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This is a review paper on recent results for different types of generalized ordinary differential equations. Its scope ranges from
discontinuous equations to equations on time scales. We also discuss their relation with inclusion and highlight the use of
generalized integration to unify many of them under one single formulation.

1. Existence Theory for Differential
Equations and Inclusions

Therewas a series of resultswhich progressivelyweakened the
continuity in the state variable of the classical Carathéodory
existence theorem for first-order differential equations; these
include [1–7]. Biles and Schechter posed the open problem
of proving an existence result for discontinuous systems of
differential equations lacking a quasimonotonicity property;
see [7, page 3352]. Motivated by that question, Cid and
Pouso [8] explored an alternative approach to discontinuous
equations which consisted, roughly speaking, of inserting
the differential equation into a semicontinuous differential
inclusion for which existence results were available, and then
positing assumptions on the discontinuities of the former
differential equation so that every solution of the inclusion is
a solution of the equation. Besides getting an existence result
for nonquasimonotone discontinuous systems, the approach
in [8] came to unify and extend previous similar results for
autonomous equations proven in [9] and for nonautonomous
equations proven in [10].

Here and henceforthwework in a real interval 𝐼 = [𝑡
0
, 𝑡

0
+

𝐿] with 𝐿 > 0.

Theorem 1 (see [8,Theorem 2.4]). Assume that𝑓 : 𝐼×R𝑚
→

R𝑚
(𝑚 ∈ N) and the null set 𝑁 ⊂ 𝐼 satisfy the following

conditions.
(i) There exists 𝜓 ∈ 𝐿1

(𝐼) such that for all 𝑡 ∈ 𝐼 \𝑁 and all
𝑥 ∈ R𝑚 one has ‖𝑓(𝑡, 𝑥)‖ ≤ 𝜓(𝑡)(1 + ‖𝑥‖), where ‖ ⋅ ‖
is a norm in R𝑚.

(ii) For all 𝑥 ∈ R𝑚, 𝑓(⋅, 𝑥) is measurable.
(iii) For all 𝑡 ∈ 𝐼\𝑁,𝑓(𝑡, ⋅) is continuous inR𝑚

\𝐾(𝑡), where
𝐾(𝑡) = ∪

∞

𝑛=1
𝐾

𝑛
(𝑡), and for each 𝑛 ∈ N and 𝑥 ∈ 𝐾

𝑛
(𝑡)

one has

⋂

𝜀>0

𝑐𝑜𝑓 (𝑡, 𝑥 + 𝜀𝐵) ∩ 𝐷𝐾𝑛 (𝑡, 𝑥) (1) ⊂ {𝑓 (𝑡, 𝑥)} , (1)

where 𝑐𝑜 denotes the closed convex hull, 𝐵 is the unit
ball centered at the origin, and 𝐷𝐾

𝑛
is the contingent

derivative of the multivalued map 𝐾
𝑛
(see [11] for

details).
Then the set C of all Carathéodory solutions of the initial

value problem
𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼, 𝑥 (𝑡

0
) = 𝑥

0
(2)

is a nonempty, compact, and connected subset ofC(𝐼,R𝑚
).
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Moreover, in the scalar case (𝑚 = 1), one has the following.

(1) C has pointwise maximum, 𝑥∗, and minimum, 𝑥
∗
,

which are the extremal solutions of the initial value
problem. Furthermore for each 𝑡 ∈ 𝐼 one has

𝑥
∗
(𝑡) = max {V (𝑡) : V ∈ 𝐴𝐶 (𝐼) ,

V (𝑠) ≤ 𝑓 (𝑠, V (𝑠)) 𝑎.𝑒., V (𝑡
0
) ≤ 𝑥

0
} ,

𝑥
∗
(𝑡) = min {V (𝑡) : V ∈ 𝐴𝐶 (𝐼) ,

V (𝑠) ≥ 𝑓 (𝑠, V (𝑠)) 𝑎.𝑒., V (𝑡
0
) ≥ 𝑥

0
} .

(3)

(2) C is a funnel; that is, for all 𝑡 ∈ 𝐼 and 𝑐 ∈ [𝑥
∗
(𝑡), 𝑥

∗
(𝑡)]

there exists 𝑥 ∈ C such that 𝑥(𝑡) = 𝑐.

The simplest case of Theorem 1 occurs in the one-
dimensional case, that is, 𝑚 = 1, and when the discontinuity
sets𝐾

𝑛
are single-valued, that is,𝐾

𝑛
(𝑡) = {𝛾

𝑛
(𝑡)} for, let us say,

absolutely continuous functions 𝛾
𝑛
, 𝑛 ∈ N. In this situation

we have

𝐷𝐾
𝑛
(𝑡, 𝛾

𝑛
(𝑡)) (1) = {𝛾



𝑛
(𝑡)} , (4)

and then condition (1) reads simply as follows:

either 𝛾
𝑛
(𝑡) ∉ ⋂

𝜀>0

𝑐𝑜𝑓 (𝑡, 𝛾
𝑛
(𝑡) + 𝜀𝐵) ,

or 𝛾


𝑛
(𝑡) = 𝑓 (𝑡, 𝛾𝑛 (𝑡)) ,

(5)

and it is helpful to note that, in the one-dimensional case, we
have

⋂

𝜀>0

𝑐𝑜𝑓 (𝑡, 𝑥 + 𝜀𝐵) = [min {𝑓 (𝑡, 𝑥) , lim inf
𝑦→𝑥

𝑓 (𝑡, 𝑦)} ,

max{𝑓 (𝑡, 𝑥) , lim sup
𝑦→𝑥

𝑓 (𝑡, 𝑦)}] .

