
𝑘
+ 𝐸
𝑘+1

𝑋
∗
+ 𝑋
∗
𝐸
𝑘
+ 𝑋
2

∗

+ 𝐴 (𝑋
−1

∗
− 𝑋
−1

∗
𝐸
𝑘
𝑋
−1

∗
+ 𝑂 (𝐸

2

𝑘
)) (𝐸
𝑘+1

+ 𝑋
∗
) = 2𝐴.

(28)

Omitting all terms that are quadratic in the errors, we have

𝐸
𝑘+1

𝑋
∗
+ 𝑋
∗
𝐸
𝑘
+ 𝑋
2

∗
+ 𝐴𝑋

−1

∗
𝐸
𝑘+1

+ 𝐴 − 𝐴𝑋
−1

∗
𝐸
𝑘
≐ 2𝐴.

(29)

By using 𝐴𝑋−1
∗
= 𝑋
∗
, we have

𝐸
𝑘+1

𝑋
∗
+ 𝑋
∗
𝐸
𝑘
+ 𝐴 + 𝑋

∗
𝐸
𝑘+1

+ 𝐴 − 𝑋
∗
𝐸
𝑘
≐ 2𝐴; (30)

that is,

𝐸
𝑘+1

𝑋
∗
+ 𝑋
∗
𝐸
𝑘+1

= 0, (31)

which means that iteration (5) is self-adaptive; that is to say,
the error 𝐸

𝑘
in the 𝑘th iteration does not propagate to the

(𝑘 + 1)st iteration. When 𝑋
∗
and −𝑋

∗
have no eigenvalue

in common, especially, the matrix equation 𝐸𝑋
∗
+ 𝑋
∗
𝐸 = 0

has a unique solution 𝐸 = 0 [17, P. 194]. Therefore, under the
condition that 𝑋

∗
and −𝑋

∗
have no eigenvalue in common,

the iteration (5) has optimal stability; that is, the operator 𝐿
defined in (24) coincides with the null operator.

5. Numerical Examples

In this section, we compare our algorithms with the follow-
ing.

Algorithm 11 (the Denman-Beavers iteration [9]). Consider

𝑌
0
= 𝐴, 𝑍

0
= 𝐼

𝑌
𝑘+1

=
𝑌
𝑘
+ 𝑍
−1

𝑘

2

𝑍
𝑘+1

=
𝑍
𝑘
+ 𝑌
−1

𝑘

2
, 𝑘 = 0, 1, 2, . . . .

(32)

Algorithm 12 (the scaled Denman-Beavers iteration [13]).
Consider

𝑌
0
= 𝐴, 𝑍

0
= 𝐼

𝑟
𝑘
=
det (𝑌𝑘) det (𝑍𝑘)



−1/2𝑛

𝑌
𝑘+1

=
𝑟
𝑘
𝑌
𝑘
+ 𝑟
−1

𝑘
𝑍
−1

𝑘

2

𝑍
𝑘+1

=
𝑟
𝑘
𝑍
𝑘
+ 𝑟
−1

𝑘
𝑌
−1

𝑘

2
, 𝑘 = 0, 1, 2, . . . .

(33)

Algorithm 13 (the Pade iteration [13]). Consider

𝑌
0
= 𝐴, 𝑍

0
= 𝐼

𝑌
𝑘+1

=
1

𝑝
𝑌
𝑘

𝑝

∑

𝑖=1

1

𝜉
𝑖

(𝑍
𝑘
𝑌
𝑘
+ 𝛼
2

𝑖
𝐼)
−1

𝑍
𝑘+1

=
1

𝑝
𝑍
𝑘

𝑝

∑

𝑖=1

1

𝜉
𝑖

(𝑌
𝑘
𝑍
𝑘
+ 𝛼
2

𝑖
𝐼)
−1

, 𝑘 = 0, 1, 2, . . . ,

(34)

where 𝑝 ≥ 1 is a chosen integer:

𝜉
𝑖
=
1

2
(1 + cos (2𝑖 − 1) 𝜋

2𝑝
) , 𝛼

2

𝑖
=
1

𝜉
𝑖

− 1,

𝑘 = 0, 1, 2, . . . , 𝑝.

