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For the four-dimensional nonhomogeneous wave equation boundary value problems that are multidimensional analogues of
Darboux problems in the plane are studied. It is known that for smooth right-hand side functions the unique generalized solution
may have a strong power-type singularity at only one point. This singularity is isolated at the vertex 𝑂 of the boundary light
characteristic cone and does not propagate along the bicharacteristics. The present paper describes asymptotic expansions of the
generalized solutions in negative powers of the distance to 𝑂. Some necessary and sufficient conditions for existence of bounded
solutions are proven and additionally a priori estimates for the singular solutions are obtained.

1. Introduction

In the present paper, boundary value problems for the wave
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origin 𝑂 : 𝑥 = 0, 𝑡 = 0. The following BVPs were proposed
by Protter [1].

Problem P2. Find a solution of the wave equation (1) in Ω

which satisfies the boundary conditions

𝑃2: 𝑢
𝑡

󵄨󵄨󵄨󵄨Σ
0

= 0, 𝑢|
Σ
1

= 0, (4)

and its adjoint problem.

Problem P2∗. Find a solution of the wave equation (1) in Ω

which satisfies the adjoint boundary conditions

𝑃2
∗
: 𝑢
𝑡

󵄨󵄨󵄨󵄨Σ
0

= 0, 𝑢|
Σ
2

= 0. (5)

Protter [1] formulated in 1952 some versions of 𝑃2 and
𝑃2
∗ in R3 (i.e., in (2+1)-D case) as a multidimensional ana-

logue of the planar Darboux problems with boundary data
prescribed on one characteristic and on the noncharacteristic
segment. Initially the expectation was that such BVPs are
classical solvable for very smooth right-hand side functions.
However, soon it became clear that contrary to this traditional
belief, unlike the plane Darboux problem, Protter’s problems
are not well posed. The reason is that the homogeneous
adjoint Problem 𝑃2

∗ has an infinite number of nontrivial
classical solutions (Tong [2], Popivanov and Schneider [3],
and Khe [4]). It is known from [5] that for each 𝑛 ∈ N there

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 260287, 19 pages
http://dx.doi.org/10.1155/2014/260287

http://dx.doi.org/10.1155/2014/260287


2 Abstract and Applied Analysis

exists a right-hand side function 𝑓 ∈ 𝐶
𝑛
(Ω) of the wave

equation, for which the uniquely determined generalized
solution of Problem 𝑃2 has a strong power-type singularity
like 𝑟−𝑛 at the origin 𝑂.

In the present paper we examine the exact behavior of the
singular solutions of Problem 𝑃2. In the case when the right-
hand side function 𝑓 is harmonic polynomial, the Problem
𝑃2 is Fredholm and we find the asymptotic expansion at 𝑂
of the unique generalized solution. On the other hand, in the
general case when 𝑓 ∈ 𝐶

1
(Ω), the problem is not Fredholm

because it has an infinite dimensional cokernel. We show
that there are an infinite number of necessary conditions for
the existence of bounded solutions. We discuss the semi-
Fredholm solvability of Problem 𝑃2 and for 𝑓 ∈ 𝐶

6
(Ω)

we prove that the necessary conditions for the existence of
bounded solutions are also sufficient.

In a historical perspective, Protter studied Problems 𝑃2
and 𝑃2∗ in connection with BVPs for mixed type equations
that model transonic flow phenomena. In fact, in [1], he
also proposes a multidimensional analogue to the two-
dimensional Guderley-Morawetz problem for the Gellerstedt
equation of hyperbolic-elliptic type.The Guderley-Morawetz
problem describes flows around airfoils and is well stud-
ied. The existence of weak solutions and the uniqueness
of the strong ones were first established by Morawetz [6]
by reducing the problem to a first-order system. Lax and
Phillips [7] established that these weak solutions are strong.
A survey for the classical 2D mixed-type BVPs and their
transonic background can be found in [8]. The domain
of Protter’s analogue could be constructed by rotation in
R4 of a symmetric planar domain for Guderley-Morawetz
problem around the axis of symmetry. As a result the set Ω
forms the hyperbolic part of the domain. Although it was
expected that the multidimensional mixed-type problems
would be similar to the two-dimensional BVPs, for the Protter
hyperbolic-elliptic problems a general understanding of the
situation is still not at hand. Even the question of well
posedness is surprisingly subtle and not completely resolved.
One has uniqueness results for quasiregular solutions, a
class of solutions introduced by Protter, but there are real
obstructions to existence in this class. The Protter problems
in the hyperbolic part Ω of the domain illustrate some of the
difficulties and differences between the planar BVPs and the
multidimensional analogues.

In order to construct the solutions of the homogenous
Problem 𝑃2

∗ we need the spherical functions 𝑌𝑚
𝑛
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in the discussions that follows, we keep the same notation𝑌𝑚
𝑛

for the radial extension of the spherical function to R3 \ {𝑂};
that is,𝑌𝑚
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and properties of the spherical functions see Section 3. For
𝑛, 𝑘 ∈ N ∪ {0} define the functions
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where the coefficients are
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:= 𝑎(𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑖 − 1) and (𝑎)

0
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functions
𝑊
𝑛

𝑘,𝑚
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𝑛

𝑘
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𝑚

𝑛
(𝑥) (8)

are classical solutions of the homogeneous adjoint Protter
problem.

Lemma 1 (see [10]). The functions 𝑊𝑛
𝑘,𝑚

(𝑥, 𝑡) are classical
solutions from 𝐶(Ω) ∩ 𝐶

∞
(Ω \ {𝑂}) of the homogeneous

Problem 𝑃2
∗ for 𝑘 = 0, 1, . . . , [𝑛/2] − 1.

A necessary condition for the existence of classical solu-
tion for the Problem 𝑃2 is the orthogonality with respect to
the 𝐿2(Ω) inner product, of the right-hand side function 𝑓 to
all functions 𝑊𝑛

𝑘,𝑚
(𝑥, 𝑡) from Lemma 1. To avoid an infinite

number of necessary conditions in the framework of classical
solvability, we introduce generalized solutions for the Problem
𝑃2 (see the similar definition for the (2+1)-D case in [5]).

Definition 2 (see [10]). A function 𝑢 = 𝑢(𝑥, 𝑡) is called a
generalized solution of the Problem 𝑃2 in Ω, if the following
conditions are satisfied:
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in a neighborhood of Σ
2
.

This definition allows the generalized solution to have
singularity at the origin and there is a uniqueness result (see
Theorem 18). Without any additional conditions imposed
on the right-hand side function 𝑓 ∈ 𝐶(Ω), it is known
(see [3, 10]) that the generalized solution may have power
type singularity. Alternatively, we will prove the following
necessary conditions for the existence of bounded solutions.

Theorem 3. Suppose that there is a bounded generalized solu-
tion of the Protter Problem 𝑃2 with right-hand side function
𝑓(𝑥, 𝑡) ∈ 𝐶(Ω). Then

∫
Ω

𝑊
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𝑘,𝑚
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0, (10)

for all 𝑛 ∈ N ∪ {0}, 𝑘 = 0, . . . , [𝑛/2],𝑚 = 1, . . . , 2𝑛 + 1.

The proof of Theorem 3 is given in Section 4, but before
that we will describe the exact influence of the conditions (10)
on the behavior of the generalized solution.

First, we consider the case when the right-hand side
function 𝑓 ∈ 𝐶

1
(Ω) of the wave equation (1) has the repre-

sentation

𝑓 (𝑥, 𝑡) =
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𝑓
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𝑛
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𝑚

𝑛
(𝑥) , (11)
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with 𝑙 ∈ N ∪ {0}. In particular, notice that in the case
when 𝑓

𝑚

𝑛
(|𝑥|, 𝑡) = |𝑥|

𝑛
𝑎
𝑚

𝑛
(𝑡) the function 𝑓 is a harmonic

polynomial in 𝑥 of order 𝑙, whose coefficients are functions
of 𝑡 (see the properties of 𝑌𝑚

𝑛
in Section 3). For convenience

further by “harmonic polynomial of order 𝑙” we will mean a
function from𝐶

1
(Ω) that has the more general form (11).The

coefficients 𝑓𝑚
𝑛
are

𝑓
𝑚

𝑛
(|𝑥| , 𝑡) = ∫

𝑆
2

𝑓𝑌
𝑚

𝑛
𝑑𝜎 (12)

and must have some special properties at (0, 0) (see, e.g.,
Lemma 17).

According to the results from [10] we know that the
generalized solution of Problem 𝑃2 may have a power type
singularity at the origin𝑂 : 𝑥 = 0, 𝑡 = 0. In the present paper
we study more accurately the exact behavior of the solution
of Problem 𝑃2 at 𝑂. It is governed by the parameters

𝛽
𝑛

𝑘,𝑚
:= ∫
Ω

𝑊
𝑛

𝑘,𝑚
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (13)

where 𝑛 = 0, . . . , 𝑙; 𝑘 = 0, . . . , [𝑛/2] and 𝑚 = 1, . . . , 2𝑛 + 1.
We find the asymptotic formula for the generalized solution
of Problem 𝑃2.

Theorem 4. Suppose that the right-hand side function 𝑓 ∈

𝐶
1
(Ω) has the form (11). Then the unique generalized solution

𝑢(𝑥, 𝑡) of Problem𝑃2 belongs to𝐶2(Ω\𝑂) and has the following
asymptotic expansion at the singular point 𝑂:

𝑢 (𝑥, 𝑡) =
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)
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(i) the function 𝐹 ∈ 𝐶
2
(Ω \ 𝑂) and satisfies the a priori

estimate

|𝐹 (𝑥, 𝑡)| ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶1(Ω), (𝑥, 𝑡) ∈ Ω, (15)

with constant 𝐶 independent of 𝑓 and ‖𝑓‖
𝐶
𝑘
(Ω)

=

∑
|𝛼|≤𝑘

max
Ω
|𝐷
𝛼
𝑓(𝑥, 𝑡)|;

(ii) the functions 𝐹
𝑝
, 𝑝 = 1, . . . , 𝑙 + 1, satisfy the equalities

𝐹
𝑝
(𝑥, 𝑡) =

[(𝑙−𝑝+1)/2]

∑

𝑘=0

2𝑝+4𝑘−1

∑

𝑚=1

𝛽
𝑝+2𝑘−1

𝑘,𝑚
𝐹
𝑝+2𝑘−1

𝑘,𝑚
(𝑥, 𝑡) , (16)

with functions 𝐹
𝑛

𝑘,𝑚
∈ 𝐶
2
(Ω \ 𝑂) bounded and

independent of 𝑓;

(iii) if at least one of the constants 𝛽𝑝+2𝑘−1
𝑘,𝑚

in (16) is different
from zero, then for the corresponding function 𝐹

𝑝
(𝑥, 𝑡)

there exists a direction (𝛼, 1) := (𝛼
1
, 𝛼
2
, 𝛼
3
, 1) with

(𝛼, 1)𝑡 ∈ Σ
2
for 0 < 𝑡 < 1/2, such that

lim
𝑡→+0

𝐹
𝑝
(𝛼𝑡, 𝑡) = 𝑐

𝑝,𝛼
= 𝑐𝑜𝑛𝑠𝑡 ̸= 0. (17)

After the case of the harmonic polynomials, here we deal
with the more general situation when the right-hand side
function 𝑓 is smooth, but it cannot be expanded simply as
a sum (11). Now, Lemma 1 shows that the Problem 𝑃2 is not
Fredholm solvable.

Remark 5. Consider the operator

𝑇 : 𝑢
𝑓
󳨃󳨀→ 𝑓 ∈ 𝐶

𝑘
(Ω) , (18)

where 𝑢
𝑓
is the unique classical solution to Protter Problem

𝑃2 for the right-hand side function 𝑓. According to Lemma 1
we have dim coker (𝑇) = ∞. This means that 𝑇 is not
Fredholm operator for example in𝐶𝑘(Ω). On the other hand,
the uniqueness result Theorem 18 shows that dim ker (𝑇) =
0 and 𝑇 could be a semi-Fredholm operator. A semi-
Fredholm operator is a bounded operator that has a finite
dimensional kernel or cokernel and closed range (see, e.g.,
[11]). Accordingly we need to find the range of 𝑇.

The next result suggests that 𝑇 is a semi-Fredholm
operator.

Theorem 6. Let the function 𝑓 (𝑥, 𝑡) belong to 𝐶6 (Ω). Then
the necessary and sufficient conditions for existence of bounded
generalized solution 𝑢 (𝑥, 𝑡) of the Protter Problem 𝑃2 are

∫
Ω

𝑊
𝑛

𝑘,𝑚
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0, (19)

for all 𝑛 ∈ N ∪ {0}, 𝑘 = 0, . . . , [𝑛/2], and𝑚 = 1, . . . , 2𝑛 + 1.
Moreover, this generalized solution 𝑢 (𝑥, 𝑡) ∈ 𝐶

1
(Ω \ 𝑂)

and satisfies the a priori estimates

|𝑢 (𝑥, 𝑡)| ≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶5(Ω) +

󵄩󵄩󵄩󵄩𝑓𝑡
󵄩󵄩󵄩󵄩𝐶5(Ω)) ;

3

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑥
𝑖
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢𝑡 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶(|𝑥|
2
+ 𝑡
2
)
−1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω),

(20)

where the constant 𝐶 is independent of the function 𝑓 (𝑥, 𝑡).

Obviously, the set of all functions from 𝐶
6
(Ω) that

satisfy the orthogonality conditions (19) is closed. Therefore,
Theorem 6 shows that the operator 𝑇 defined in Remark 5
with a domain 𝐷 (𝑇) ⊂ 𝐶 (Ω) has a closed range in 𝐶

6
(Ω),

and we get the following result.

Corollary 7. Theoperator𝑇 is a semi-Fredholm operator from
𝐷 (𝑇) ⊂ 𝐶 (Ω) to 𝐶6 (Ω).

We have briefly announced some of the results from this
section in [12] with the assumption 𝑓 ∈ 𝐶

9
(Ω).