(6)

The first alternative in (5) means that 𝛾
𝑛
(𝑡) coincides neither

with 𝑓(𝑡, 𝛾
𝑛
(𝑡)) nor with any limit value of 𝑓 when the

variables tend to (𝑡, 𝛾
𝑛
(𝑡)). This is a sort of transversality

condition between 𝑓(𝑡, 𝑥) and the discontinuity curve 𝛾
𝑛
(𝑡),

and it is immediately satisfied in case 𝛾
𝑛
has a sufficiently big

(or sufficiently small) slope.
The second alternative is much clearer: it simply means

that 𝛾
𝑛
solves the differential equation at the point 𝑡. The

moral is that we do not have to worry about discontinuities
of 𝑓 when they are located over graphs of solutions of the
differential equation (even though these solutions do not
satisfy the initial condition or they are not defined on the
whole interval 𝐼).

For simplicity, we have often called admissible disconti-
nuity curve any function 𝛾(𝑡) satisfying (5), and they have
proven to be useful in other contexts; see [12] for singular
and discontinuous problems and [13] for a revision of Perron’s
method using similar curves.

Let us now turn our attention to differential inclusions.
The rest of this section is devoted to a somewhat inverse
approach to that in the first part: one can get new results
for inclusions by means of known results for discontinuous
equations.

To start with, we quote [14] where we can find necessary
and sufficient conditions for the existence of Carathéodory
solutions to

𝑥

∈ 𝐹 (𝑥) , 𝑥 (0) = 𝑥

0
, (7)

where 𝐹 is an arbitrary multifunction. Biles proves that the
necessary and sufficient conditions for (7) to have at least one
solution are that 𝐹 have a selection 𝑓 such that either 𝑓(𝑥

0
) =

0 or ∫𝛽

𝑥0

𝑑𝑥/𝑓(𝑥) exists (in Lebesgue’s sense) for some 𝛽 ̸= 𝑥
0
.

This uses and generalizes a theorem for differential equations
by binding in [15].

We also used known results for equations to study
nonautonomous first-order inclusions in [16]. Let us proceed
to review the main ideas in that paper.

For a given multifunction 𝐹 : 𝐼 × R → 𝑃(R) \ {0} we
consider the initial value problem

𝑥

(𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) for almost all (𝑎.𝑎.) 𝑡 ∈ 𝐼,

𝑥 (𝑡
0
) = 𝑥

0
,

(8)

and we look for solutions in the Carathéodory sense, that is,
absolutely continuous solutions.

A very usual assumption on the multifunction 𝐹 is that it
assumes compact values for 𝑎.𝑎. 𝑡 ∈ 𝐼 and all𝑥 ∈ R, hence the
set 𝐹(𝑡, 𝑥) has minimum and maximum. We simply impose
the following condition.

(H1) For 𝑎.𝑎. 𝑡 ∈ 𝐼 and all 𝑥 ∈ R the set 𝐹(𝑡, 𝑥)
has a minimum; and now we introduce the following
definition.

Definition 2. Asuperfunction (or upper solution) of (8) is any
𝑢 ∈ 𝐴𝐶(𝐼) such that 𝑢(𝑡

0
) ≥ 𝑥

0
and for 𝑎.𝑎. 𝑡 ∈ 𝐼 one has

𝑢

(𝑡) ≥ min𝐹(𝑡, 𝑢(𝑡)).
We also impose the following.

(H2) There exists 𝜓 ∈ 𝐿
1
(𝐼) such that for 𝑎.𝑎. 𝑡 ∈ 𝐼

and all 𝑥 ∈ R we have

|min𝐹 (𝑡, 𝑥)| ≤ 𝜓 (𝑡) , (9)

and we restrict, for technical convenience, the set of super-
functions to the following one.

Definition 3. The set of admissible superfunctions of (8) is

𝑈 := {𝑢 ∈ 𝐴𝐶 (𝐼) : 𝑢 is a superfunction of (8)

and 
𝑢

≤ 𝜓 + 1 𝑎.𝑒. on 𝐼} .

(10)

Notice that 𝑢(𝑡) := 𝑥
0
+ ∫

𝑡

𝑡0

𝜓(𝑟)𝑑𝑟, 𝑡 ∈ 𝐼, is an admissible
superfunction of (8). Thus we can define

𝑢inf (𝑡) := inf {𝑢 (𝑡) : 𝑢 ∈ 𝑈} ∀𝑡 ∈ 𝐼. (11)

Standard arguments reveal that 𝑢inf (𝑡0) = 𝑥0
and that 𝑢inf ∈

𝐴𝐶(𝐼).
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For simplicity of notation, we also define

𝑓
𝑚
(𝑡, 𝑥) := min𝐹 (𝑡, 𝑥) for 𝑎.𝑎. 𝑡 ∈ 𝐼 and all 𝑥 ∈ R,

(12)

and we consider the ordinary problem

𝑥

(𝑡) = 𝑓

𝑚
(𝑡, 𝑥 (𝑡)) for 𝑎.𝑎. 𝑡 ∈ 𝐼, 𝑥 (𝑡

0
) = 𝑥

0
. (13)

Plainly, solutions of (13) are solutions of (8) by virtue of (H1),
but the converse is false in general. Moreover, superfunctions
of (8) in the sense of Definition 2 are nothing but the usual
superfunctions of (13), and so 𝑢inf is a reasonable candidate
for being a solution to (8). Note also that solutions of (8) need
not be admissible superfunctions in the sense of Definition 3,
so 𝑢inf might not be the least solution of (8).

