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We introduce two kinds of generalized 𝑠-convex functions on real linear fractal sets R𝛼 (0 < 𝛼 < 1). And similar to the class
situation, we also study the properties of these two kinds of generalized 𝑠-convex functions and discuss the relationship between
them. Furthermore, some applications are given.

1. Introduction

Let 𝑓 : 𝐼 ⊆ R → R. For any 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1], if the
following inequality,

𝑓 (𝑡𝑢 + (1 − 𝑡) V) ≤ 𝑡𝑓 (𝑢) + (1 − 𝑡) 𝑓 (V) , (1)

holds, then 𝑓 is called a convex function on 𝐼.
The convexity of functions plays a significant role inmany

fields, such as in biological system, economy, and optimiza-
tion [1, 2]. In [3], Hudzik and Maligranda generalized the
definition of convex function and considered, among others,
two kinds of functions which are 𝑠-convex.

Let 0 < 𝑠 ≤ 1 andR
+
= [0,∞), and then the two kinds of

𝑠-convex functions are defined, respectively, in the following
way.

Definition 1. A function, 𝑓 : R
+

→ R, is said to be 𝑠-convex
in the first sense if

𝑓 (𝛼𝑢 + 𝛽V) ≤ 𝛼
𝑠

𝑓 (𝑢) + 𝛽
𝑠

𝑓 (V) , (2)

for all 𝑢, V ∈ R
+
and all 𝛼, 𝛽 ≥ 0with 𝛼

𝑠

+𝛽
𝑠

= 1. One denotes
this by 𝑓 ∈ 𝐾

1

𝑠
.

Definition 2. A function, 𝑓 : R
+

→ R, is said to be 𝑠-convex
in the second sense if

𝑓 (𝛼𝑢 + 𝛽V) ≤ 𝛼
𝑠

𝑓 (𝑢) + 𝛽
𝑠

𝑓 (V) , (3)

for all 𝑢, V ∈ R
+
and all 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. One denotes

this by 𝑓 ∈ 𝐾
2

𝑠
.

It is obvious that the 𝑠-convexity means just the convexity
when 𝑠 = 1, no matter whether it is in the first sense or in the
second sense. In [3], some properties of 𝑠-convex functions
in both senses are considered and various examples and
counterexamples are given. There are many research results
related to the 𝑠-convex functions; see [4–6] and so on.

In recent years, the fractal has received significantly
remarkable attention from scientists and engineers. In the
sense of Mandelbrot, a fractal set is the one whose Hausdorff
dimension strictly exceeds the topological dimension [7–12].

The calculus on fractal set can lead to better compre-
hension for the various real world models from science
and engineering [8]. Researchers have constructed many
kinds of fractional calculus on fractal sets by using different
approaches. Particularly, in [13], Yang stated the analysis
of local fractional functions on fractal space systematically,
which includes local fractional calculus. In [14], the authors
introduced the generalized convex function on fractal sets
and established the generalized Jensen inequality and gener-
alized Hermite-Hadamard inequality related to generalized
convex function. And, in [15], Wei et al. established a local
fractional integral inequality on fractal space analogous to
Anderson’s inequality for generalized convex functions. The
generalized convex function on fractal sets R𝛼 (0 < 𝛼 < 1)

can be stated as follows.
Let 𝑓 : 𝐼 ⊂ R → R𝛼. For any 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1], if the

following inequality,

𝑓 (𝑡𝑢 + (1 − 𝑡) V) ≤ 𝑡
𝛼

𝑓 (𝑢) + (1 − 𝑡)
𝛼

𝑓 (V) , (4)

holds, then 𝑓 is called a generalized convex on 𝐼.
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Inspired by these investigations, we will introduce the
generalized 𝑠-convex function in the first or second sense on
fractal sets and study the properties of generalized 𝑠-convex
functions.

The paper is organized as follows. In Section 2, we state
the operations with real line number fractal sets and give
the definitions of the local fractional calculus. In Section 3,
we introduce the definitions of two kinds of generalized 𝑠-
convex functions and study the properties of these functions.
In Section 4, we give some applications for the two kinds of
generalized 𝑠-convex functions on fractal sets.

2. Preliminaries

Let us recall the operations with real line number on fractal
space and use Gao-Yang-Kang’s idea to describe the defini-
tions of the local fractional derivative and local fractional
integral [13, 16–19].