The main results in this work are discussed in Section 2
and the proofs are in Sections 3–7. In more detail the paper
is organized as follows: estimates for the spherical functions
involved in the representation of the solution are proven in
Section 3. In Section 4 the necessary conditions for bounded
solution Theorem 3 are proved. In Section 5 we consider
some two-dimensional boundary value problems connected
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to Problem𝑃2, the Problems𝑃21 and𝑃22. Exact formulas for
the solution of the Problem 𝑃22 are presented in Lemma 20.
In Section 6 the proofs of the main Theorems 4 and 6 are
given based on the results from the previous sections and an
asymptotic expansion formula for the generalized solution of
the 2𝐷 Problem 𝑃21 (Theorem 22). The long and technical
proof of Theorem 22 is postponed to Section 7.

2. Historical Remarks on the Main Results

Let us point out several related recent works on Protter prob-
lems. Necessary and sufficient conditions for the existence
of solutions with fixed order of singularity were obtained
in [10]. Similarly, for the R3-analogues of Protter problems,
some results are presented in [13, 14]. For the problem with
Dirichlet type boundary condition on Σ

0
, a formula for the

asymptotic expansion of the singular solution can be found
in [15], and the semi-Fredholm solvability is discussed in [16]
for 𝑓 ∈ 𝐶

10
(Ω). A comparison of various recent results for

Protter problems is made in [13].
Various authors adopted a variety of approaches to Protter

problems over the last sixty years, for example, Wiener-
Hopf method, special Legendre functions, a priori estimates,
nonlocal regularization, and so forth (see [5] and references
therein; see also [4, 10, 14, 17–19]). Alternatively, different
multidimensional analogues of the classical Darboux prob-
lem for the wave equation are considered in [20–22], while
for some related semilinear equations and systems see [23].
The existence of bounded or unbounded solutions for the
wave equation inR3 andR4, as well as for the Euler-Poisson-
Darboux equation, has been studied in [4, 10, 17, 19, 24–26].

Regarding the Protter problems with lower order terms
see [27] and references therein. Problems with more general
boundary condition 𝑢

𝑡
+ 𝛼 (𝑥) 𝑢 = 0 on Σ

0
are studied

in [26, 27]. Some possible regularization methods involving
integrodifferential or nonlocal terms can be found in [18].

For the Protter problems for equations of mixed
hyperbolic-elliptic type proposed in [1], Aziz and Schneider
[28] proved an uniqueness result in the linear case (see
also [21]). Concerning nonexistence principle for nontrivial
solution of semilinear mixed-type equations in multidi-
mensional case, we refer to [29].

In 1960 Garabedian [30] proved the uniqueness of a clas-
sical solution of Proter problem.However, generally, Problem
𝑃2 is not classically solvable and a necessary condition for
the existence of a classical solution is the orthogonality of the
right-hand side function 𝑓 to all solutions of the correspond-
ing homogeneous adjoint Problem 𝑃2

∗. Here, in Lemma 1,
the solutions 𝑊𝑛

𝑘,𝑚
were constructed with the help of the

functions 𝐸𝑛
𝑘
defined by (6). The alternate representation in

terms of the Gauss hypergeometric function 𝐹 = 𝐹 (𝑎, 𝑏, 𝑐; 𝑥)

𝐸
𝑛

𝑘
(𝑥, 𝑡) = |𝑥|

𝑛−2𝑘−1
(1 −

𝑡
2

|𝑥|
2
)

𝑛−2𝑘

× 𝐹(𝑛 − 𝑘 +
1

2
, −𝑘,

1

2
;
𝑡
2

|𝑥|
2
)

(21)

can be found inKhe [4]. In [3] there are some solutions for the
three-dimensional analogue of the homogeneous Problem
𝑃2
∗.
Let us look back at Theorem 3 and the necessary

orthogonality conditions (10) for the existence of bounded
solutions of Problem 𝑃2. Naturally, these conditions include
the functions𝑊𝑛

𝑘,𝑚
from Lemma 1. However, notice that there

are also some others.

Remark 8. It is interesting that conditions (10) include the
case of even 𝑛 = 2𝑘. Notice that the functions𝑊2𝑘

𝑘,𝑚
(𝑥, 𝑡) are

not classical solutions of the homogenous adjoint Problem
𝑃2
∗. Actually, they satisfy the homogenous wave equation in

Ω and (𝑊
2𝑘

𝑘,𝑚
)
𝑡
vanish on Σ

0
, but 𝑊2𝑘

𝑘,𝑚
is not zero on Σ

2
. In

addition, the functions𝑊2𝑘
𝑘,𝑚

have a singularity at the origin𝑂
like |𝑥|−1; however, this singularity is integrable in the domain
Ω.

Instead of imposing an infinite number of orthogonality
conditions on 𝑓, Popivanov and Schneider [3, 5] introduced
the concept of generalized solution that allows the solution
to have singularity on the inner cone Σ

2
. Here, Theorem 4

describes the effect of the parameters 𝛽𝑛
𝑘,𝑚

on the behavior
of the generalized solution of Problem 𝑃2. The constants
𝛽
𝑛

𝑘,𝑚
are defined by (13) and are obviously related to the

orthogonality conditions (10). When the right-hand function
is a harmonic polynomial (11), the asymptotic expansion
in Theorem 4 shows that the generalized solution could be
bounded only if all 𝛽𝑛

𝑘,𝑚
involved are zero.

Corollary 9. Suppose that the right-hand side function 𝑓 ∈

𝐶
1
(Ω) has the form (11) and satisfies the orthogonality condi-

tions

∫
Ω

𝑊
𝑛

𝑘,𝑚
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0, (22)

for all 𝑛 = 0, . . . , 𝑙; 𝑘 = 0, . . . , [𝑛/2] and𝑚 = 1, . . . , 2𝑛+1.Then
the unique generalized solution 𝑢 (𝑥, 𝑡) of Problem 𝑃2 belongs
to 𝐶2 (Ω \ 𝑂), is bounded, and satisfies the a priori estimate

max
Ω

|𝑢| ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶1(Ω). (23)

On the other hand, without any orthogonality conditions
on 𝑓, the following result is obtained.

Corollary 10. The generalized solution 𝑢 of Problem 𝑃2 with
a right-hand side function 𝑓 ∈ 𝐶

1
(Ω) in the form (11) satisfies

the a priori estimate

|𝑢 (𝑥, 𝑡)| ≤ 𝐶(max
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨) (|𝑥|

2
+ 𝑡
2
)
−(𝑙+1)/2

. (24)

The influence of the orthogonality conditions (22) on the
exact behavior of the generalized solution is clarified by case
(iii) of Theorem 4. It shows that, for fixed indexes (𝑛, 𝑘, 𝑚),
the corresponding condition (22) “controls” one power-type
singularity.

In Corollaries 9 and 10 the emphasis is on the extreme
cases: when all orthogonality conditions (22) are fulfilled
or, alternatively, when none of them are satisfied. In both
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cases the exact behavior of the solution is given.The estimate
(24), presented here, is analogous to known estimates for
Protter problems in R3 [5] and in R𝑚 [24]. It is interesting
that singularities of the generalized solutions are isolated at
the origin and do not propagate in the direction of the
bicharacteristics on the characteristic cone Σ

2
. Traditionally,

it is assumed that the wave equation, with sufficiently smooth
right-hand side, cannot have a solution with an isolated
singular point as in Hörmander [31, Chapter 24.5]. The case
here is different since the point of singularity 𝑂 lies on the
noncharacteristic part of the boundary Σ

0
, as well as on the

characteristic part Σ
2
.

Remark 11. TheProblem𝑃2 inR4 with harmonic polynomial
on the right-hand side is also studied in [10]. However,
the explicit asymptotic expansion here has no analogue in
[10], where only the behavior of the singularities is given.
Additionally, if the orthogonality conditions (22) are fulfilled,
Corollary 9 states that the generalized solution is in fact
bounded, while the estimates in [10, Theorem 1.1] still allow
the solution to have some logarithmic singularities.

Remark 12. Let us compare Protter problems inR3 (as treated
in [13, 14]) and R4 here (see also [10, 15]). In both cases the
study of these BVPs is based on the properties of the special
Legendre functions. Instead of Legendre polynomials𝑃

𝑛
here,

in the three-dimensional case, the Legendre functions𝑃] with
noninteger indexes ] = 𝑛 − 1/2 are used (for their properties
see [32]). One can easily modify both these techniques to
obtain similar results for the (𝑚 + 1)-dimensional problems,
for even 𝑚 (analogous to R3 case) or for odd 𝑚 (the present
case R4). Some related results for Protter problems in R𝑚+1

are presented in [17, 24].

In the general case when the right-hand side function
𝑓 is smooth enough, Theorem 6 implies that the necessary
conditions (10) for existence of bounded solutions from
Theorem 3 are also sufficient. Further, this means that there
are no other nontrivial classical solutions of the homogenous
adjoint Problem 𝑃2

∗ except those listed in Lemma 1.

Remark 13. We point out the differences betweenTheorem 6
and the results from [16] for Protter Problem 𝑃1 with
Dirichlet type boundary condition on Σ

0
. First, notice that

in the case when right-hand side function 𝑓 is harmonic
polynomial of order 𝑙 the solution of Problem 𝑃2 may have
worse singularity (like (|𝑥|2 + 𝑡2)−(𝑙+1)/2; seeTheorem 4) than
the solution of Problem 𝑃1 (like (|𝑥|2 + 𝑡

2
)
−𝑙/2; see [15]). For

the general casewe are able to reduce the assumptions on𝑓; in
Theorem 6 we assume 𝑓 ∈ 𝐶

6
(Ω), while in [16, Theorem 1.1]

smoother 𝑓 ∈ 𝐶
10
(Ω) is required. In order to achieve this, we

rely on the more accurate estimates for the special functions
proven in Section 3.

3. Estimates for the Special Functions

For the proof of themain results wewill need some properties
of the spherical functions 𝑌

𝑚

𝑛
in R3. They are naturally

expressed on the unit sphere 𝑆2 := {(𝑥
1
, 𝑥
2
, 𝑥
3
) : 𝑥
2

1
+ 𝑥
2

2
+

𝑥
2

3
= 1} in spherical polar coordinates. Let us introduce polar

coordinates (𝑟, 𝜃, 𝜑) in R3:

𝑥
1
= 𝑟 sin 𝜃 cos𝜑, 𝑥

2
= 𝑟 sin 𝜃 sin𝜑, 𝑥

3
= 𝑟 cos 𝜃,

(25)

where 0 ≤ 𝜃 < 𝜋, 0 ≤ 𝜑 < 2𝜋, 𝑟 > 0. Then the spherical
functions, expressed in terms of 𝜃 and 𝜑 as in the traditional
definition on 𝑆2 (see [9]), are given by

𝑌
2𝑘+1

𝑛
(𝜃, 𝜑) = √

2𝑛 + 1

2𝜋
√
(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
𝑃
𝑘

𝑛
(cos 𝜃) cos 𝑘𝜑,

𝑘 = 1, . . . , 𝑛,

𝑌
2𝑘

𝑛
(𝜃, 𝜑) = √

2𝑛 + 1

2𝜋
√
(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
𝑃
𝑘

𝑛
(cos 𝜃) sin 𝑘𝜑,

𝑘 = 1, . . . , 𝑛,

(26)

and 𝑌
1

𝑛
(𝜃, 𝜑) = ((2𝑛 + 1)/4𝜋)

1/2
𝑃
𝑛
(cos 𝜃). Here 𝑃

𝑛
are the

Legendre polynomials defined by the Rodrigues’ formula

𝑃
𝑛
(𝑠) :=

1

2𝑛𝑛!

𝑑
𝑛

𝑑𝑠𝑛
(𝑠
2
− 1)
𝑛

=

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝑠
𝑛−2𝑘

, 𝑎
2𝑘

̸= 0,

(27)

while 𝑃𝑘
𝑛
are the associated Legendre polynomials that can be

defined as

𝑃
𝑘

𝑛
(𝑠) = (−1)

𝑘
(1 − 𝑠

2
)
𝑘/2 𝑑
𝑘

𝑑𝑠𝑘
𝑃
𝑛
(𝑠) . (28)

The functions 𝑌𝑚
𝑛
satisfy the differential equation

1

sin 𝜃
𝜕

𝜕𝜃
(sin 𝜃 𝜕

𝜕𝜃
𝑌
𝑚

𝑛
) +

1

sin2𝜃
𝜕
2

𝜕𝜑2
𝑌
𝑚

𝑛
+ 𝑛 (𝑛 + 1) 𝑌

𝑚

𝑛
= 0

(29)

and form a complete orthonormal system in 𝐿
2
(𝑆
2
) (see [9]).

Using Cartesian coordinates as in Section 1, one can
define the spherical functions as 𝑌𝑚

𝑛
(𝑥
1
, 𝑥
2
, 𝑥
3
) := 𝑌

𝑚

𝑛
(𝜃, 𝜑)

for 𝑥 ∈ 𝑆
2, or by

𝑌
2𝑚

𝑛
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝐶
𝑚

𝑛

𝑑
𝑚

𝑑𝑥
𝑚

3

𝑃
𝑛
(𝑥
3
) Im {(𝑥

2
+ 𝑖𝑥
1
)
𝑚

} ,

for 𝑚 = 1, . . . , 𝑛,

𝑌
2𝑚+1

𝑛
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝐶
𝑚

𝑛

𝑑
𝑚

𝑑𝑥
𝑚

3

𝑃
𝑛
(𝑥
3
)Re {(𝑥

2
+ 𝑖𝑥
1
)
𝑚

} ,

for 𝑚 = 0, . . . , 𝑛,

(30)

where 𝐶𝑚
𝑛
are constants. In the present paper, we keep the

same notation 𝑌
𝑚

𝑛
for the radial extension of the spherical

function to R3 \ {𝑂}; that is, 𝑌𝑚
𝑛
(𝑥) := 𝑌

𝑚

𝑛
(𝑥/|𝑥|) for 𝑥 ∈

R3 \ {𝑂}. According to the properties of 𝑌𝑚
𝑛
(𝑥), the function
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|𝑥|
𝑛
𝑌
𝑚

𝑛
(𝑥) is a homogenous harmonic polynomial of order 𝑛

in the variables 𝑥
1
, 𝑥
2
, 𝑥
3
.

We will need some estimates for 𝑌
𝑚

𝑛
and the special

functions involved in the representations of the solutions
of the Protter problems. Let us start with the Legendre
polynomials 𝑃

𝑛
.