Definition 4. A lower admissible nonquasisemicontinuity
curve for (8) (LAD curve, for short) is an absolutely continu-
ous function 𝛾 : [𝑎, 𝑏] ⊂ 𝐼 → R for which there exist disjoint
sets 𝐴, 𝐵 ⊂ [𝑎, 𝑏] such that 𝐴 ∪ 𝐵 = [𝑎, 𝑏] and for 𝑎.𝑎. 𝑡 ∈ 𝐴
one has

𝛾

(𝑡) ∈ 𝐹 (𝑡, 𝛾 (𝑡)) , (14)

and for 𝑎.𝑎. 𝑡 ∈ 𝐵 one has

𝛾

(𝑡) ≥ 𝑓

𝑚
(𝑡, 𝛾 (𝑡)) whenever 𝛾 (𝑡) ≥ lim inf

𝑦→(𝛾(𝑡))
+

𝑓
𝑚
(𝑡, 𝑦) ,

𝛾

(𝑡) ≤ 𝑓

𝑚
(𝑡, 𝛾 (𝑡)) whenever 𝛾 (𝑡) ≤ lim sup

𝑦→(𝛾(𝑡))
−

𝑓
𝑚
(𝑡, 𝑦) .

(15)

Remark 5. The sets 𝐴 or 𝐵 in Definition 4 might be empty.
A particularly clear case of a LAD curve corresponds to

𝐵 = 0, which means that 𝐴 = [𝑎, 𝑏], so in that case the LAD
curve is nothing but a solution of the differential inclusion on
[𝑎, 𝑏].

In turn, let us point out the following sufficient condition
for an absolutely continuous function 𝛾 : [𝑎, 𝑏] ⊂ 𝐼 → R to
be a LAD curve with 𝐵 = [𝑎, 𝑏]: there exist 𝜀 > 0 and 𝜌 > 0
such that for 𝑎.𝑎. 𝑡 ∈ [𝑎, 𝑏] we have

𝑓
𝑚
(𝑡, 𝑥) ≥ 𝛾


(𝑡) + 𝜌 ∀𝑥 ∈ [𝛾 (𝑡) − 𝜀, 𝛾 (𝑡) + 𝜀] , (16)

or for 𝑎.𝑎. 𝑡 ∈ [𝑎, 𝑏] we have

𝑓
𝑚
(𝑡, 𝑥) ≤ 𝛾


(𝑡) − 𝜌 ∀𝑥 ∈ [𝛾 (𝑡) − 𝜀, 𝛾 (𝑡) + 𝜀] . (17)

Notice that (16) (or (17)) implies that 𝛾 crosses each solution
of 𝑥

= 𝑓
𝑚
(𝑡, 𝑥) at most once, so (16) (or (17)) is a

transversality condition for 𝛾 with respect to the differential
equation 𝑥

= 𝑓
𝑚
(𝑡, 𝑥).

We are now in a position to present themain result in [16].

Theorem 6 (see [16, Theorem 2.5]). Assume that conditions
(H1) and (H2) hold. Suppose moreover that the following
condition is fulfilled.

(H3) Either for 𝑎.𝑎. 𝑡 ∈ 𝐼 and all 𝑥 ∈ R one has

lim sup
𝑦→𝑥

−

𝑓
𝑚
(𝑡, 𝑦) ≤ 𝑓

𝑚
(𝑡, 𝑥) ≤ lim inf

𝑦→𝑥
+

𝑓
𝑚
(𝑡, 𝑦) (18)

or there exist countably many LAD curves for (8), 𝛾
𝑛
:

[𝑎
𝑛
, 𝑏

𝑛
] ⊂ 𝐼 → R, 𝑛 ∈ N, such that for 𝑎.𝑎. 𝑡 ∈ 𝐼 and

all 𝑥 ∈ R \ ∪
{𝑛|𝑎𝑛≤𝑡≤𝑏𝑛}

{𝛾
𝑛
(𝑡)} one has (18).

Then one has the following results.
(a) There exists a null measure set𝑁 ⊂ 𝐼 such that

{𝑡 ∈ 𝐼 : 𝑢


inf (𝑡) ∉ 𝐹 (𝑡, 𝑢inf (𝑡))} ⊂ 𝐽 ∪ 𝑁, (19)

where 𝐽 = ∪
𝑛,𝑚∈N𝐽𝑛,𝑚, and for each 𝑛,𝑚 ∈ N the set

𝐽
𝑛,𝑚

:= {𝑡 ∈ 𝐼 : 𝑢


inf (𝑡) −
1

𝑛

> sup {𝑓
𝑚
(𝑡, 𝑦) : 𝑢inf (𝑡) −

1

𝑚
< 𝑦 < 𝑢inf (𝑡)}}

(20)

contains no positive measure subset.
(b) The function 𝑢inf is a solution of (8) provided that for

all 𝑛,𝑚 ∈ N the set 𝐽
𝑛,𝑚

is measurable.
(c) If 𝐽

𝑛,𝑚
is measurable for every 𝑛,𝑚 ∈ N, then 𝑢inf is the

least solution of (8) provided that one of the following
conditions hold:

either for 𝑎.𝑎. 𝑡 ∈ 𝐼, all 𝑥 ∈ R, and all 𝑦 ∈ 𝐹(𝑡, 𝑥)
one has 𝑦 ≤ 𝜓(𝑡) + 1 or the first alternative in
(H3) holds, which, furthermore, guarantees that
𝑢inf is the least solution to (13).

The following result is Lemma 2 in [13], and it is very
useful to prove that the 𝐽

𝑛,𝑚
’s are measurable in practical

situations.

Lemma 7. Let𝑁 ⊂ 𝐼 be a null measure set and let 𝑔 : 𝐼×R →

R be such that 𝑔(⋅, 𝑞) is measurable for each 𝑞 ∈ Q.
If, moreover, for all 𝑡 ∈ 𝐼 \ 𝑁 and all 𝑥 ∈ R one has

max{lim inf
𝑦→𝑥

−

𝑔 (𝑡, 𝑦) , lim inf
𝑦→𝑥

+

𝑔 (𝑡, 𝑦)} ≥ 𝑔 (𝑡, 𝑥) , (21)

then the mapping 𝑡 ∈ 𝐼 → sup{𝑔(𝑡, 𝑦) : 𝑥
1
(𝑡) < 𝑦 < 𝑥

2
(𝑡)} is

measurable for each pair 𝑥
1
, 𝑥

2
∈ 𝐶(𝐼) such that 𝑥

1
(𝑡) < 𝑥

2
(𝑡)

for all 𝑡 ∈ 𝐼.