(35)
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Table 1

IT CPU ERR
Algorithm 1 7 0.0086 2.17 × 10

−16

Algorithm 2 7 0.0080 2.04 × 10
−16

Algorithm 3 5 0.0103 1.96 × 10
−16

Algorithm 11 9 0.0172 1.99 × 10
−16

Algorithm 12 6 0.0136 2.03 × 10
−16

Algorithm 13 with 𝑝 = 1 11 0.0094 2.71 × 10
−16

Algorithm 13 with 𝑝 = 2 9 0.0101 2.68 × 10
−16

Algorithm 14 with 𝑝 = 1 9 0.0127 1.97 × 10
−16

Algorithm 14 with 𝑝 = 2 6 0.0108 3.61 × 10
−16

Algorithm 14 (the scaled Pade iteration [13]). Consider

𝑌
0
= 𝐴, 𝑍

0
= 𝐼

𝑟
𝑘
=
det(𝑌𝑘) det(𝑍𝑘)



−1/2𝑛

𝑌
𝑘+1

=
1

𝑝
𝑟
𝑘
𝑌
𝑘

𝑝

∑

𝑖=1

1

𝜉
𝑖

(𝑟
2

𝑘
𝑍
𝑘
𝑌
𝑘
+ 𝛼
2

𝑖
𝐼)
−1

𝑍
𝑘+1

=
1

𝑝
𝑍
𝑘

𝑝

∑

𝑖=1

1

𝜉
𝑖

(𝑟
2

𝑘
𝑌
𝑘
𝑍
𝑘
+ 𝛼
2

𝑖
𝐼)
−1

, 𝑘 = 0, 1, 2, . . . .

(36)

All tests are performed by using MATLAB 7.1 on a per-
sonal computer (Pentium IV/2.4 G), with machine precision
2.2 × 10

−16. The stopping criterion for these algorithms is the
relative residual error:

Res =

𝑋
2

𝑘
− 𝐴



‖𝐴‖
< 10
−15

, (37)

where𝑋
𝑘
is the current, say the 𝑘th, iteration value.

Example 1. Consider the matrix

𝐴 = (𝑎
𝑖𝑗
)
10×10

=

{{{

{{{

{

𝑗

20
, 𝑖 = 𝑗;

𝑖 + 𝑗

1000
, 𝑖 ̸= 𝑗.

(38)

We use Algorithms 1, 2, and 3 with𝑋
0
= 0.3𝐼 and Algorithms

11–14 to compute the nonsingular square root of 𝐴. We list
the iteration steps (denoted by “IT”), CPU time (denoted by
“CPU”), and the relative residual error (denoted by “ERR”)
in Table 1.

Example 2. Consider the matrix

𝐴 = (𝑎
𝑖𝑗
)
200×200

=

{

{

{

1, 𝑖 = 𝑗;

1

𝑖 + 𝑗 − 1
, 𝑖 ̸= 𝑗.

(39)

We use Algorithms 1, 2, and 3 with the starting matrix 𝑋
0
=

0.9𝐼 andAlgorithms 11–14 to compute the nonsingular square
root of 𝐴. We list the numerical results in Table 2.

Table 2

IT CPU ERR
Algorithm 1 6 7.6310 5.72 × 10

−16

Algorithm 2 6 8.7200 3.61 × 10
−16

Algorithm 3 4 9.0258 2.60 × 10
−16

Algorithm 11 8 13.2301 3.87 × 10
−16

Algorithm 12 7 11.6758 2.98 × 10
−16

Algorithm 13 with 𝑝 = 1 10 8.8936 9.36 × 10
−16

Algorithm 13 with 𝑝 = 2 6 9.4387 5.78 × 10
−16

Algorithm 14 with 𝑝 = 1 9 10.3571 2.89 × 10
−16

Algorithm 14 with 𝑝 = 2 5 8.1043 3.87 × 10
−16

From Tables 1 and 2, we can see that Algorithms 2
and 3 outperform Algorithms 1, 11, 12, and 13 in both
iteration steps and approximation accuracy, and Algorithm 3
outperforms Algorithms 1, 2, and 11–14 in both iteration steps
and approximation accuracy. Therefore, our algorithms are
more effective than the known ones in some aspects.

6. Conclusion

In this paper, we propose two new algorithms for computing
the nonsingular square root of a matrix 𝐴 by applying
Newton’s method to nonlinear matrix equation 𝐺(𝑋) = 𝑋 −

𝐴𝑋
−1

= 0. Convergence theorems and stability analysis for
these new algorithms are given. Numerical examples show
that our methods are more effective than the known one in
some aspects.
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