Lemma 14. The following estimates hold for 𝑥 ∈ [0, 1]:

󵄨󵄨󵄨󵄨𝑃𝑛 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 1,

󵄨󵄨󵄨󵄨󵄨
𝑃
󸀠

𝑛
(𝑥)

󵄨󵄨󵄨󵄨󵄨
≤
𝑛 (𝑛 + 1)

2
, (31)

󵄨󵄨󵄨󵄨𝑃𝑛 (𝑥) − 𝑃𝑛 (0)
󵄨󵄨󵄨󵄨 ≤ 𝑛𝑥. (32)

Proof. The estimates (31) are proved, for example, in [10].
Here we will show that (32) holds. Using Bonnet’s recursion
formula

(𝑛 + 1) 𝑃
𝑛+1

(𝑥) = (2𝑛 + 1) 𝑥𝑃
𝑛
(𝑥) − 𝑛𝑃

𝑛−1
(𝑥) , (33)

we get (𝑛 + 1)𝑃
𝑛+1

(0) = −𝑛𝑃
𝑛−1

(0) and

(𝑛 + 1) (𝑃
𝑛+1

(𝑥) − 𝑃
𝑛+1

(0))

= (2𝑛 + 1) 𝑥𝑃
𝑛
(𝑥) − 𝑛 (𝑃

𝑛−1
(𝑥) − 𝑃

𝑛−1
(0)) .

(34)

Thus

󵄨󵄨󵄨󵄨𝑃𝑛+1 (𝑥) − 𝑃𝑛+1 (0)
󵄨󵄨󵄨󵄨 ≤ 2𝑥 +

󵄨󵄨󵄨󵄨𝑃𝑛−1 (𝑥) − 𝑃𝑛−1 (0)
󵄨󵄨󵄨󵄨 . (35)

From here and the equalities 𝑃
0
(𝑥) − 𝑃

0
(0) = 0 and 𝑃

1
(𝑥) −

𝑃
1
(0) = 𝑥 we get the estimate (32) by induction.

In order to study the first derivatives of the generalized
solution of the Protter problem, we will need to estimate also
the first derivatives with respect to 𝑥 of 𝑌𝑚

𝑛
(𝑥) := 𝑌

𝑚

𝑛
(𝑥/|𝑥|),

the radial extension of the spherical function to R3 \ {𝑂}:

𝜕

𝜕𝑥
1

𝑌
𝑚

𝑛
:= 𝑟
−1
[cos 𝜃 cos𝜑 (𝑌𝑚

𝑛
)
𝜃
− (sin 𝜃)−1 sin𝜑 (𝑌𝑚

𝑛
)
𝜑
] ,

𝜕

𝜕𝑥
2

𝑌
𝑚

𝑛
= 𝑟
−1
[cos 𝜃 sin𝜑 (𝑌𝑚

𝑛
)
𝜃
+ (sin 𝜃)−1 cos𝜑 (𝑌𝑚

𝑛
)
𝜑
] ,

𝜕

𝜕𝑥
3

𝑌
𝑚

𝑛
:= −𝑟
−1 sin 𝜃 (𝑌𝑚

𝑛
)
𝜃
.

(36)

Using the so-called addition theorem for Legendre polyno-
mials we get the following result.

Lemma 15. For 𝑛 ≥ 1 the functions 𝑌
𝑚

𝑛
(𝑥) satisfy the

equalities

2𝑛+1

∑

𝑚=1

(𝑌
𝑚

𝑛
)
2

=
2𝑛 + 1

4𝜋
,

2𝑛+1

∑

𝑚=1

3

∑

𝑖=1

(
𝜕

𝜕𝑥
𝑖

𝑌
𝑚

𝑛
)

2

=
𝑛 (𝑛 + 1) (2𝑛 + 1)

2𝜋 |𝑥|
2

.

(37)

Proof. From the definition (26) of 𝑌𝑚
𝑛
it follows that

2𝑛+1

∑

𝑚=1

(𝑌
𝑚

𝑛
)
2

=
2𝑛 + 1

4𝜋
[(𝑃
𝑛
(cos 𝜃))2

+ 2

𝑛

∑

𝑘=1

(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(𝑃
𝑘

𝑛
(cos 𝜃))

2

] .

(38)

According to the addition theorem (see [33])

𝑃
𝑛
(cos 𝜃 cos 𝜃

1
+ sin 𝜃 sin 𝜃

1
cos𝜑)

= 𝑃
𝑛
(cos 𝜃) 𝑃

𝑛
(cos 𝜃

1
)

+ 2

𝑛

∑

𝑘=1

(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
𝑃
𝑘

𝑛
(cos 𝜃) 𝑃𝑘

𝑛
(cos 𝜃

1
) cos 𝑘𝜑.

(39)

With 𝜃 = 𝜃
1
and 𝜑 = 0 one derives the equality

(𝑃
𝑛
(cos 𝜃))2 + 2

𝑛

∑

𝑘=1

(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(𝑃
𝑘

𝑛
(cos 𝜃))

2

= 1. (40)

This means that
2𝑛+1

∑

𝑚=1

(𝑌
𝑚

𝑛
)
2

=
2𝑛 + 1

4𝜋
. (41)

Using (39) again, we get the required property of the
derivatives of 𝑌𝑚

𝑛
. Directly from (36) for the squares of the

derivatives with respect to 𝑥 we have

∑

|𝛼|=1

(𝐷
𝛼

𝑥
𝑌
𝑚

𝑛
)
2

= 𝑟
−2
(𝑌
𝑚

𝑛
)
2

𝜃
+ 𝑟
−2
(sin 𝜃)−2(𝑌𝑚

𝑛
)
2

𝜑
, (42)

and from the definition (26) of 𝑌𝑚
𝑛
we find

2𝑛+1

∑

𝑚=1

(
𝜕𝑌
𝑚

𝑛

𝜕𝜃
)

2

=
2𝑛 + 1

4𝜋
[(

𝜕

𝜕𝜃
𝑃
𝑛
(cos 𝜃))

2

+ 2

𝑛

∑

𝑘=1

(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(
𝜕

𝜕𝜃
𝑃
𝑘

𝑛
(cos 𝜃))

2

] ;

2𝑛+1

∑

𝑚=1

(
𝜕𝑌
𝑚

𝑛

𝜕𝜑
)

2

=
2𝑛 + 1

2𝜋

𝑛

∑

𝑘=1

𝑘
2 (𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(𝑃
𝑘

𝑛
(cos 𝜃))

2

.

(43)

Put 𝜑 = 0, and differentiation of (39) with respect to 𝜃
and 𝜃
1
gives

𝑃
󸀠󸀠

𝑛
(cos 𝜃 cos 𝜃

1
+ sin 𝜃 sin 𝜃

1
) {cos 𝜃 sin 𝜃

1
− sin 𝜃 cos 𝜃

1
}

× {sin 𝜃 cos 𝜃
1
− cos 𝜃 sin 𝜃

1
}

+ 𝑃
󸀠

𝑛
(cos 𝜃 cos 𝜃

1
+ sin 𝜃 sin 𝜃

1
)

× {cos 𝜃 cos 𝜃
1
+ sin 𝜃 sin 𝜃

1
}

= sin 𝜃 sin 𝜃
1
𝑃
󸀠

𝑛
(cos 𝜃) 𝑃󸀠

𝑛
(cos 𝜃

1
) + 2 sin 𝜃 sin 𝜃

1

×

𝑛

∑

𝑘=1

(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(𝑃
𝑘

𝑛
)
󸀠

(cos 𝜃) (𝑃𝑘
𝑛
)
󸀠

(cos 𝜃
1
) .

(44)
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With 𝜃 = 𝜃
1
we derive

(
𝜕

𝜕𝜃
𝑃
𝑛
(cos 𝜃))

2

+ 2

𝑛

∑

𝑘=1

(𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(
𝜕

𝜕𝜃
𝑃
𝑘

𝑛
(cos 𝜃))

2

= 𝑃
󸀠

𝑛
(1) .

(45)

Analogously, after differentiating (39) twice with respect
to 𝜑,

𝑃
󸀠󸀠

𝑛
(cos 𝜃 cos 𝜃

1
+ sin 𝜃 sin 𝜃

1
cos𝜑) sin2𝜃sin2𝜃

1
sin2𝜑

− 𝑃
󸀠

𝑛
(cos 𝜃 cos 𝜃

1
+ sin 𝜃 sin 𝜃

1
cos𝜑) sin 𝜃 sin 𝜃

1
cos𝜑

= −2

𝑛

∑

𝑘=1

𝑘
2 (𝑛 − 𝑘)!

(𝑛 + 𝑘)!
𝑃
𝑘

𝑛
(cos 𝜃) 𝑃𝑘

𝑛
(cos 𝜃

1
) cos 𝑘𝜑.

(46)

Then substituting 𝜑 = 0 and 𝜃
1
= 𝜃 we have

2

𝑛

∑

𝑘=1

𝑘
2 (𝑛 − 𝑘)!

(𝑛 + 𝑘)!
(𝑃
𝑘

𝑛
(cos 𝜃))

2

= (sin 𝜃)2𝑃󸀠
𝑛
(1) . (47)

Since 𝑃󸀠
𝑛
(1) = 𝑛 (𝑛 + 1)/2 we conclude that

2𝑛+1

∑

𝑚=1

∑

|𝛼|=1

(𝐷
𝛼

𝑥
𝑌
𝑚

𝑛
)
2

=
𝑛 (𝑛 + 1) (2𝑛 + 1)

2𝜋𝑟2
. (48)

As a direct consequence, we find the next estimates for
the radial extension of the spherical functions to R3 \ {𝑂}.

Corollary 16. For 𝑛 ≥ 1 the functions 𝑌𝑚
𝑛
(𝑥) satisfy the

inequalities
󵄨󵄨󵄨󵄨𝑌
𝑚

𝑛
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑛
1/2
, (49)

2𝑛+1

∑

𝑚=1

󵄨󵄨󵄨󵄨𝑌
𝑚

𝑛
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑛, (50)

2𝑛+1

∑

𝑚=1

3

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑌
𝑚

𝑛
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 3𝑛
2
|𝑥|
−1
, (51)

2𝑛+1

∑

𝑚=1

[
󵄨󵄨󵄨󵄨(𝑌
𝑚

𝑛
)
𝜃

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨
(sin 𝜃)−1(𝑌𝑚

𝑛
)
𝜑

󵄨󵄨󵄨󵄨󵄨󵄨
] ≤ 3𝑛

2
. (52)

Proof. Obviously

󵄨󵄨󵄨󵄨𝑌
𝑚

𝑛
(𝑥)

󵄨󵄨󵄨󵄨 ≤ [

2𝑛+1

∑

𝑚=1

(𝑌
𝑚

𝑛
)
2

]

1/2

≤ 𝑛
1/2
. (53)

The estimates (50) and (51) follow directly from the Cauchy-
Schwarz inequality and Lemma 15:

2𝑛+1

∑

𝑚=1

󵄨󵄨󵄨󵄨𝑌
𝑚

𝑛
(𝑥)

󵄨󵄨󵄨󵄨 ≤
√2𝑛 + 1[

2𝑛+1

∑

𝑚=1

(𝑌
𝑚

𝑛
)
2

]

1/2

=
2𝑛 + 1

2√𝜋
≤ 𝑛,

2𝑛+1

∑

𝑚=1

3

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝑖

𝑌
𝑚

𝑛
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √6𝑛 + 3[

2𝑛+1

∑

𝑚=1

3

∑

𝑖=1

(
𝜕

𝜕𝑥
𝑖

𝑌
𝑚

𝑛
)

2

]

1/2

=
(2𝑛 + 1)√3𝑛 (𝑛 + 1)

√2𝜋 |𝑥|
.

(54)

Finally (52) follows from the equality (42):

2𝑛+1

∑

𝑚=1

{
󵄨󵄨󵄨󵄨(𝑌
𝑚

𝑛
)
𝜃

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨
(sin 𝜃)−1(𝑌𝑚

𝑛
)
𝜑

󵄨󵄨󵄨󵄨󵄨󵄨
}

≤ √4𝑛 + 2{

2𝑛+1

∑

𝑚=1

[(𝑌
𝑚

𝑛
)
2

𝜃
+ (sin 𝜃)−2(𝑌𝑚

𝑛
)
2

𝜑
]}

1/2

= |𝑥|√4𝑛 + 2[

2𝑛+1

∑

𝑚=1

3

∑

𝑖=1

(
𝜕

𝜕𝑥
𝑖

𝑌
𝑚

𝑛
)

2

]

1/2

≤ 3𝑛
2
.

(55)

Generally, if the function 𝑓(𝑥, 𝑡) is smooth enough, it can
be represented as a harmonic series. In order to estimate the
coefficients of the series we will use the next result. It is based
on the fact that the spherical functions are eigenfunctions for
the Laplace operator on the sphere 𝑆2.

Lemma 17. Let 𝑘 ∈ N ∪ {0}.

(1) (See [16]). Let 𝑓 ∈ 𝐶
2𝑘
(Ω). Then it has the representa-

tion

𝑓 (𝑥, 𝑡) =

∞

∑

𝑛=0

2𝑛+1

∑

𝑚=1

𝑓
𝑚

𝑛
(|𝑥| , 𝑡) 𝑌

𝑚

𝑛
(𝑥) , (56)

and for 𝑛 ∈ N

󵄨󵄨󵄨󵄨𝑓
𝑚

𝑛

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑛
−2𝑘󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶2𝑘(Ω).
(57)

(2) Suppose 𝑓 ∈ 𝐶
2𝑘+1

(Ω); then for 𝑛 ∈ N

2𝑛+1

∑

𝑚=1

󵄨󵄨󵄨󵄨𝑓
𝑚

𝑛

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑛
−2𝑘

|𝑥|
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶2𝑘+1(Ω).

(58)

Proof. The estimate in case (1) follows directly from the
fact that the spherical functions are eigenfunctions for the
spherical Laplacean Δ

𝑆
:

Δ
𝑆
𝐹 :=

1

sin 𝜃
𝜕

𝜕𝜃
(sin 𝜃 𝜕

𝜕𝜃
𝐹) +

1

sin2𝜃
𝜕
2

𝜕𝜑2
𝐹. (59)

That is, (29) shows that Δ
𝑆
𝑌
𝑚

𝑛
= −𝑛 (𝑛 + 1) 𝑌

𝑚

𝑛
. In fact 𝑓𝑚

𝑛
is

bounded by the Fourier coefficient of (Δ
𝑆
)
𝑘
𝑓:

󵄨󵄨󵄨󵄨𝑓
𝑚

𝑛

󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑆
2

𝑌
𝑚

𝑛
𝑓𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑆
2

𝑌
𝑚

𝑛
(Δ
𝑆
)
𝑘

𝑓𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (60)

For detail proof of (1) see [16, 34].
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Next we will prove case (2) with 𝑘 = 0. Let 𝐹 ∈ 𝐶
1
(Ω);

then

𝐹
𝑚

𝑛
(𝑟, 𝑡) :=∫

𝑆
2

𝑌
𝑚

𝑛
𝐹𝑑𝜎

= −𝑛
−1
(𝑛 + 1)

−1

× ∫

𝜋

0

(∫

2𝜋

0

(Δ
𝑆
𝑌
𝑚

𝑛
) 𝐹 𝑑𝜑) sin 𝜃 𝑑𝜃.