Notice that our multifunctions 𝐹 need not satisfy the
usual hypotheses such as monotonicity or upper/lower semi-
continuity. Moreover, 𝐹 need not assume closed or convex
values.

An analogous result for the greatest solution to (13) is also
given in [16] and existence of solution for a singular version
of (8) is considered in [17].

Another example where we used known results for
equations to deduce new result for inclusions is [18], which
concerns second-order inclusions and relies on the results
proven for equations in [19]. In order to present the main
result in [18] we need some notations and preliminaries.

Let 𝐹 : [0, 𝑇] ×R → P(R) \ {0}, and

𝑋 = {𝑢 ∈ C ([0, 𝑇]) : 𝑢 (0) = 𝑥0
, 𝑢 is nondecreasing} .

(22)
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For each 𝑢 ∈ 𝑋 we define its “pseudoinverse” �̂� : R → [0, 𝑇]

as

�̂� (𝑥) =

{{

{{

{

0, 𝑥 < 𝑥
0
,

min 𝑢−1
({𝑥}) , 𝑥

0
≤ 𝑥 ≤ 𝑢 (𝑇) ,

𝑇, 𝑢 (𝑇) < 𝑥.

(23)

We notice that �̂� is nondecreasing but not necessarily contin-
uous.Moreover, if𝑢 ∈ 𝑋 is increasing in 𝐼, then �̂�(𝑥) = 𝑢−1

(𝑥)

for all 𝑥 ∈ [𝑥
0
, 𝑢(𝑇)].

Theorem8 (see [18,Theorem 4.1]). Suppose that for some𝑅 >
0 the following hypotheses hold.

(F1) For each𝑢 ∈ 𝑋 themultifunction𝐹
𝑢
: R → P(R)\{0}

defined as 𝐹
𝑢
(⋅) = 𝐹(�̂�(⋅), ⋅) has an admissible selection

on the right of 𝑥
0
, that is, a selection𝑓

𝑢
: [𝑥

0
, 𝑥

0
+𝑅] →

R such that

(i) 𝑓
𝑢
∈ 𝐿

1
(𝑥

0
, 𝑥

0
+ 𝑅);

(ii) 𝑥2

1
+ 2 ∫

𝑥

𝑥0

𝑓
𝑢
(𝑟)𝑑𝑟 > 0 for 𝑎.𝑎. 𝑥 ∈ [𝑥

0
, 𝑥

0
+ 𝑅];

(iii) max{1, |𝑓|}/√𝑥2

1
+ 2 ∫

⋅

𝑥0

𝑓
𝑢
(𝑟)𝑑𝑟 ∈ 𝐿

1
(𝑥

0
, 𝑥

0
+

𝑅);
(iv) ∫𝑥0+𝑅

𝑥0

(𝑑𝑥/√𝑥
2

1
+ 2 ∫

𝑥

𝑥0

𝑓
𝑢
(𝑟)𝑑𝑟) ≥ 𝑇.

(F2) There exists𝑀 ∈ 𝐿
1
(𝑥

0
, 𝑥

0
+ 𝑅) such that for all 𝑡 ∈ 𝐼

and all 𝑥 ∈ [𝑥
0
, 𝑥

0
+ 𝑅] one has

sup {𝑦 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑀 (𝑥) . (24)

(F3) For every 𝑢, V ∈ 𝑋, the relation 𝑢 ≤ V on 𝐼 implies
𝑓
𝑢
≤ 𝑓V on [𝑥0

, 𝑥
0
+ 𝑅].

Then the initial value problem

𝑥

(𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) for 𝑎.𝑎. 𝑡 ∈ 𝐼 := [0, 𝑇] ,

𝑥 (0) = 𝑥
0
, 𝑥


(0) = 𝑥

1
≥ 0

(25)

has an increasing solution in𝑊2,1
(0, 𝑇).

2. Dynamic Equations on Time Scales

The study of time scales was formalized in the Ph.D. thesis of
Hilger in 1988 [20].The notions of derivative fromdifferential
calculus and the forward jump operator from difference
calculus are unified and extended to the delta derivative 𝑓Δ

on a time scale T (an arbitrary set on the real line).These lead
to the study of dynamic equations on time scales, unifying
differential and difference equations. In addition, these ideas
can be applied in situations more general than those for
differential and difference equations, such as population
problems inwhich the species alternates between time frames
in which they are active and periods of dormancy. The study
of time scales yields interesting insight into the special cases.
For example, one realizes that the only reason we have the
simple derivative from elementary calculus of 𝑡2 is 2𝑡 is
because the graininess of real line is zero.

Much of the earlier history of time scales can be found in
the books by Bohner and Peterson [21, 22] which are on the
bookshelf of every time scales analyst. We refer the reader to
these sources for the basic concepts and definitions for time
scales. Reference [21] collects much of the information for
the linear case. As an example, we will overview the first-
order linear case. We define the cylinder transformation 𝜉

ℎ

on {𝑧 ∈ C | 𝑧 ̸= − 1/ℎ} by 𝜉
ℎ
(𝑧) = 1/ℎ log(1 + 𝑧ℎ) for ℎ > 0,

where log is the principal logarithm function and 𝜉
0
(𝑧) = 𝑧.

We call a function 𝑝 : T → R regressive if 1+𝜇(𝑡)𝑝(𝑡) for all
𝑡 ∈ T𝜅, where 𝜇 is the graininess of the time scale.We can now
define the time scales (or generalized) exponential function
by 𝑒

𝑝
(𝑡, 𝑠) = exp(∫𝑡

𝑠
𝜉
𝜇(𝑡)
(𝑝(𝜏))Δ𝜏), where 𝑠, 𝑡 ∈ T . The

exponential function thus defined enjoys many properties
analogous to that of the standard exponential function on the
real line. The following can now be proven.