(61)

Integrating by parts gives

𝐹
𝑚

𝑛
=

1

𝑛 (𝑛 + 1)
∫

𝜋

0

[∫

2𝜋

0

(sin 𝜃 𝜕

𝜕𝜃
𝑌
𝑚

𝑛

𝜕

𝜕𝜃
𝐹

+
1

sin 𝜃
𝜕

𝜕𝜑
𝑌
𝑚

𝑛

𝜕

𝜕𝜑
𝐹)𝑑𝜑] 𝑑𝜃,

(62)

where

sin 𝜃 𝜕

𝜕𝜃
𝐹 = 𝑟 sin 𝜃 cos 𝜃 cos𝜑 𝜕

𝜕𝑥
1

𝐹

+ 𝑟 sin 𝜃 cos 𝜃 sin𝜑 𝜕

𝜕𝑥
2

𝐹 − 𝑟sin2𝜃 𝜕

𝜕𝑥
3

𝐹,

𝜕

𝜕𝜑
𝐹 = − 𝑟 sin 𝜃 sin𝜑 𝜕

𝜕𝑥
1

𝐹 + 𝑟 sin 𝜃 cos𝜑 𝜕

𝜕𝑥
2

𝐹.

(63)

Therefore using (52) we have

2𝑛+1

∑

𝑚=1

󵄨󵄨󵄨󵄨𝐹
𝑚

𝑛

󵄨󵄨󵄨󵄨

≤
𝐶 |𝑥|

𝑛2
‖𝐹‖
𝐶
1
(Ω)

2𝑛+1

∑

𝑚=1

∫

𝜋

0

[∫

2𝜋

0

(
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑌
𝑚

𝑛
)
𝜃

󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
(sin 𝜃)−1(𝑌𝑚

𝑛
)
𝜑

󵄨󵄨󵄨󵄨󵄨󵄨
) 𝑑𝜑] 𝑑𝜃

≤ 𝐶
1
|𝑥| ‖𝐹‖

𝐶
1
(Ω)
.

(64)

To prove case (2) it remains to substitute (Δ
𝑆
)
𝑘
𝑓 ∈ 𝐶

1
(Ω) for

𝐹 in this estimate.

4. Necessary Conditions for Bounded Solution

Here we will prove of the necessity of the orthogonality
conditions (10) for the existence of a bounded solution.

Proof of Theorem 3. Let 𝑢 be a bounded generalized solution
of Problem 𝑃2. Let us fix a function 𝜒 (𝑠) ∈ 𝐶∞ (R) such that
𝜒 (𝑠) = 0 for 𝑠 ≤ 1, and 𝜒 (𝑠) = 1 for 𝑠 ≥ 2.

For fixed indexes 𝑛 ∈ N ∪ {0}, 0 ≤ 𝑘 ≤ [𝑛/2], 1 ≤ 𝑚 ≤

2𝑛 + 1, consider the functions

𝑊
𝑞
(𝑥, 𝑡) = 𝜒 (2𝑞 (|𝑥| − 𝑡)) 𝜒 (𝑞 |𝑥|)𝑊

𝑛

𝑘,𝑚
(𝑥, 𝑡) , (65)

for 𝑞 ∈ N. Obviously, 𝑊
𝑞

∈ 𝐶
∞
(Ω) vanishes on a

neighborhoodofΣ
2
and (𝑊

𝑞
)
𝑡
= 0onΣ

0
.Therefore according

to Definition 2 we have

∫
Ω

{𝑢
𝑡
(𝑊
𝑞
)
𝑡
− 𝑢
𝑥
1

(𝑊
𝑞
)
𝑥
1

− 𝑢
𝑥
2

(𝑊
𝑞
)
𝑥
2

− 𝑢
𝑥
3

(𝑊
𝑞
)
𝑥
3

} 𝑑𝑥 𝑑𝑡

= ∫
Ω

𝑓𝑊
𝑞
𝑑𝑥 𝑑𝑡,

(66)

and thus

∫
Ω

𝑓𝑊
𝑞
𝑑𝑥 𝑑𝑡

= ∫
Ω

𝑢 {(𝑊
𝑞
)
𝑥
1
𝑥
1

+ (𝑊
𝑞
)
𝑥
2
𝑥
2

+ (𝑊
𝑞
)
𝑥
3
𝑥
3

− (𝑊
𝑞
)
𝑡𝑡
} 𝑑𝑥 𝑑𝑡.

(67)

We want to prove that ∫
Ω
𝑓𝑊
𝑛

𝑘,𝑚
𝑑𝑥 𝑑𝑡 = 0 for all 𝑛 ∈ N ∪ {0},

𝑘 = 0, . . . , [𝑛/2], 𝑚 = 1, . . . , 2𝑛 + 1. Notice that |𝑓𝑊𝑛
𝑘,𝑚

| ≤

𝐶|𝑥|
−1 and then the integral ∫

Ω
|𝑓𝑊
𝑛

𝑘,𝑚
|𝑑𝑥 𝑑𝑡 is convergent.

The function 𝑓 ∈ 𝐶(Ω) and thus

lim
𝑞→+∞

∫
Ω

𝑓𝑊
𝑞
𝑑𝑥 𝑑𝑡 = ∫

Ω

𝑓𝑊
𝑛

𝑘,𝑚
𝑑𝑥 𝑑𝑡. (68)

Therefore it is sufficient to prove that when 𝑞 → +∞, the
right-hand side of the equality (67) tends to zero for 𝑛 ∈ N ∪

{0}, 𝑘 = 0, . . . , [𝑛/2],𝑚 = 1, . . . , 2𝑛 + 1.
Using the fact that the functions 𝑊

𝑛

𝑘,𝑚
are solutions

of the homogenous wave equation in Ω, straightforward
computations show that

3

∑

𝑖=1

(𝑊
𝑞
)
𝑥
𝑖
𝑥
𝑖

− (𝑊
𝑞
)
𝑡𝑡

= [(𝑊
𝑛

𝑘,𝑚
)
𝑟
+ (𝑊
𝑛

𝑘,𝑚
)
𝑡
+
1

𝑟
𝑊
𝑛

𝑘,𝑚
] 4𝑞𝜒
󸀠

1
𝜒
2

+ 4𝑞
2
𝑊
𝑛

𝑘,𝑚
𝜒
󸀠

1
𝜒
󸀠

2
+ [(𝑊

𝑛

𝑘,𝑚
)
𝑟
+
1

𝑟
𝑊
𝑛

𝑘,𝑚
] 2𝑞𝜒
1
𝜒
󸀠

2

+ 𝑞
2
𝑊
𝑛

𝑘,𝑚
𝜒
1
𝜒
󸀠󸀠

2
,

(69)

where 𝑟 = |𝑥|, while 𝜒
1
and 𝜒

2
stand for 𝜒 (2𝑞 (𝑟 − 𝑡)) and

𝜒 (𝑞𝑟), respectively. Expressed with spherical polar coordi-
nates (𝑟, 𝜑, 𝜃) in R3,

∫
Ω

𝑢 [(𝑊
𝑞
)
𝑥
1
𝑥
1

+ (𝑊
𝑞
)
𝑥
2
𝑥
2

+ (𝑊
𝑞
)
𝑥
3
𝑥
3

− (𝑊
𝑞
)
𝑡𝑡
] 𝑑𝑥 𝑑𝑡

= ∫
Ω

{[(𝐸
𝑛

𝑘
)
𝑟
+ (𝐸
𝑛

𝑘
)
𝑡
+
1

𝑟
𝐸
𝑛

𝑘
] 4𝑞𝜒
󸀠

1
𝜒
2

+ 𝑞
2
𝐸
𝑛

𝑘
(4𝜒
󸀠

1
𝜒
󸀠

2
+ 𝜒
1
𝜒
󸀠󸀠

2
)

+ [(𝐸
𝑛

𝑘
)
𝑟
+
1

𝑟
𝐸
𝑛

𝑘
] 2𝑞𝜒
1
𝜒
󸀠

2
}

× 𝑢𝑌
𝑚

𝑛
(𝜃, 𝜑) 𝑟

2 sin 𝜃𝑑𝑟 𝑑𝜑 𝑑𝜃 𝑑𝑡.
(70)
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For simplicity, we consider only one of the terms from the
definition of the function 𝐸𝑛

𝑘
(𝑟, 𝑡) (see (6)). Let us denote

𝑤 (𝑟, 𝑡) =

(𝑟
2
− 𝑡
2
)
𝑛−𝑘−𝑖

𝑟𝑛−2𝑖+1
,

(71)

defined in 𝐷 = {0 < 𝑡 < 1/2, 𝑡 < 𝑟 < 1 − 𝑡}, and consider the
subsets 𝐷

1,𝑞
= 𝐷 ∩ {1/(2𝑞) < 𝑟 − 𝑡 < 1/𝑞} ∩ {𝑟 > 1/𝑞} and

𝐷
2,𝑞

= 𝐷 ∩ {1/𝑞 < 𝑟 < 2/𝑞}.
Since the functions 𝑢, 𝜒󸀠, 𝜒󸀠󸀠, and 𝑌

𝑚

𝑛
are bounded, the

function 𝜒󸀠 (𝑞𝑟) = 0 in𝐷\𝐷
2,𝑞
, and 𝜒󸀠(2𝑞(𝑟− 𝑡))𝜒(𝑞𝑟) is zero

in𝐷 \ 𝐷
1,𝑞
, it is sufficient to prove that the integrals

𝐼
1,𝑞

:= 𝑞∫
𝐷
1,𝑞

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑟
+ 𝑤
𝑡
+ 𝑟
−1
𝑤
󵄨󵄨󵄨󵄨󵄨
𝑟
2
𝑑𝑟 𝑑𝑡;

𝐼
2,𝑞

:= 𝑞∫
𝐷
2,𝑞

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑟
+ 𝑟
−1
𝑤
󵄨󵄨󵄨󵄨󵄨
𝑟
2
𝑑𝑟 𝑑𝑡,

𝐼
3,𝑞

:= 𝑞
2
∫
𝐷
2,𝑞

𝑤𝑟
2
𝑑𝑟 𝑑𝑡

(72)

tend to zero as 𝑞 → ∞, for 𝑛 ∈ N ∪ {0}, 𝑘 = 0, . . . , [𝑛/2], and
𝑖 = 0, . . . , 𝑘.

We get lim
𝑞→∞

𝐼
3,𝑞

= 0 from the estimate |𝑤| ≤ 𝑟
𝑛−2𝑘−1

in𝐷 and thus

𝐼
3,𝑞

≤ 𝑞
2
∫

𝑟=2/𝑞

𝑟=0

∫

𝑡=𝑟

𝑡=0

𝑟
𝑛−2𝑘+1

𝑑𝑡 𝑑𝑟

≤ 𝑞
2
𝐶∫

2/𝑞

0

𝑟
2
𝑑𝑟 ≤ 𝐶

1
𝑞
−1
.

(73)

For 𝐼
2,𝑞

let us compute first

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑟
+ 𝑟
−1
𝑤
󵄨󵄨󵄨󵄨󵄨
𝑟
2

=

(𝑟
2
− 𝑡
2
)
𝑛−𝑘−𝑖−1

𝑟𝑛−2𝑖
[(𝑛 − 2𝑘) 𝑟

2
+ (𝑛 − 2𝑖) 𝑡

2
] ≤ 𝐶,

(74)

because 𝑛 − 𝑘 − 𝑖 − 1 could be negative only when 𝑛 − 2𝑘 =

𝑛 − 2𝑖 = 0. Therefore, we have

𝐼
2,𝑞

≤ 𝑞∫

𝑟=2/𝑞

𝑟=0

∫

𝑡=𝑟

𝑡=0

𝐶𝑑𝑡 𝑑𝑟 ≤ 𝐶
1
𝑞
−1
, (75)

and thus lim
𝑞→∞

𝐼
2,𝑞

= 0.
Finally, to evaluate 𝐼

1,𝑞
, we use the estimate

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑟
+ 𝑤
𝑡
+ 𝑟
−1
𝑤
󵄨󵄨󵄨󵄨󵄨
𝑟
2

=

(𝑟
2
− 𝑡
2
)
𝑛−𝑘−𝑖−1

𝑟𝑛−2𝑖
(𝑟 − 𝑡) |(𝑛 − 2𝑘) 𝑟 − (𝑛 − 2𝑖) 𝑡|

≤ 𝐶
𝑟 − 𝑡

𝑟
,

(76)

and find

𝐼
1,𝑞

≤ 𝑞𝐶∫

𝑟=1

𝑟=1/𝑞

∫

𝑡=𝑟

𝑡=𝑟−1/𝑞

𝑟 − 𝑡

𝑟
𝑑𝑡 𝑑𝑟

≤ 𝑞
−1
𝐶
1
∫

𝑟=1

𝑟=1/𝑞

𝑟
−1
𝑑𝑟 ≤ 𝐶

2
𝑞
−1 ln 𝑞

(77)

that shows that lim
𝑞→∞

𝐼
1,𝑞

= 0.

5. Previous Results

In this section we quote some results from [10] that will be
essentially the starting point for the proofs ofTheorems 4 and
6. We start with the following uniqueness result.

Theorem 18 (see [10]). The Problem 𝑃2 has at most one
generalized solution.

In [10] the right-hand side function 𝑓 of the wave
equation (1) is fixed as a harmonic polynomial (11). Then the
following existence result for the generalized solution is valid.

Theorem 19 (see [10]). Suppose that the right-hand side 𝑓 ∈

𝐶
1
(Ω) has the form (11) where 𝑙 ∈ N ∪ {0}. Then, the unique

generalized solution 𝑢 (𝑥, 𝑡) of the Problem 𝑃2 in Ω exists and
has the form

𝑢 (𝑥, 𝑡) =

𝑙

∑

𝑛=0

2𝑛+1

∑

𝑚=1

𝑢
𝑚

𝑛
(|𝑥| , 𝑡) 𝑌

𝑚

𝑛
(𝑥) ∈ 𝐶

2
(Ω \ 𝑂) . (78)

In fact, the function 𝑢
𝑚

𝑛
(|𝑥|, 𝑡) from (78) is the solution

of a two-dimensional boundary value problem that involves
only the corresponding coefficient 𝑓𝑚

𝑛
(|𝑥|, 𝑡) from (11). In

order to formulate this BVP, it is natural to introduce polar
coordinates (𝑟, 𝜃, 𝜑) inR3: 𝑟; 𝜃 and 𝜑 are such that 0 ≤ 𝜃 < 𝜋,
0 ≤ 𝜑 < 2𝜋, 𝑟 > 0 and

𝑥
1
= 𝑟 sin 𝜃 cos𝜑, 𝑥

2
= 𝑟 sin 𝜃 sin𝜑, 𝑥

3
= 𝑟 cos 𝜃.

(79)

In the special case when 𝑓 has the form

𝑓 (𝑟, 𝜃, 𝜑, 𝑡) = 𝑓
𝑚

𝑛
(𝑟, 𝑡) 𝑌

𝑚

𝑛
(𝜃, 𝜑) , (80)

according to Theorem 19, we may look for a solution of the
same form

𝑢 (𝑟, 𝜃, 𝜑, 𝑡) = 𝑢
𝑚

𝑛
(𝑟, 𝑡) 𝑌

𝑚

𝑛
(𝜃, 𝜑) . (81)

Then we can reduce the (3+1)-D Protter problem to some
BVPs inR2. From the properties of the spherical functions it
follows that the function 𝑢𝑚

𝑛
(𝑟, 𝑡) is a solution of the equation

𝑢
𝑟𝑟
+
2

𝑟
𝑢
𝑟
− 𝑢
𝑡𝑡
−
𝑛 (𝑛 + 1)

𝑟2
𝑢 = 𝑓 (𝑟, 𝑡) , (82)
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with right-hand side 𝑓 (𝑟, 𝑡) := 𝑓
𝑚

𝑛
(𝑟, 𝑡), in the domain 𝐷 =

{(𝑟, 𝑡) : 0 < 𝑡 < 1/2, 𝑡 < 𝑟 < 1 − 𝑡}, bounded by

𝑆
0
= {(𝑟, 𝑡) : 𝑡 = 0, 0 < 𝑟 < 1} ,

𝑆
1
= {(𝑟, 𝑡) : 0 < 𝑡 <

1

2
, 𝑟 = 1 − 𝑡} ,

𝑆
2
= {(𝑟, 𝑡) : 0 < 𝑡 <

1

2
, 𝑟 = 𝑡} .

(83)

Thus, we arrive at the next two-dimensional problems.

Problem P21. Find a solution of (82) in the domain 𝐷 which
satisfies the boundary conditions

𝑃21: 𝑢
𝑡

󵄨󵄨󵄨󵄨𝑆
0

= 0, 𝑢|
𝑆
1

= 0. (84)

Finally, we substitute

V = 𝑟𝑢 (𝑟, 𝑡) , 𝑔 = 𝑟𝑓 (𝑟, 𝑡) ,

𝜉 =
𝑟 + 𝑡

2
, 𝜂 =

𝑟 − 𝑡

2

(85)

and get the following problem.

Problem P22. Find a solution of the equation

V
𝜉𝜂
−
𝑛 (𝑛 + 1)

(𝜉 + 𝜂)
2
V = 𝑔, (86)

in the domain 𝐷
1
= {(𝜉, 𝜂) ∈ R2 : 0 < 𝜂 < 𝜉 < 1/2} with

boundary conditions

𝑃22 : (
𝜕V
𝜕𝜉

−
𝜕V
𝜕𝜂

) (𝜂, 𝜂) = 0, V (
1

2
, 𝜂) = 0,

for 𝜂 ∈ (0, 1
2
] .

(87)

In [10] the solution of Problem 𝑃22 is constructed with
the help of the Riemann’s function

𝑅 (𝜉
1
, 𝜂
1
; 𝜉, 𝜂) = 𝑃

𝑛
(
(𝜉 − 𝜂) (𝜉

1
− 𝜂
1
) + 2𝜉

1
𝜂
1
+ 2𝜉𝜂

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

) ,

(88)

for equation (86) found by Copson [35]. The problem is
reduced to an integral equation of Volterra type. Then this
integral equation is solved using some formulas from the
book by Samko et al. [36] and the properties of the Mellin
transform. According to formulas (23), (24), and (27) in
the proof of Theorem 3.1 from [10] we can write down the
following result.

Lemma 20. The solution V (𝜉, 𝜂) of Problem 𝑃22 is given by

V (𝜉, 𝜂) = 𝜏 (𝜉) + ∫

1/2

𝜉

𝜏 (𝜉
1
)
𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

) 𝑑𝜉
1

− ∫

1/2

𝜉

(∫

𝜂

0

𝑃
𝑛
(
(𝜉 − 𝜂) (𝜉

1
− 𝜂
1
) + 2𝜉

1
𝜂
1
+ 2𝜉𝜂

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

)

× 𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
,

(89)

where

𝜏 (𝜉) = ∫

𝜉

1/2

𝑃
𝑛
(
𝜉
1

𝜉
)𝐺 (𝜉

1
) 𝑑𝜉
1
, (90)

𝐺 (𝜉) := ∫

1/2

𝜉

(∫

𝜉

0

𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
)

× (
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1

− ∫

𝜉

0

𝑃
𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (2𝜂
1
+ 1)

)𝑔(
1

2
, 𝜂
1
)𝑑𝜂
1

− ∫

1/2

𝜉

𝑃
𝑛
(
𝜉

𝜉
1

)𝑔 (𝜉
1
, 0) 𝑑𝜉

1
.

(91)

Finally, we will need the relation between the functions
𝐸
𝑛

𝑖
(𝑟, 𝑡) := 𝐸

𝑛

𝑖
(𝑥, 𝑡), with 𝑟 = |𝑥|, defined in (6) and the

Legendre polynomials 𝑃
𝑛
.

Lemma 21 (see [10]). Define the functions

ℎ
𝑘
(𝜉, 𝜂) = ∫

𝜉

𝜂

𝑠
𝑘
𝑃
𝑛
(
𝜉𝜂 + 𝑠

2

𝑠 (𝜉 + 𝜂)
)𝑑𝑠. (92)

Then the equality

𝑟
−1 𝜕

𝜕𝑡
[ℎ
𝑛−2𝑖

(
𝑟 + 𝑡

2
,
𝑟 − 𝑡

2
)] = 𝑐

𝑛

𝑖
𝐸
𝑛

𝑖
(𝑟, 𝑡) (93)

holds for 𝑖 = 0, . . . , [𝑛/2] with some nonzero constants 𝑐𝑛
𝑖
.

6. Proofs of the Main Results

In this sectionwewill proveTheorems 4 and 6.The proofs are
based on an asymptotic expansion formula for the solution of
the two-dimensional Problem 𝑃21. In order to formulate it,
let us concentrate first on Problem 𝑃2 with right-hand side
functions 𝑓 of the form

𝑓 (𝑥, 𝑡) = 𝑓
𝑚

𝑛
(𝑟, 𝑡) 𝑌

𝑚

𝑛
(𝜃, 𝜑) , (94)

with fixed 𝑛,𝑚 ∈ N ∪ {0} and 𝑚 ≤ 2𝑛 + 1. We will use the
results stated in Section 5. The unique generalized solution 𝑢
of Problem 𝑃2 also has the form

𝑢 (𝑥, 𝑡) = 𝑢
𝑚

𝑛
(𝑟, 𝑡) 𝑌

𝑚

𝑛
(𝜃, 𝜑) . (95)
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The function 𝑢𝑚
𝑛
(𝑟, 𝑡) is the solution of Problem 𝑃21with the

function 𝑓 (𝑟, 𝑡) := 𝑓
𝑚

𝑛
(𝑟, 𝑡) as a right-hand side in (82). We

are interested in the exact behavior of 𝑢𝑚
𝑛
(𝑟, 𝑡) at (0, 0). One

expects it to depend on the constants

𝛽
𝑛

𝑘
:= ∫

1/2

0

(∫

1−𝑡

𝑡

𝐸
𝑛

𝑘
(𝑟, 𝑡) 𝑓 (𝑟, 𝑡) 𝑟

2
𝑑𝑟) 𝑑𝑡

for 𝑘 = 0, . . . , [
𝑛

2
]

(96)

that correspond to 𝛽𝑛
𝑘,𝑚

defined in (13) for the Problem 𝑃2.
For simplicity, denote further

𝐴
0
:=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶(𝐷);

𝐴
1
:=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶(𝐷) +

󵄩󵄩󵄩󵄩𝑟𝑓𝑡
󵄩󵄩󵄩󵄩𝐶(𝐷);

𝐴
2
:=
󵄩󵄩󵄩󵄩𝑟𝑓

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟𝑓𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷);

𝐴
3
:=
󵄩󵄩󵄩󵄩𝑟𝑓

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟𝑓𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟𝑓𝑡𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩󵄩
𝑟
2
𝑓
𝑡𝑟𝑟

󵄩󵄩󵄩󵄩󵄩𝐶(𝐷)
.

(97)

Theorem 22. Let 𝑓 (𝑟, 𝑡) and 𝑟𝑓
𝑡
(𝑟, 𝑡) ∈ 𝐶 (𝐷). Then the

generalized solution 𝑢 (𝑟, 𝑡) of Problem 𝑃21 belongs to 𝐶2 (𝐷 \

(0, 0)) and has the following asymptotic expansion at (0, 0):

𝑢 (𝑟, 𝑡) =

[𝑛/2]

∑

𝑘=0

𝑟
−1
(𝑟 + 𝑡)

−(𝑛−2𝑘)
𝛽
𝑛

𝑘
𝐹
𝑛

𝑘
(𝑟, 𝑡) + 𝐹

𝑛
(𝑟, 𝑡) , (98)

where

(1) the functions 𝐹𝑛
𝑘
∈ 𝐶
2
(𝐷 \ (0, 0)) are independent of 𝑓,

bounded, and satisfy 𝐹𝑛
𝑘
(𝑡, 𝑡) ≡ 𝑐𝑜𝑛𝑠𝑡 ̸= 0;

(2) the function 𝐹𝑛 ∈ 𝐶
2
(𝐷 \ (0, 0)) satisfies the following

estimates:
󵄨󵄨󵄨󵄨󵄨
𝐹
0
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄩󵄩󵄩󵄩𝑟𝑓
󵄩󵄩󵄩󵄩𝐶(𝐷),

󵄨󵄨󵄨󵄨󵄨
(𝐹
0
)
𝑟
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
(𝐹
0
)
𝑡
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑟
−1󵄩󵄩󵄩󵄩𝑟𝑓

󵄩󵄩󵄩󵄩𝐶(𝐷),

(99)

and for 𝑛 ≥ 1

󵄨󵄨󵄨󵄨𝐹
𝑛
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴
1
𝑛
2
(1 + |ln 𝑟|) . (100)

If also 𝑟𝑓 and 𝑟𝑓
𝑡
∈ 𝐶
1
(𝐷), then

󵄨󵄨󵄨󵄨𝐹
𝑛
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑟
−1
(𝐴
0
𝑛
2
+ 𝐴
2
) , (101)

and if additionally 𝑟𝑓
𝑡𝑡
∈ 𝐶
1
(𝐷) and 𝑟2𝑓

𝑡𝑟𝑟
∈ 𝐶 (𝐷),

then
󵄨󵄨󵄨󵄨(𝐹
𝑛
)
𝑟
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝐹
𝑛
)
𝑡
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑟
−3
(𝐴
1
𝑛
2
+ 𝐴
3
) , (102)

where in all inequalities the constant 𝐶 is independent
of 𝑛 and 𝑓.

The proof of this result is quite long and technical and we
leave it for Section 7. Here we will use Theorem 22 to prove
Theorems 4 and 6.

Proof of Theorem 4. Assume that the right-hand side func-
tion 𝑓 is a harmonic polynomial (11). Then the unique
generalized solution 𝑢(𝑥, 𝑡) also is a harmonic polynomial
(78), according to Theorem 19. Furthermore, the functions
𝑢
𝑚

𝑛
(𝑟, 𝑡) are solutions of Problem𝑃21with right-hand side𝑓𝑚

𝑛

that can be represented as

𝑓
𝑚

𝑛
(𝑟, 𝑡) := ∫

𝜋

0

(∫

2𝜋

0

𝑓 (𝑟, 𝜃, 𝜑, 𝑡) 𝑌
𝑚

𝑛
(𝜃, 𝜑) 𝑑𝜑) sin 𝜃 𝑑𝜃.