Theorem9. Suppose 𝑝 is rd-continuous and regressive, and let
𝑡
0
∈ T . Then, 𝑒

𝑝
(⋅, 𝑡

0
) is the unique solution to

𝑦
Δ
= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡

0
) = 1. (26)

Note that this yields the corollaries that 𝑦 = 𝑒
𝛼𝑡 is the

unique solution to 𝑦
= 𝛼𝑦, 𝑦(0) = 1 on the real line and

𝑦 = (1 + 𝛼)
𝑡 is the unique solution to Δ𝑦(𝑡) = 𝛼𝑦(𝑡), 𝑦(0) = 1

on the integers, where Δ𝑦 represents the forward difference
operator from difference calculus.

We note that the nabla derivative on time scales was
defined byAtici andGuseinov [23] in 2002, which generalizes
the backward difference operator. One might think that the
results for nabla derivatives mirror those for the delta case,
but this is not true; see, for example, [24]. Recently, work
has progressed for dynamic equations with the diamond-
alpha derivative initiated in [25] and furthered in [26–28].
In the remainder of this section, without making a claim
to being complete, we overview some of the recent work in
dynamic equations on time scales to illustrate how many of
the ideas fromdifferential and difference equations have been
generalized and extended.

Existence of solutions has been proven in a number of
cases, such as [29] using fixed point theory, [30] proving a
Nagumo-type existence result, and [31] using a fixed point
theorem due to Avery and Peterson. (A number of other
existence theorems arementioned in specific contexts below.)
As an example, here is the theorem from [30].

Theorem 10. Assume there exist a lower solution 𝛼 and an
upper solution 𝛽 with 𝛼 ≤ 𝛽 on T and

(a) 𝑓 ∈ 𝐶([𝑎, 𝑏] × R2
,R) satisfies 𝑓(𝑡, 𝑥, 𝑦) > 0 for all

𝑡 ∈ T , 𝑥 ∈ [𝛼𝜎
(𝑡), 𝛽

𝜎
(𝑡)] and 𝑦 ̸= 0,

(b) there exists a 𝐾 > 0 such that 𝑓(𝑡, 𝑥, 𝑦) ≤ 𝐾 for all
right scattered 𝑡 ∈ T , 𝑥 ∈ [𝛼𝜎

(𝑡), 𝛽
𝜎
(𝑡)] and 𝑦 ∈ R,

(c) 𝑓(𝑡, 𝑥, ⋅) is nonincreasing for all right scattered 𝑡 ∈ T

and 𝑥 ∈ [𝛼𝜎
(𝑡), 𝛽

𝜎
(𝑡)],

(d) 𝐿
1
∈ 𝐶(R4

× 𝐶(T),R) is nondecreasing in its third
variable, nonincreasing in its fourth variable, and
nondecreasing in its fifth variable,
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(e) 𝐿
2
∈ 𝐶(R2

,R) is nonincreasing in its first variable, and

(f) 𝑓 satisfies a Nagumo condition with respect to the pair
𝛼 and 𝛽.

Then, there exists a solution 𝑦 ∈ [𝛼, 𝛽] to the problem

𝑦
ΔΔ
(𝑡) = 𝑓 (𝑡, 𝑦

𝜎
(𝑡) , 𝑦

Δ
(𝑡)) , for 𝑡 ∈ T

𝜅
2

,

0 = 𝐿
1
(𝑦 (𝑎) , 𝑦

Δ
(𝑎) , 𝑦 (𝜎

2
(𝑏)) , 𝑦

Δ
(𝜎 (𝑏)) , 𝑦) ,

0 = 𝐿
2
(𝑦 (𝑎) , 𝑦 (𝜎

2
(𝑏))) .

(27)

Singular problems have been studied in [32, 33]. Green’s
functions have been considered in [23, 34]. A Sturm-Liouville
eigenvalue problem was studied by [35]. Periodic solutions
were investigated in [36]. OscillationS of solutions have been
considered in [37–39] using the time scales Taylor formula,
[40–45]. Asymptotic behavior of solutions has been studied
in [46, 47] using Taylor monomials and in [47]. Laplace
transforms on time scales were studied by [48].

Delay equations were studied in [40, 42, 44]. Impulsive
problems have been studied in [37, 38, 49–51]. Functional
dynamic equations have been studied in [50, 52] using
Lyapunov functions [41, 46]. Fractional derivatives have been
considered in [53, 54]. Problems in abstract spaces were
studied in [55]. Dynamic inclusions have been studied in
[24, 37, 50, 56]. Partial differentiation on time scales was
introduced in [57] and was continued in [28].

Recently, work has begun on extending stochastic calcu-
lus to time scales, for example, [58] for the isolated time scale
case, [59, 60] for the delta case, AND [61] for the nabla case.

3. Generalized Ordinary Differential Equations

In order to generalize some results on continuous depen-
dence of solutions of ordinary differential equations with
respect to the initial data, Jaroslav Kurzweil introduced, in
1957, the notion of generalized ordinary differential equations
for functions taking values in Euclidean and Banach spaces.
This generalization of the notion of ordinary differential
equations uses the concept of the Perron generalized integral,
also known as the Kurzweil integral. We refer to these
equations as generalized ODEs. See [62–66].