(103)

When 𝑓 ∈ 𝐶
1
(Ω) we have 𝑓𝑚

𝑛
∈ 𝐶
1
(𝐷) and obviously

󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛
(𝑟, 𝑡)

󵄩󵄩󵄩󵄩𝐶1(𝐷) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝐶1(Ω). (104)

The definition of functions 𝑊𝑛
𝑘,𝑚

from Lemma 1 and (103)
gives the identity

∫

1/2

0

(∫

1−𝑡

𝑡

𝐸
𝑛

𝑘
(𝑟, 𝑡) 𝑓

𝑚

𝑛
(𝑟, 𝑡) 𝑟

2
𝑑𝑟) 𝑑𝑡

= ∫
Ω

𝑊
𝑛

𝑘,𝑚
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡,

(105)

which shows that 𝛽𝑛
𝑘
= 𝛽
𝑛

𝑘,𝑚
, according to their definitions

(96) and (13).
Now we can apply Theorem 22 for the functions 𝑢𝑚

𝑛
(𝑟, 𝑡)

and 𝑓𝑚
𝑛
(𝑟, 𝑡). Using (104) and (105) we get the expansion

𝑢
𝑚

𝑛
(𝑟, 𝑡) =

[𝑛/2]

∑

𝑘=0

𝑟
−1
(𝑟 + 𝑡)

−(𝑛−2𝑘)
𝛽
𝑛

𝑘,𝑚
𝐹
𝑛,𝑚

𝑘
(𝑟, 𝑡)

+ 𝐹
𝑛,𝑚

(𝑟, 𝑡) ,

(106)

where |𝐹
𝑛,𝑚

(𝑟, 𝑡)| ≤ 𝐶‖𝑓‖
𝐶
1
(Ω)

, |𝐹𝑛,𝑚
𝑘

(𝑟, 𝑡)| ≤ 𝐶, and
𝐹
𝑛,𝑚

𝑘
(𝑡, 𝑡) = const ̸= 0. Summing up over 𝑛 and 𝑚 one gets

the desired expansion.
Finally, to prove property (iii), let us fix a direction

(𝛼, 1) := (𝛼
1
, 𝛼
2
, 𝛼
3
, 1) with 𝛼

1
= sin 𝜃

0
cos𝜑
0
, 𝛼
2

=

sin 𝜃
0
sin𝜑
0
, and 𝛼

3
= cos 𝜃

0
. Then for the functions 𝐹𝑛

𝑘,𝑚

from (16) we have

𝐹
𝑛

𝑘,𝑚
(𝛼𝑡, 𝑡) := 2

(2𝑘−𝑛+1)/2
𝐹
𝑛,𝑚

𝑘
(𝑡, 𝑡) 𝑌

𝑚

𝑛
(𝜑
0
, 𝜃
0
) . (107)

And, thus, there are some nonzero constants 𝐶
𝑝,𝑘,𝑚

such that

lim
𝑡→+0

𝐹
𝑝
(𝛼𝑡, 𝑡)

=

[(𝑙−𝑝+1)/2]

∑

𝑘=0

2𝑝+4𝑘−1

∑

𝑚=1

𝐶
𝑝,𝑘,𝑚

𝛽
𝑝+2𝑘−1

𝑘,𝑚
𝑌
𝑚

𝑝+2𝑘−1
(𝜑
0
, 𝜃
0
) .

(108)

Therefore property (iii) follows from the fact that the spheri-
cal functions 𝑌𝑚

𝑛
are linearly independent.

BesidesTheorem 22, the proof ofTheorem 6 relies on and
the estimates from Section 3 for the special functions.
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Proof of Theorem 6. The function 𝑓 ∈ 𝐶
6
(Ω) can be repre-

sented as

𝑓 (𝑥, 𝑡) =

∞

∑

𝑛=0

2𝑛+1

∑

𝑚=1

𝑓
𝑚

𝑛
(|𝑥| , 𝑡) 𝑌

𝑚

𝑛
(𝑥) . (109)

The generalized solution of Problem 𝑃2 could be formally
written in the form

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

2𝑛+1

∑

𝑚=1

𝑢
𝑚

𝑛
(|𝑥| , 𝑡) 𝑌

𝑚

𝑛
(𝑥) , (110)

where 𝑢𝑚
𝑛
(𝑟, 𝑡) is the solution of Problem𝑃21with right-hand

side 𝑓𝑚
𝑛
. We will prove that the series (110) and its derivatives

are uniformly convergent in Ω ∩ {𝑟 ≥ 𝜀} for 𝜀 > 0 and that 𝑢
is bounded.

According to Lemma 17 the series for 𝑓 and its first
derivatives uniformly converge. For the derivatives with
respect to 𝑥

𝑖
and with respect to 𝑟, there holds the relation

3

∑

𝑖=1

𝑥
𝑖

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥, 𝑡) =

∞

∑

𝑛=0

2𝑛+1

∑

𝑚=1

𝑟
𝜕

𝜕𝑟
(𝑓
𝑚

𝑛
(𝑟, 𝑡)) 𝑌

𝑚

𝑛
(𝑥) , (111)

and therefore 𝑟 (𝑓𝑚
𝑛
)
𝑟
∈ 𝐶 (𝐷). A similar argument shows that

𝑟𝑓
𝑚

𝑛
,𝑟 (𝑓𝑚
𝑛
)
𝑡
,𝑟 (𝑓𝑚
𝑛
)
𝑡𝑡
∈ 𝐶
1
(𝐷) and 𝑟2 (𝑓𝑚

𝑛
)
𝑡𝑟𝑟

∈ 𝐶 (𝐷) and we
can apply Theorem 22.

First, using Lemma 17 case (1) with 𝑘 = 3 and 𝑘 = 2, we
see that for 𝑛 > 0

󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) ≤ 𝐶𝑛
−6󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω),

󵄩󵄩󵄩󵄩𝑟𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)
≤ 𝐶𝑛
−4󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω).

(112)

On the other hand, Lemma 17 case (2) with 𝑘 = 2 and 𝑘 = 1

gives
2𝑛+1

∑

𝑚=1

󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) ≤ 𝐶𝑛
−4
𝑟
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶5(Ω),

(113)

2𝑛+1

∑

𝑚=1

󵄩󵄩󵄩󵄩(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶(𝐷)
≤ 𝐶𝑛
−4
𝑟
󵄩󵄩󵄩󵄩𝑓𝑡

󵄩󵄩󵄩󵄩𝐶5(Ω),
(114)

2𝑛+1

∑

𝑚=1

(
󵄩󵄩󵄩󵄩𝑟𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)

+
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)
+
󵄩󵄩󵄩󵄩󵄩
𝑟
2
(𝑓
𝑚

𝑛
)
𝑡𝑟𝑟

󵄩󵄩󵄩󵄩󵄩𝐶(𝐷)
)

≤ 𝐶𝑛
−2
𝑟
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶6(Ω).

(115)

Next we study the series (110). Using the notations of
Theorem 22, we know that when 𝛽𝑛

𝑘
= 0 for 𝑘 = 0, . . . , [𝑛/2],

the function 𝑢𝑚
𝑛
(𝑟, 𝑡) satisfies

𝑢
𝑚

𝑛
(𝑟, 𝑡) = 𝐹

𝑛
(𝑟, 𝑡) , (116)

and then for 𝑛 > 0 from (100), (101), and (102) we have the
following estimates:
󵄨󵄨󵄨󵄨𝑢
𝑚

𝑛
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑛
2
(
󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶(𝐷)
) (1 + |ln 𝑟|) ,

(117)

or alternatively
󵄨󵄨󵄨󵄨𝑢
𝑚

𝑛
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐶𝑟
−1
(𝑛
2󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) +
󵄩󵄩󵄩󵄩𝑟𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)
) ,

(118)

and for the derivatives
󵄨󵄨󵄨󵄨(𝑢
𝑚

𝑛
)
𝑟
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝑢
𝑚

𝑛
)
𝑡
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐶𝑟
−3
(𝑛
2󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) + 𝑛
2󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶(𝐷)

+
󵄩󵄩󵄩󵄩𝑟𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)

+
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)
+
󵄩󵄩󵄩󵄩󵄩
𝑟
2
(𝑓
𝑚

𝑛
)
𝑡𝑟𝑟

󵄩󵄩󵄩󵄩󵄩𝐶(𝐷)
) .

(119)

Then applying the estimate (49) for the spherical func-
tions from Corollary 16 and substituting (113) and (114) in
(117) we find
2𝑛+1

∑

𝑚=1

󵄨󵄨󵄨󵄨𝑢
𝑚

𝑛
𝑌
𝑚

𝑛

󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−5/2

(1 + |ln 𝑟|)
2𝑛+1

∑

𝑚=1

(
󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶(𝐷)
)

≤ 𝐶𝑛
−3/2

(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶5(Ω) +

󵄩󵄩󵄩󵄩𝑓𝑡
󵄩󵄩󵄩󵄩𝐶5(Ω)) .

(120)

On the other hand, first using (118) with (112) and then (52)
for the sum of derivatives of 𝑌𝑚

𝑛
, we get

2𝑛+1

∑

𝑚=1

∑

|𝛼|=1

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑚

𝑛
𝐷
𝛼

(𝑥,𝑡)
𝑌
𝑚

𝑛

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−4
𝑟
−1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω)

2𝑛+1

∑

𝑚=1

∑

|𝛼|=1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼

(𝑥,𝑡)
𝑌
𝑚

𝑛

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−2
𝑟
−2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω).

(121)

Combining (119) for the derivatives of 𝑢 with (113), (114), and
(115) gives

2𝑛+1

∑

𝑚=1

∑

|𝛼|=1

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑚

𝑛
𝐷
𝛼

(𝑥,𝑡)
𝑢
𝑚

𝑛

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
5/2
𝑟
−3

2𝑛+1

∑

𝑚=1

(
󵄩󵄩󵄩󵄩𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶(𝐷)
)

+ 𝐶𝑛
1/2
𝑟
−3

2𝑛+1

∑

𝑚=1

(
󵄩󵄩󵄩󵄩𝑟𝑓
𝑚

𝑛

󵄩󵄩󵄩󵄩𝐶1(𝐷) +
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)

+
󵄩󵄩󵄩󵄩𝑟(𝑓
𝑚

𝑛
)
𝑡𝑡

󵄩󵄩󵄩󵄩𝐶1(𝐷)

+
󵄩󵄩󵄩󵄩󵄩
𝑟
2
(𝑓
𝑚

𝑛
)
𝑡𝑟𝑟

󵄩󵄩󵄩󵄩󵄩𝐶(𝐷)
)

≤ 𝐶𝑛
−3/2

𝑟
−2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω).

(122)
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For the case 𝑛 = 0 we have 𝑌1
0
= const and representation

(103) shows that |𝑓1
0
| ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶(Ω). Therefore Theorem 22

gives
󵄨󵄨󵄨󵄨󵄨
𝑢
1

0
𝑌
1

0

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶(Ω),

∑

|𝛼|=1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼

(𝑥,𝑡)
𝑢
1

0
𝑌
1

0

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑟
−1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶(Ω).

(123)

After this preparation, we are ready to estimate the
Fourier series (110) and its first derivatives:

|𝑢 (𝑥, 𝑡)|

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶(Ω) + 𝐶 (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶5(Ω) +

󵄩󵄩󵄩󵄩𝑓𝑡
󵄩󵄩󵄩󵄩𝐶5(Ω))

∞

∑

𝑛=1

𝑛
−2

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐶5(Ω) +

󵄩󵄩󵄩󵄩𝑓𝑡
󵄩󵄩󵄩󵄩𝐶5(Ω)) ,

∑

|𝛼|=1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼

(𝑥,𝑡)
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑟
−1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶(Ω) + 𝐶𝑟
−2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω)

∞

∑

𝑛=1

𝑛
−3/2

+ 𝐶𝑟
−2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω)

∞

∑

𝑛=1

𝑛
−2

≤ 𝐶𝑟
−2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶6(Ω).

(124)

Therefore we have 𝑢 ∈ 𝐶1(Ω\𝑂) since for each fixed 𝜀 > 0

the series (110) uniformly converges in the setΩ∩{𝑟 ≥ 𝜀} and
the same holds for its first derivatives.

Finally, we will prove that the function 𝑢 (𝑥, 𝑡) defined
as the series (110) is the generalized solution of Problem
𝑃2. First, notice that the function 𝑢

𝑚

𝑛
(|𝑥|, 𝑡)𝑌

𝑚

𝑛
(𝑥) is the

generalized solution of Protter Problem 𝑃2 with right-hand
side function 𝑓

𝑚

𝑛
(|𝑥|, 𝑡)𝑌

𝑚

𝑛
(𝑥). Thus 𝑢 ∈ 𝐶

1
(Ω \ 𝑂) satisfies

the boundary conditions 𝑢
𝑡
|
Σ
0

= 0 and 𝑢|
Σ
1

= 0 just like all
the terms 𝑢𝑚

𝑛
𝑌
𝑚

𝑛
. The proof of case (2) from Definition 2 is

straightforward; for a test function 𝑤 and 𝑙 ∈ N we have

∫
Ω

𝑙

∑

𝑛=0

2𝑛+1

∑

𝑚=1

{(𝑢
𝑚

𝑛
𝑌
𝑚

𝑛
)
𝑡
𝑤
𝑡
− (𝑢
𝑚

𝑛
𝑌
𝑚

𝑛
)
𝑥
1

𝑤
𝑥
1

− (𝑢
𝑚

𝑛
𝑌
𝑚

𝑛
)
𝑥
2

𝑤
𝑥
2

− (𝑢
𝑚

𝑛
𝑌
𝑚

𝑛
)
𝑥
3

𝑤
𝑥
3

−𝑓
𝑚

𝑛
𝑌
𝑚

𝑛
𝑤}𝑑𝑥𝑑𝑡 = 0,

(125)

and the uniform convergence in Ω ∩ supp (𝑤) of the series
(110) and its first derivatives allow us to take the limit 𝑙 → ∞

in this equality. Therefore

∫
Ω

{𝑢
𝑡
𝑤
𝑡
− 𝑢
𝑥
1

𝑤
𝑥
1

− 𝑢
𝑥
2

𝑤
𝑥
2

− 𝑢
𝑥
3

𝑤
𝑥
3

− 𝑓𝑤} 𝑑𝑥 𝑑𝑡 = 0,

(126)

and we see that 𝑢 (𝑥, 𝑡) is the generalized solution of Problem
𝑃2 with right-hand side 𝑓 (𝑥, 𝑡).

7. Proof of the Asymptotic Expansion in
the Two-Dimensional Case

The proof of Theorem 22 is based on the results stated in
Section 5. In particular, according to Lemma 20, the solution
𝑢(𝑟, 𝑡) of Problem 𝑃21 can be constructed with help of the
substitutions 𝜉 = (𝑟 + 𝑡)/2, 𝜂 = (𝑟 − 𝑡)/2 as

𝑢 (𝜉 + 𝜂, 𝜉 − 𝜂) = (𝜉 + 𝜂)
−1V (𝜉, 𝜂) , (127)

where V (𝜉, 𝜂) is defined by the formulas (89), (90), (91), and

𝑔 (𝜉, 𝜂) = (𝜉 + 𝜂) 𝑓 (𝜉 + 𝜂, 𝜉 − 𝜂) . (128)

One can see that generally the integral in (90) blows up
when 𝜉 approaches 0, and thus V (𝜉, 𝜂) has singularity at (0, 0)
even for smooth functions 𝑔 (𝜉, 𝜂).

Proof of Theorem 22. The proof is as follows.

(A) Proof of the Asymptotic Formula. We will study the
behavior of the function

V (𝜉, 𝜂) = (𝜉 + 𝜂) 𝑢 (𝜉 + 𝜂, 𝜉 − 𝜂) , (129)

given by the integral representation (89) from Lemma 20.
The smoothness of V (𝜉, 𝜂) in (89) away from the point (0, 0)
follows directly from the smoothness of the function 𝐺 (𝜉).
Next we will derive the asymptotic expansion of V (𝜉, 𝜂) at
(0, 0).

First we will find the relation between the constants 𝛽𝑛
𝑘

and the function 𝐺 (𝜉) defined by (91). Let us compute the
integral

∫

1/2

0

𝜉
𝑘
𝐺 (𝜉) 𝑑𝜉

= ∫

1/2

0

∫

1/2

𝜉

∫

𝜉

0

𝜉
𝑘
𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
)(

𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)

× 𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
𝑑𝜉
1
𝑑𝜉

− ∫

1/2

0

∫

𝜉

0

𝜉
𝑘
𝑃
𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (2𝜂
1
+ 1)

)𝑔(
1

2
, 𝜂
1
)𝑑𝜂
1
𝑑𝜉

− ∫

1/2

0

∫

1/2

𝜉

𝜉
𝑘
𝑃
𝑛
(
𝜉

𝜉
1

)𝑔 (𝜉
1
, 0) 𝑑𝜉

1
𝑑𝜉

= ∫

1/2

0

∫

𝜉
1

0

(∫

𝜉
1

𝜂
1

𝜉
𝑘
𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
) 𝑑𝜉)

× (
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
𝑑𝜉
1

− ∫

1/2

0

(∫

1/2

𝜂
1

𝜉
𝑘
𝑃
𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (2𝜂
1
+ 1)

)𝑑𝜉)𝑔(
1

2
, 𝜂
1
)𝑑𝜂
1

− ∫

1/2

0

(∫

𝜉
1

0

𝜉
𝑘
𝑃
𝑛
(
𝜉

𝜉
1

)𝑑𝜉)𝑔 (𝜉
1
, 0) 𝑑𝜉

1
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= −∫

1/2

0

∫

𝜉
1

0

(
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)

× (∫

𝜉
1

𝜂
1

𝜉
𝑘
𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
) 𝑑𝜉)𝑔 (𝜉

1
, 𝜂
1
) 𝑑𝜂
1
𝑑𝜉
1

= −∫

1/2

0

∫

𝜉
1

0

(
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)ℎ
𝑘
(𝜉
1
, 𝜂
1
) 𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
𝑑𝜉
1
.

(130)

Now we can apply Lemma 21 to get

(
𝜕

𝜕𝜉
−

𝜕

𝜕𝜂
) ℎ
𝑛−2𝑖

(𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜉=(𝑟+𝑡)/2
𝜂=(𝑟−𝑡)/2

= 𝑐
𝑛

𝑖
𝑟𝐸
𝑛

𝑖
(𝑟, 𝑡) , (131)

and we conclude that

∫

1/2

0

𝜉
𝑛−2𝑖

𝐺 (𝜉) 𝑑𝜉

= −∫

1/2

0

(∫

𝜉

0

(
𝜕

𝜕𝜉
−

𝜕

𝜕𝜂
) ℎ
𝑛

𝑛−2𝑖
(𝜉, 𝜂) 𝑔 (𝜉, 𝜂) 𝑑𝜂)𝑑𝜉

= −𝑐
𝑛

𝑖
∫

1/2

0

(∫

1−𝑡

𝑡

𝐸
𝑛

𝑖
(𝑟, 𝑡) 𝑓 (𝑟, 𝑡) 𝑟

2
𝑑𝑟) 𝑑𝑡 = −𝑐

𝑛

𝑖
𝛽
𝑛

𝑖
.

(132)

Next we consider the case 𝑛 ≥ 1. The simpler case 𝑛 = 0

will be discussed separately later in the proof.
Let us expand the Legendre polynomial 𝑃

𝑛
in formula

(90) using (27):

𝑃
𝑛
(𝑥) =

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝑥
𝑛−2𝑘

, (133)

where 𝑎
2𝑘

̸= 0. For 𝜏 (𝜉) we get

𝜏 (𝜉) = ∫

𝜉

1/2

𝑃
𝑛
(
𝜉
1

𝜉
)𝐺 (𝜉

1
) 𝑑𝜉
1

=

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝜉
−𝑛+2𝑘

∫

𝜉

1/2

𝜉
𝑛−2𝑘

1
𝐺 (𝜉
1
) 𝑑𝜉
1
.

(134)

Applying (132) we find

𝜏 (𝜉) =

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝜉
−𝑛+2𝑘

(𝑐
𝑛

𝑖
𝛽
𝑛

𝑖
+ ∫

𝜉

0

𝜉
𝑛−2𝑘

1
𝐺 (𝜉
1
) 𝑑𝜉
1
)

=

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝑐
𝑛

𝑖
𝛽
𝑛

𝑖
𝜉
−𝑛+2𝑘

+ 𝜓 (𝜉) ,

(135)

where

𝜓 (𝜉) =

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝜉
−𝑛+2𝑘

∫

𝜉

0

𝜉
𝑛−2𝑘

1
𝐺 (𝜉
1
) 𝑑𝜉
1

= ∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
)𝐺 (𝜉

1
) 𝑑𝜉
1
.

(136)

Now, we want to estimate the function 𝜓 (𝜉). First, let us look
more carefully to the representation (91) of the function𝐺 (𝜉)

with 𝑔 = 𝑟𝑓 (𝑟, 𝑡):

𝐺 (𝜉) = ∫

1/2

𝜉

(∫

𝜉

0

𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
)

× (
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1

− ∫

𝜉

0

𝑃
𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (2𝜂
1
+ 1)

)𝑔(
1

2
, 𝜂
1
)𝑑𝜂
1

− ∫

1/2

𝜉

𝑃
𝑛
(
𝜉

𝜉
1

)𝑔 (𝜉
1
, 0) 𝑑𝜉

1
.

(137)

Since all the arguments of𝑃
𝑛
here are in the interval [0, 1] and

|𝑃
𝑛
(𝑥)| ≤ 1 for 𝑥 ∈ [0, 1], it is obvious that

󵄨󵄨󵄨󵄨𝐺 (𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴

1
, (138)

and therefore
󵄨󵄨󵄨󵄨𝜓 (𝜉)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴
1
𝜉, (139)

where the constant 𝐶 is independent of 𝑛 and 𝑓.
We will need also a more accurate estimate for 𝜓 (𝜉) with

higher power of 𝜉.The first two integrals in (137) are bounded
by 2𝐴

1
𝜉. For the last term

𝐽
𝑛
(𝜉) := ∫

1/2

𝜉

𝑃
𝑛
(
𝜉

𝜉
1

)𝑔 (𝜉
1
, 0) 𝑑𝜉

1
, (140)

more computations are required. First, using the estimate (32)
from Lemma 14, we have
󵄨󵄨󵄨󵄨𝐽𝑛 (𝜉) − 𝐽𝑛 (0)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1/2

𝜉

𝑃
𝑛
(
𝜉

𝜉
1

)𝑔 (𝜉
1
, 0) 𝑑𝜉

1
− 𝑃
𝑛
(0) ∫

1/2

0

𝑔 (𝜉
1
, 0) 𝑑𝜉

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑛∫

1/2

𝜉

𝜉

𝜉
1

󵄨󵄨󵄨󵄨𝑔 (𝜉1, 0)
󵄨󵄨󵄨󵄨 𝑑𝜉1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑛
(0) ∫

𝜉

0

𝑔 (𝜉
1
, 0) 𝑑𝜉

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝐴
1
𝑛𝜉
𝜀
,

(141)

with some 𝜀 ∈ (0, 1) and the constant 𝐶 is independent of 𝑛.
Therefore

󵄨󵄨󵄨󵄨𝐺 (𝜉) + 𝐽
𝑛
(0)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴
1
𝑛𝜉
𝜀
. (142)

Now, notice that the value of 𝜓 (𝜉) will not change if we add
𝐽
𝑛
(0) to 𝐺 (𝜉). This is based on the equality

∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
) 𝐽
𝑛
(0) 𝑑𝜉

1

≡ 𝑃
𝑛
(0) ∫

1/2

0

𝑔 (𝜉
1
, 0) 𝑑𝜉

1
∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
) 𝑑𝜉
1
= 0

(143)

that holds, because when 𝑛 is odd number 𝑃
𝑛
(0) = 0, while

for even indices 𝑛, 𝑛 > 0, the polynomial 𝑃
𝑛
is an even
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function and by the definition of the Legendre polynomials
(see (27)) it follows that

∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
) 𝑑𝜉
1
= 𝜉∫

1

0

𝑃
𝑛
(𝑡) 𝑑𝑡 =

1

2
𝜉∫

1

−1

𝑃
𝑛
(𝑡) 𝑑𝑡

= 𝑐𝜉∫

1

−1

𝑑
𝑛

𝑑𝑡𝑛
{(1 − 𝑡

2
)
𝑛

} 𝑑𝑡 = 0.

(144)

Thus

𝜓 (𝜉) = 𝜓 (𝜉) + ∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
) 𝐽
𝑛
(0) 𝑑𝜉

1

= ∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
) [𝐺 (𝜉

1
) + 𝐽
𝑛
(0)] 𝑑𝜉

1
,

(145)

and we can apply (142) to conclude that for 𝑛 > 0 there is
𝜀 > 0 and a constant 𝐶 independent of 𝑛 and 𝑓, such that

󵄨󵄨󵄨󵄨𝜓 (𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐴
1
𝐶𝑛𝜉
1+𝜀

. (146)

Nowwe apply the expansion (135) of 𝜏 (𝜉) in the definition
(89) of V (𝜉, 𝜂) and find that

V (𝜉, 𝜂) =
[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝑐
𝑛

𝑘
𝛽
𝑛

𝑘
𝜉
−𝑛+2𝑘

+ 𝜓 (𝜉)

+ ∫

1/2

𝜉

𝜏 (𝜉
1
)
𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1

+ 𝐹
1
(𝜉, 𝜂) ,

(147)

where the function 𝐹
1
is smooth (see (89)) and |𝐹

1
(𝜉, 𝜂)| ≤

𝐴
1
𝐶𝜉. Consider the term

∫

1/2

𝜉

𝜏 (𝜉
1
)
𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1

=

[𝑛/2]

∑

𝑘=0

𝑎
2𝑘
𝑐
𝑛

𝑘
𝛽
𝑛

𝑘
∫

1/2

𝜉

𝜉
−𝑛+2𝑘

1

𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1

+ ∫

1/2

𝜉

𝜓 (𝜉
1
)
𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1
.

(148)

According to (146) the last integral is bounded:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1/2

𝜉

𝜉
1+𝜀

1

𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶𝜉𝜂

𝜉 + 𝜂
∫

1/2

𝜉

𝜉
𝜀−1

1
𝑑𝜉
1
≤ 𝐶
󸀠
𝜉.

(149)

Thus, we find the expansion

V (𝜉, 𝜂) =
𝑛/2

∑

𝑘=0

𝑎
2𝑘
𝑐
𝑛

𝑘
𝛽
𝑛

𝑘
𝜉
−𝑛+2𝑘

𝐺
𝑛

𝑘
(𝜉, 𝜂) + 𝜓

1
(𝜉, 𝜂) , (150)

where

𝐺
𝑛

𝑘
(𝜉, 𝜂) := 1 + 𝜉

𝑛−2𝑘

× ∫

1/2

𝜉

𝜉
−𝑛+2𝑘

1

𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1
,

(151)

and |𝜓
1
(𝜉, 𝜂)| ≤ 𝐴

1
𝐶𝜉. Let us point out that 𝐺𝑛

𝑘
(𝜉, 0) = 1,

while the fact that the functions𝐺𝑛
𝑘
are bounded follows from

the estimate
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1/2

𝜉

𝜉
−𝑛+2𝑘

1

𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝜉
−𝑛+2𝑘

.

(152)

The representation (150) holds for 𝑛 > 0, while when
𝑛 = 0 we have simply 𝑃

0
≡ 1 and can substitute it in

formulas (89), (90), and (91) for the solution V of Problem
𝑃22. Straightforward computations lead to

V (𝜉, 𝜂) = 𝑎
0
𝑐
0

0
𝛽
0

0

+ ∫

𝜉

0

𝐺 (𝜉
1
) 𝑑𝜉
1
− ∫

1/2

𝜉

(∫

𝜂

0

𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
,

(153)

where

𝐺 (𝜉) := −∫

𝜉

0

𝑔 (𝜉, 𝜂
1
) 𝑑𝜂
1
− ∫

1/2

𝜉

𝑔 (𝜉
1
, 𝜉) 𝑑𝜉

1
. (154)

Therefore, the representation (150) obviously stays true in the
case 𝑛 = 0.

Finally, let us return to the generalized solution 𝑢 (𝑟, 𝑡) of
Problem 𝑃21 and to the coordinates 𝑟 and 𝑡:

𝑢 (𝑟, 𝑡) = 𝑟
−1V (

𝑟 + 𝑡

2
,
𝑟 − 𝑡

2
)

= 𝑟
−1

[𝑛/2]

∑

𝑘=0

𝛽
𝑛

𝑘
(𝑟 + 𝑡)

−𝑛+2𝑘
𝐹
𝑛

𝑘
(𝑟, 𝑡) + 𝐹

𝑛
(𝑟, 𝑡) .

(155)

Here, the function 𝐹𝑛 (𝑟, 𝑡) is given by

𝐹
𝑛
(𝑟, 𝑡) := 𝑟

−1
𝜓
1
(
𝑟 + 𝑡

2
,
𝑟 − 𝑡

2
) , (156)

and therefore |𝐹
𝑛
(𝑟, 𝑡)| ≤ 𝐶𝐴

1
, while functions 𝐹𝑛

𝑘
(𝑟, 𝑡),

defined by

𝐹
𝑛

𝑘
(𝑟, 𝑡) := 2

𝑛−2𝑘
𝑎
2𝑘
𝑐
𝑛

𝑘
𝐺
𝑛

𝑘
(
𝑟 + 𝑡

2
,
𝑟 − 𝑡

2
) , (157)

are independent of𝑓 and are obviously bounded. To complete
the proof of case (1), notice that this definition gives

𝐹
𝑛

𝑘
(𝑡, 𝑡) = 2

𝑛−2𝑘
𝑎
2𝑘
𝑐
𝑛

𝑘
̸= 0. (158)

(B) Proof of the Estimates of 𝐹𝑛. Next, for 𝑛 ≥ 1, we will
estimate the function 𝐹𝑛 and its first derivatives.
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First, we will study the behavior of 𝐹𝑛 at (0, 0). The
function 𝐹

𝑛
(𝑟, 𝑡) is given by (156), where 𝜓

1
(𝜉, 𝜂) is defined

in (150) as

𝜓
1
(𝜉, 𝜂) = 𝜓 (𝜉)

+ ∫

1/2

𝜉

𝜓 (𝜉
1
)
𝜕

𝜕𝜉
1

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝑑𝜉
1

+ 𝐹
1
(𝜉, 𝜂) ,

(159)

𝐹
1
(𝜉, 𝜂) = −∫

1/2

𝜉

(∫

𝜂

0

𝑃
𝑛

× (
(𝜉 − 𝜂) (𝜉

1
− 𝜂
1
) + 2𝜉

1
𝜂
1
+ 2𝜉𝜂

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

)

× 𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
.