The correspondence between generalized ODEs and clas-
sic ODEs is very simple. It is known that the ordinary system

�̇� = 𝑓 (𝑥, 𝑡) , (28)

where �̇� = 𝑑𝑥/𝑑𝑡,Ω ⊂ R𝑛 is an open set and𝑓 : Ω×R → R𝑛,
has the integral representation

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥 (𝜏) , 𝜏) 𝑑𝜏, 𝑡 ≥ 𝑡
0
, (29)

whenever the integral exists in some sense. It is also known
that if the integral in (29) is in the sense of Riemann, Lebesgue
(with the equivalent definition given by E. J. McShane), or
Henstock-Kurzweil, for instance, then such an integral can
be approximated by a Riemann-type sum of the form

𝑚

∑

𝑖=1

𝑓 (𝑥 (𝜏
𝑖
) , 𝜏

𝑖
) [𝑠

𝑖
− 𝑠

𝑖−1
] , (30)

where 𝑡
0
= 𝑠

0
≤ 𝑠

1
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑚
= 𝑡 is a fine partition of the

interval [𝑡
0
, 𝑡] and, for each 𝑖 = 1, 2, . . . , 𝑚, 𝜏

𝑖
is sufficiently

“close” to the interval [𝑠
𝑖−1
, 𝑠

𝑖
].

Alternatively, if we define

𝐹 (𝑥, 𝑠) = ∫

𝑠

𝑠0

𝑓 (𝑥, 𝜎) 𝑑𝜎, (𝑥, 𝑡) ∈ Ω ×R, (31)

then the integral in (29) can be approximated by

𝑚

∑

𝑖=1

∫

𝑠𝑖

𝑠𝑖−1

𝑓 (𝑥 (𝜏
𝑖
) , 𝜎) 𝑑𝜎

=

𝑚

∑

𝑖=1

[𝐹 (𝑥 (𝜏
𝑖
) , 𝑠

𝑖
) − 𝐹 (𝑥 (𝜏

𝑖
) , 𝑠

𝑖−1
)] .

(32)

In such a case, the right-hand side of (32) approximates
the nonabsolute Kurzweil integral which, when considered
in (29), gives rise to a “differential equation” of type (28),
however in a wider sense. Such type of equation is known
as generalized ordinary differential equation or Kurzweil
equation. See [67, 68].

Let [𝑎, 𝑏] ⊂ R be a compact interval and consider a
function 𝛿 : [𝑎, 𝑏] → R+ (called a gauge on [𝑎, 𝑏]). A tagged
partition of the interval [𝑎, 𝑏] with division points 𝑎 = 𝑠

0
≤

𝑠
1
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑘
= 𝑏 and tags 𝜏

𝑖
∈ [𝑠

𝑖−1
, 𝑠

𝑖
], 𝑖 = 1, . . . , 𝑘, is called

𝛿-fine if

[𝑠
𝑖−1
, 𝑠

𝑖
] ⊂ (𝜏

𝑖
− 𝛿 (𝜏

𝑖
) , 𝜏

𝑖
+ 𝛿 (𝜏

𝑖
)) , 𝑖 = 1, . . . , 𝑘. (33)

Definition 11. Let 𝑋 be a Banach space. A function 𝑈(𝜏, 𝑡) :
[𝑎, 𝑏] × [𝑎, 𝑏] → 𝑋 is called Kurzweil integrable over [𝑎, 𝑏],
if there is an element 𝐼 ∈ 𝑋 such that, given 𝜀 > 0, there is a
gauge 𝛿 on [𝑎, 𝑏] such that



𝑘

∑

𝑖=1

[𝑈 (𝜏
𝑖
, 𝑠

𝑖
) − 𝑈 (𝜏

𝑖
, 𝑠

𝑖−1
)] − 𝐼



< 𝜀, (34)

for every 𝛿-fine tagged partition of [𝑎, 𝑏]. In this case, 𝐼 is
called the Kurzweil integral of 𝑈 over [𝑎, 𝑏] and it will be
denoted by ∫𝑏

𝑎
𝐷𝑈(𝜏, 𝑡).

TheKurzweil integral has the usual properties of linearity,
additivity with respect to adjacent intervals, and integrability
on subintervals. See, for instance, [68], for these and other
interesting properties.

Now, consider a subset 𝑂 ⊂ 𝑋 and a function 𝐺 : 𝑂 ×

[𝑎, 𝑏] → 𝑋.
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Any function 𝑥 : [𝑎, 𝑏] → 𝑂 is called a solution of the
generalized ordinary differential equation (we write simply
generalized ODE)

𝑑𝑥

𝑑𝜏
= 𝐷𝐺 (𝑥, 𝑡) (35)

on the interval [𝑎, 𝑏], provided

𝑥 (𝑑) − 𝑥 (𝑐) = ∫

𝑑

𝑐

𝐷𝐺 (𝑥 (𝜏) , 𝑡) , 𝑐, 𝑑 ∈ [𝑎, 𝑏] , (36)

where the integral is obtained by setting 𝑈(𝜏, 𝑡) = 𝐺(𝑥(𝜏), 𝑡)
in the definition of the Kurzweil integral.

As it was done in [69, 70], but using different assumptions,
namely, Carathéodory and Lipschitz-type conditions on the
indefinite integral, we proved in [71] that retarded functional
differential equations (we write RFDEs, for short) can be
regarded as abstract generalizedODEs and some applications
were investigated.

In [72], together with professor Štefan Schwabik, we
proved that RFDEs subject to impulse effects can also be
regarded as generalized ODEs taking values in a Banach
space.

Recently, in [73], together with Federson et al., we proved
that a solution of a measure RFDEs of the form

𝐷𝑦 = 𝑓 (𝑦
𝑡
, 𝑡) 𝐷𝑔, 𝑦

𝑡0
= 𝜙, (37)

where 𝐷𝑦 and 𝐷𝑔 are distributional derivatives in the sense
of L. Schwartz with respect to 𝑦 and 𝑔, respectively, can be
related to a solution of an abstract generalized ODE. More
precisely, we considered the integral form of (37) as follows:

𝑥 (𝑡) = 𝑥 (𝑡
0
) + ∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ≥ 𝑡

0
,

𝑥
𝑡0
= 𝜙,

(38)

where 𝑡
0
, 𝜎, 𝑟 are given real numbers, with 𝜎, 𝑟 > 0, and

𝑦
𝑡
(𝜃) = 𝑦(𝑡 + 𝜃), for 𝜃 ∈ [−𝑟, 0]. We also considered 𝑂 ⊂

𝐺([𝑡
0
− 𝑟, 𝑡

0
+ 𝜎],R𝑛

) as being an open set and
𝑃 = {𝑦

𝑡
: 𝑦 ∈ 𝑂, 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎]} ⊂ 𝐺 ([−𝑟, 0] ,R

𝑛
) , (39)

where by 𝐺([𝑎, 𝑏], 𝑋) we mean the Banach space of all
regulated functions 𝑓 : [𝑎, 𝑏] → 𝑋 endowed with the usual
supremum norm

𝑓
∞

= sup
𝑎≤𝑡≤𝑏

𝑓 (𝑡)
 , (40)

andwe assumed that𝑓:𝑃×[𝑡
0
, 𝑡

0
+𝜎] → R𝑛 is a function such

that, for each 𝑦 ∈ 𝑂, the mapping 𝑡 → 𝑓(𝑦
𝑡
, 𝑡) is Henstock-

Kurzweil integrable (or Perron integrable) over [𝑡
0
, 𝑡

0
+ 𝜎]

with respect to a nondecreasing function𝑔 : [𝑡
0
, 𝑡

0
+𝜎] → R.

Then, we defined a function𝐺 : 𝑂× [𝑡
0
, 𝑡

0
+𝜎] → 𝐺([𝑡

0
, 𝑡

0
+

𝜎],R𝑛
) by

𝐺 (𝑥, 𝑡) (𝜗) =

{{{{{{{

{{{{{{{

{

0, 𝑡
0
− 𝑟 ≤ 𝜗 ≤ 𝑡

0
,

∫

𝜗

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡

0
≤ 𝜗 ≤ 𝑡 ≤ 𝑡

0
+ 𝜎,

∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ≤ 𝜗 ≤ 𝑡

0
+ 𝜎,

(41)

and proved the correspondence between a solution of (38)
and a solution of the generalized ODE

𝑑𝑥

𝑑𝜏
= 𝐷𝐺 (𝑥 (𝜏) , 𝑡) , (42)

with initial condition

𝑥 (𝑡
0
) (𝜗) = {

𝜙 (𝜗 − 𝑡
0
) , 𝑡

0
− 𝑟 ≤ 𝜗 ≤ 𝑡

0
,

𝑥 (𝑡
0
) (𝑡

0
) , 𝑡

0
≤ 𝜗 ≤ 𝑡

0
+ 𝜎,

(43)

just by requiring the following conditions.

(A) The integral∫𝑡0+𝜎

𝑡0

𝑓(𝑦
𝑡
, 𝑡)𝑑𝑔(𝑡) exists, for every𝑦 ∈ 𝑂.

(B) There exists a function𝑀 : [𝑡
0
, 𝑡

0
+ 𝜎] → R+ which

is Lebesgue integrable with respect to 𝑔 such that, for
all 𝑦 ∈ 𝑂, 𝑢

1
, 𝑢

2
∈ [𝑡

0
, 𝑡

0
+ 𝜎], we have



∫

𝑢2

𝑢1

𝑓 (𝑦
𝑠
, 𝑠) 𝑑𝑔 (𝑠)



≤ ∫

𝑢2

𝑢1

𝑀(𝑠) 𝑑𝑔 (𝑠) . (44)

(C) There exists a function 𝐿 : [𝑡
0
, 𝑡

0
+ 𝜎] → R+ which

is Lebesgue integrable with respect to 𝑔, such that for
all 𝑦, 𝑥 ∈ 𝑂, 𝑢

1
, 𝑢

2
∈ [𝑡

0
, 𝑡

0
+ 𝜎], we have



∫

𝑢2

𝑢1

[𝑓 (𝑥
𝑠
, 𝑠) − 𝑓 (𝑦

𝑠
, 𝑠)] 𝑑𝑔 (𝑠)



≤ ∫

𝑢2

𝑢1

𝐿 (𝑠)
𝑥𝑠

− 𝑦
𝑠

 𝑑𝑔 (𝑠) .

(45)

Under the above conditions, the paper [73] introduces
new concepts of stability for the trivial solutions of (38), with
𝑓(0, 𝑡) = 0, for 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎], and new results which

generalize those from [74–76], for instance.
In [77, 78], together with Federson et al., we proved that

measure RFDEs are useful tools in the study of impulsive
RFDEs and functional dynamic equations on time scales with
or without impulse action. In other words, it was proved that
the unique solution of the Cauchy problem for a measure
RFDE of type

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠) , 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎] ,

𝑥
𝑡0
= 𝜙

(46)

can be regarded, in a one-to-one relation, with the unique
solution of the Cauchy problem for the measure RFDE with
impulses given by

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥
𝑠
, 𝑠) 𝑑𝑔 (𝑠)

+ ∑

𝑘∈{1,...,𝑚},

𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡

𝑘
)) , 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎] ,

𝑥
𝑡0
= 𝜙.

(47)
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Still in [77, 78], we related the solution of problem (47) to
the solution of the following impulsive functional dynamic
equation on time scales

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑓 (𝑥
∗

𝑠
, 𝑠) Δ𝑠

+ ∑

𝑘∈{1,...,𝑚},

𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡

𝑘
)) , 𝑡 ∈ [𝑡

0
, 𝑡

0
+ 𝜎]

T
,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝑟, 𝑡

0
]
T
,

(48)

where 𝑥∗ is defined as being the extension of 𝑥 defined by
𝑥
∗
(𝑡) = 𝑥(𝑡

∗
), for 𝑡∗ = inf{𝑠 ∈ T : 𝑠 ≥ 𝑡}.