(160)

Since the argument of the Legendre polynomial 𝑃
𝑛
in (160)

varies in the interval [0, 1],

󵄨󵄨󵄨󵄨𝐹1 (𝜉, 𝜂)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴

0
𝜉, (161)

where the constant 𝐶 is independent of 𝑛 and 𝑓. Thus
applying the estimate (139) for 𝜓 we get

󵄨󵄨󵄨󵄨𝜓1 (𝜉, 𝜂)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴

1
𝜉

+ 𝐶𝐴
1
𝑛
2
∫

1/2

𝜉

𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

𝑑𝜉
1
+ 𝐶𝐴
1
𝜉

≤ 𝐶
1
𝐴
1
𝑛
2
𝜉
󵄨󵄨󵄨󵄨ln 𝜉

󵄨󵄨󵄨󵄨 .

(162)

Therefore

󵄨󵄨󵄨󵄨𝐹
𝑛
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶
2
𝐴
1
𝑛
2
(1 + |ln 𝑟|) , (163)

where the constant𝐶
2
is independent of 𝑛 and𝑓; that is, (100)

holds.
Now we consider the derivatives of 𝐹𝑛. Thus we need to

evaluate the derivatives of 𝜓
1
(𝜉, 𝜂); integrating (159) by parts

we get

𝜓
1
(𝜉, 𝜂) = 𝑃

𝑛
(
𝜉 − 𝜂 + 4𝜉𝜂

𝜉 + 𝜂
)𝜓(

1

2
)

− ∫

1/2

𝜉

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)𝜓
󸀠
(𝜉
1
) 𝑑𝜉
1

+ 𝐹
1
(𝜉, 𝜂) .

(164)

For 𝜓󸀠(𝜉) defined by (136), using (138), we find

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐺 (𝜉) − ∫

𝜉

0

𝑃
󸀠

𝑛
(
𝜉
1

𝜉
)
𝜉
1

𝜉2
𝐺 (𝜉
1
) 𝑑𝜉
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
2max 󵄨󵄨󵄨󵄨𝐺 (𝜉)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐴
1
𝑛
2
,

(165)

where the constant 𝐶 is independent of 𝑛 and 𝑓. In fact, we
can remove the coefficient 𝑛2 here for smoother functions 𝑔.
In order to do this, let us rewrite 𝜓󸀠 as

𝜓
󸀠
(𝜉) = 𝜉

−1
∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
)

𝜕

𝜕𝜉
1

{𝜉
1
𝐺 (𝜉
1
)} 𝑑𝜉
1
. (166)

For (𝜓
1
)
𝜉
and (𝜓

1
)
𝜂
we will need also 𝜓󸀠󸀠:

𝜓
󸀠󸀠
(𝜉) = 𝜉

−2
∫

𝜉

0

𝑃
𝑛
(
𝜉
1

𝜉
)

𝜕
2

𝜕𝜉
2

1

{𝜉
1
𝐺 (𝜉
1
)} 𝑑𝜉
1
. (167)

Then estimates for the derivatives of 𝐺 (𝜉) are required:

𝐺
󸀠
(𝜉) = −∫

𝜉

0

𝜕

𝜕𝜉
𝑔 (𝜉, 𝜂

1
) 𝑑𝜂
1
− ∫

1/2

𝜉

𝜕

𝜕𝜉
𝑔 (𝜉
1
, 𝜉) 𝑑𝜉

1

− ∫

𝜉

0

𝑃
󸀠

𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (2𝜂
1
+ 1)

)
2𝜉
2
− 𝜂
1

𝜉2 (2𝜂
1
+ 1)

𝑔 (
1

2
, 𝜂
1
)𝑑𝜂
1

− ∫

1/2

𝜉

𝑃
󸀠

𝑛
(
𝜉

𝜉
1

)
𝑔 (𝜉
1
, 0)

𝜉
1

𝑑𝜉
1

+ ∫

1/2

𝜉

(∫

𝜉

0

𝜕

𝜕𝜉
𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
)

×(
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
.

(168)

Notice that for the argument of 𝑃
𝑛
in the last term

(𝜉
𝜕

𝜕𝜉
+ 𝜉
1

𝜕

𝜕𝜉
1

+ 𝜂
1

𝜕

𝜕𝜂
1

)
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
= 0, (169)

since the function is homogenous. Therefore we can replace
there the derivative with respect to 𝜉 with [−𝜉

1
𝜕/𝜕𝜉
1
−

𝜂
1
𝜕/𝜕𝜂
1
]/𝜉. Integrating by parts we find
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𝐺
󸀠
(𝜉) = −𝑔 (

1

2
, 𝜉) −

1

2𝜉
∫

𝜉

0

𝑃
𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (1 + 2𝜂
1
)
)(

𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)𝑔 (𝜉
1
, 𝜂
1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉
1
=1/2

𝑑𝜂
1

+ 𝑔 (𝜉, 0) − ∫

1/2

𝜉

𝑃
󸀠

𝑛
(
𝜉

𝜉
1

)
𝑔 (𝜉
1
, 0)

𝜉
1

𝑑𝜉
1
− ∫

𝜉

0

𝑃
󸀠

𝑛
(

𝜂
1
+ 2𝜉
2

𝜉 (2𝜂
1
+ 1)

)

(2𝜉
2
− 𝜂
1
) 𝑔 (1/2, 𝜂

1
)

𝜉2 (2𝜂
1
+ 1)

𝑑𝜂
1

+
1

𝜉
∫

1/2

𝜉

(∫

𝜉

0

𝑃
𝑛
(
𝜉
1
𝜂
1
+ 𝜉
2

𝜉 (𝜉
1
+ 𝜂
1
)
)(2 + 𝜉

1

𝜕

𝜕𝜉
1

+ 𝜂
1

𝜕

𝜕𝜂
1

)(
𝜕

𝜕𝜉
1

−
𝜕

𝜕𝜂
1

)𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
.

(170)

Recall that𝑔 (𝜉, 𝜂) = 𝑟𝑓 (𝑟, 𝑡), and thus𝑔 (𝜉, 0)/𝜉 = 𝑓 (𝑟, 𝑟)

and in the last integral we have

(𝜉
𝜕

𝜕𝜉
+ 𝜂

𝜕

𝜕𝜂
)(

𝜕

𝜕𝜉
−

𝜕

𝜕𝜂
)𝑔 (𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜉=(𝑟+𝑡)/2
𝜂=(𝑟−𝑡)/2

= (𝑟
𝜕

𝜕𝑟
+ 𝑡

𝜕

𝜕𝑡
) 𝑟𝑓
𝑡
(𝑟, 𝑡) .

(171)

Hence, using (31) from Lemma 14, we get that
󵄨󵄨󵄨󵄨󵄨
𝐺
󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐴

0
𝑛
2
+ 𝐶𝐴
2
. (172)

Analogously for 𝐺󸀠󸀠(𝜉), differentiating one more time the
expression for 𝐺󸀠(𝜉), applying again (169) in the last integral,
and integrating by parts the last three terms, we find the
estimate

󵄨󵄨󵄨󵄨󵄨
𝐺
󸀠󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐴

1
𝑛
2
𝜉
−1
(1 − 2𝜉)

−1
+ 𝐶𝐴
3
𝜉
−1
. (173)

Applying (138), (172), and (173) to 𝜓 and 𝜓󸀠 in (166) and
(167) we find

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐴

0
𝑛
2
+ 𝐶𝐴
2
,

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐴

1
𝑛
2
𝜉
−2 󵄨󵄨󵄨󵄨ln (1 − 2𝜉)

󵄨󵄨󵄨󵄨 + 𝐶𝐴3𝜉
−1
.

(174)

To evaluate the derivatives of𝜓
1
we need also to study the

derivatives of 𝐹
1
defined by (160):

(𝐹
1
)
𝜂
= −∫

1/2

𝜉

𝑔 (𝜉
1
, 𝜂) 𝑑𝜉

1

+ ∫

1/2

𝜉

(∫

𝜂

0

𝑃
󸀠

𝑛
(
(𝜉 − 𝜂) (𝜉

1
− 𝜂
1
) + 2𝜉

1
𝜂
1
+ 2𝜉𝜂

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

)

×
2 (𝜉
1
− 𝜉) (𝜉 + 𝜂

1
)

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

2
𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
;

(𝐹
1
)
𝜉
= ∫

𝜂

0

𝑔 (𝜉, 𝜂
1
) 𝑑𝜂
1

+ ∫

1/2

𝜉

(∫

𝜂

0

𝑃
󸀠

𝑛
(
(𝜉 − 𝜂) (𝜉

1
− 𝜂
1
) + 2𝜉

1
𝜂
1
+ 2𝜉𝜂

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

)

×
2 (𝜉
1
+ 𝜂) (𝜂 − 𝜂

1
)

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

2
𝑔 (𝜉
1
, 𝜂
1
) 𝑑𝜂
1
)𝑑𝜉
1
.

(175)

Notice that in these integrals 0 ≤ 𝜂
1
≤ 𝜂 ≤ 𝜉 ≤ 𝜉

1
and

therefore

(𝜉
1
− 𝜉) (𝜉 + 𝜂

1
)

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

2
≤

1

𝜉 + 𝜂
,

(𝜉
1
+ 𝜂) (𝜂 − 𝜂

1
)

(𝜉
1
+ 𝜂
1
) (𝜉 + 𝜂)

2
≤

1

𝜉 + 𝜂
.

(176)

Then it follows from Lemma 14 that
󵄨󵄨󵄨󵄨󵄨
(𝐹
1
)
𝜉
(𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝐹
1
)
𝜂
(𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐴

1
𝑛
2
. (177)

Now we are ready to estimate the derivatives of 𝜓 (𝜉, 𝜂)
from (164). For (𝜓

1
)
𝜂
(𝜉, 𝜂) after integration by part we have

(𝜓
1
)
𝜂
= −∫

1/2

𝜉

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)

×
𝜕

𝜕𝜉
1

[
𝜉
1
(𝜉 − 𝜉

1
)

𝜂 (𝜉 + 𝜂)
𝜓
󸀠
(𝜉
1
)] 𝑑𝜉
1
+ (𝐹
1
)
𝜂

+ 𝑃
󸀠

𝑛
(
𝜉 − 𝜂 + 4𝜉𝜂

𝜉 + 𝜂
)
2𝜉 (2𝜉 − 1)

(𝜉 + 𝜂)
2
𝜓(

1

2
)

+ 𝑃
𝑛
(
𝜉 − 𝜂 + 4𝜉𝜂

𝜉 + 𝜂
)

2𝜉 − 1

4𝜂 (𝜉 + 𝜂)
𝜓
󸀠
(
1

2
) .

(178)

Then, applying (174), it follows that
󵄨󵄨󵄨󵄨󵄨󵄨
(𝜓
1
)
𝜂

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶(𝜉 + 𝜂)

−2

[𝐴
1
𝑛
2
+ 𝐶𝐴
3
] . (179)

Similarly, for (𝜓
1
)
𝜉
, we find

(𝜓
1
)
𝜉
= −∫

1/2

𝜉

𝑃
𝑛
(
(𝜉 − 𝜂) 𝜉

1
+ 2𝜉𝜂

𝜉
1
(𝜉 + 𝜂)

)

×
𝜕

𝜕𝜉
1

[
𝜉
1
(𝜂 + 𝜉

1
)

𝜉 (𝜉 + 𝜂)
𝜓
󸀠
(𝜉
1
)] 𝑑𝜉
1
+ (𝐹
1
)
𝜉

+ 𝑃
󸀠

𝑛
(
𝜉 − 𝜂 + 4𝜉𝜂

𝜉 + 𝜂
)
2𝜂 (2𝜂 + 1)

𝜉 + 𝜂
𝜓(

1

2
)

+ 𝑃
𝑛
(
𝜉 − 𝜂 + 4𝜉𝜂

𝜉 + 𝜂
)

2𝜂 + 1

4𝜉 (𝜉 + 𝜂)
𝜓
󸀠
(
1

2
) ,

(180)
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and thus we get
󵄨󵄨󵄨󵄨󵄨
(𝜓
1
)
𝜉

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶(𝜉 + 𝜂)

−2

(𝐴
1
𝑛
2
+ 𝐶𝐴
3
) . (181)

Finally, to prove (102), notice that

(𝐹
𝑛
)
𝑟
(𝑟, 𝑡) = −𝑟

−2
𝜓
1
(𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨 𝜉=(𝑟+𝑡)/2;
𝜂=(𝑟−𝑡)/2

+
1

2
𝑟
−1
((𝜓
1
)
𝜉
+ (𝜓
1
)
𝜂
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜉=(𝑟+𝑡)/2;

𝜂=(𝑟−𝑡)/2

,

(𝐹
𝑛
)
𝑡
(𝑟, 𝑡) =

1

2
𝑟
−1
((𝜓
1
)
𝜉
− (𝜓
1
)
𝜂
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜉=(𝑟+𝑡)/2;

𝜂=(𝑟−𝑡)/2

,

(182)

and therefore
󵄨󵄨󵄨󵄨(𝐹
𝑛
)
𝑟
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝐹
𝑛
)
𝑡
(𝑟, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑟
−3
(𝐴
1
𝑛
2
+ 𝐶𝐴
3
) , (183)

where the constant 𝐶 is independent of 𝑛 and 𝑓.
The estimate (101) is a straightforward consequence of

formulas (172) for 𝐺󸀠 and (164) for 𝜓
1
, while the case 𝑛 = 0

follows directly from the representation (153).
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