In order to obtain the correspondences presented in
[77, 78], the requirement was mainly that 𝑓 is Henstock-
Kurzweil integrable with respect to a nondecreasing function
𝑔. Therefore many discontinuities are allowed. Moreover, 𝑓
does not need to be rd-continuous nor regulated, and yet
good results for impulsive functional dynamic equations on
time scales can be obtained through these correspondences.

Even more recently, together with Federson et al., we
studied, in [79], measure neutral functional differential equa-
tions (we write measure NFDEs) of type

𝐷[𝑁 (𝑦
𝑡
, 𝑡)] = 𝑓 (𝑦

𝑡
, 𝑡) 𝐷𝑔,

𝑦
𝑡0
= 𝜙,

(49)

where𝑁 is a nonautonomous linear operator (i.e.,𝑁(𝑦
𝑡
, 𝑡) =

𝑁(𝑡)𝑦
𝑡
). Besides, we assume that𝑁 admits a representation

𝑁(𝑡) 𝜑 = 𝜑 (0) − ∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡, 𝜃)] 𝜑 (𝜃) , (50)

where 𝜇 : R × R → R𝑛×𝑛 is a normalized measurable
function satisfying

𝜇 (𝑡, 𝜃) = 0, 𝜃 ≥ 0;

𝜇 (𝑡, 𝜃) = 𝜇 (−𝑟) , 𝜃 ≤ −𝑟,

(51)

which is continuous to the left on 𝜃 ∈ (−𝑟, 0) of bounded
variation in 𝜃 ∈ [−𝑟, 0], and the variation of 𝜇 in [𝑠, 0],
var

[𝑠,0]
𝜇 tends to zero as 𝑠 → 0.

In order to obtain a correspondence between solutions of
measureNFDEs and solutions of a certain class of generalized
ODEs of the form

𝑑𝑥

𝑑𝜏
= 𝐷𝐺 (𝑥 (𝜏) , 𝑡) , (52)

whose right-hand side is given by

𝐺 (𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) + 𝐽 (𝑥, 𝑡) , 𝑥 ∈ 𝑂, 𝑡 ∈ [𝑡
0
, 𝑡

0
+ 𝜎] ,

(53)

with 𝐹 as (47) and 𝐽 given by

𝐽 (𝑥, 𝑡) (𝜗)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

0, 𝑡
0
− 𝑟 ≤ 𝜗 ≤ 𝑡

0
,

∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝜗, 𝜃)] 𝑥 (𝜗 + 𝜃)

−∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡

0
, 𝜃)] 𝑥 (𝑡

0
+ 𝜃) , 𝑡

0
≤ 𝜗 ≤ 𝑡 ≤ 𝑡

0
+ 𝜎,

∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡, 𝜃)] 𝑥 (𝑡 + 𝜃)

−∫

0

−𝑟

𝑑
𝜃
[𝜇 (𝑡

0
, 𝜃)] 𝑥 (𝑡

0
+ 𝜃) , 𝑡 ≤ 𝜗 ≤ 𝑡

0
+ 𝜎.

(54)

Besides conditions (A), (B), and (C) presented above,
we required that the normalized function 𝜇 satisfies the
following:

(D) there exists a Lebesgue integrable function𝐾: [𝑡
0
, 𝑡

0
+

𝜎] → R+ such that



∫

0

−𝑟

𝑑
𝜃
𝜇 (𝑠

2
, 𝜃) 𝑥 (𝑠

2
+ 𝜃) − ∫

0

−𝑟

𝑑
𝜃
𝜇 (𝑠

1
, 𝜃) 𝑥 (𝑠

1
+ 𝜃)



≤ ∫

𝑠2

𝑠1

𝐾 (𝑠) ∫

0

−𝑟

𝑑
𝜃
𝜇 (𝑠, 𝜃) |𝑥 (𝑠 + 𝜃)| .

(55)

Thus, in [79], results on the local existence and unique-
ness of solutions, as well as continuous dependence of
solutions on the initial data, were established.

Clearly there is still much to do to develop the theory of
abstract generalized ODEs and to apply the results to other
types of differential equations.
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scales,” PanAmerican Mathematical Journal, vol. 20, no. 4, pp.
45–56, 2010.

[60] C. Lungan and V. Lupulescu, “Random dynamical systems on
time scales,” Electronic Journal of Differential Equations, vol.
2012, no. 86, pp. 1–14, 2012.

[61] N. H. Du and N. T. Dieu, “The first attempt on the stochastic
calculus on time scale,” Stochastic Analysis and Applications, vol.
29, no. 6, pp. 1057–1080, 2011.

[62] J. Kurzweil, “Generalized ordinary differential equations and
continuous dependence on a parameter,” Czechoslovak Mathe-
matical Journal, vol. 7, no. 82, pp. 418–449, 1957.

[63] J. Kurzweil, “Generalized ordinary differential equations,”
Czechoslovak Mathematical Journal, vol. 8, no. 83, pp. 360–388,
1958.

[64] J. Kurzweil, “Unicity of solutions of generalized differential
equations,” Czechoslovak Mathematical Journal, vol. 8, no. 83,
pp. 502–509, 1958.

[65] J. Kurzweil, “Generalized ordinary differential equations and
continuous dependence on a parameter,” Czechoslovak Mathe-
matical Journal, vol. 9, no. 84, pp. 564–573, 1959.

[66] J. Kurzweil, “Problems which lead to a generalization of
the concept of an ordinary nonlinear differential equation,”
in Differential Equations and their Applications, pp. 65–76,
House of the Czechoslovak Academy of Sciences, Prague,Czech
Republic, Academic Press, New York, NY, USA, 1963.

[67] Z. Artstein, “Topological dynamics of ordinary differential
equations and kurzweil equations,” Journal of Differential Equa-
tions, vol. 23, no. 2, pp. 224–243, 1977.
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