If 𝑎𝛼, 𝑏𝛼, and 𝑐
𝛼 belong to the set R𝛼 (0 < 𝛼 ≤ 1) of real

line numbers, then one has the following:

(1) 𝑎
𝛼

+ 𝑏
𝛼 and 𝑎

𝛼

𝑏
𝛼 belong to the set R𝛼;

(2) 𝑎
𝛼

+ 𝑏
𝛼

= 𝑏
𝛼

+ 𝑎
𝛼

= (𝑎 + 𝑏)
𝛼

= (𝑏 + 𝑎)
𝛼;

(3) 𝑎
𝛼

+ (𝑏
𝛼

+ 𝑐
𝛼

) = (𝑎
𝛼

+ 𝑏
𝛼

) + 𝑐
𝛼;

(4) 𝑎
𝛼

𝑏
𝛼

= 𝑏
𝛼

𝑎
𝛼

= (𝑎𝑏)
𝛼

= (𝑏𝑎)
𝛼;

(5) 𝑎
𝛼

(𝑏
𝛼

𝑐
𝛼

) = (𝑎
𝛼

𝑏
𝛼

)𝑐
𝛼;

(6) 𝑎
𝛼

(𝑏
𝛼

+ 𝑐
𝛼

) = 𝑎
𝛼

𝑏
𝛼

+ 𝑎
𝛼

𝑐
𝛼;

(7) 𝑎
𝛼

+ 0
𝛼

= 0
𝛼

+ 𝑎
𝛼

= 𝑎
𝛼 and 𝑎

𝛼

⋅ 1
𝛼

= 1
𝛼

⋅ 𝑎
𝛼

= 𝑎
𝛼.

Let us now state some definitions about the local frac-
tional calculus on R𝛼.

Definition 3 (see [13]). A nondifferentiable function𝑓 : R →

R𝛼, 𝑥 → 𝑓(𝑥) is called to be local fractional continuous at
𝑥
0
, if, for any 𝜀 > 0, there exists 𝛿 > 0, such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑥

0
)
󵄨
󵄨
󵄨
󵄨
< 𝜀
𝛼 (5)

holds for |𝑥 − 𝑥
0
| < 𝛿, where 𝜀, 𝛿 ∈ R. If 𝑓 is local fractional

continuous on the interval (𝑎, 𝑏), one denotes 𝑓 ∈ 𝐶
𝛼
(𝑎, 𝑏).

Definition 4 (see [13]). The local fractional derivative of
function 𝑓 of order 𝛼 at 𝑥 = 𝑥

0
is defined by

𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓 (𝑥)

𝑑𝑥
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (6)

where Δ
𝛼

(𝑓(𝑥) − 𝑓(𝑥
0
)) = Γ(1 + 𝑎)(𝑓(𝑥) − 𝑓(𝑥

0
)) and the

Gamma function is defined by Γ(𝑡) = ∫

+∞

0

𝑥
𝑡−1

𝑒
−𝑥

𝑑𝑥.

If there exists 𝑓
((𝑘+1)𝛼)

(𝑥) =

𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐷
𝛼

𝑥
⋅ ⋅ ⋅ 𝐷
𝛼

𝑥
𝑓(𝑥) for any 𝑥 ∈

𝐼 ⊆ R, then one denoted 𝑓 ∈ 𝐷
(𝑘+1)𝛼

(𝐼), where 𝑘 = 0, 1, 2, . . ..

Definition 5 (see [13]). Let 𝑓 ∈ 𝐶
𝛼
[𝑎, 𝑏]. Then the local

fractional integral of the function 𝑓 of order 𝛼 is defined by

𝑎
𝐼
(𝛼)

𝑏
𝑓 =

1

Γ (1 + 𝑎)

∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=

1

Γ (1 + 𝑎)

lim
Δ𝑡→0

𝑁

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)

𝛼

,

(7)

with Δ𝑡
𝑗
= 𝑡
𝑗+1

−𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . . , Δ𝑡

𝑁
−1}, and

[𝑡
𝑗
, 𝑡
𝑗
+ 1], 𝑗 = 0, . . . , 𝑁 − 1, where 𝑡

0
= 𝑎 < 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑖
<

⋅ ⋅ ⋅ < 𝑡
𝑁

= 𝑏 is a partition of the interval [𝑎, 𝑏].

Lemma 6 (see [13]). Suppose that 𝑓, 𝑔 ∈ 𝐶
𝛼
[𝑎, 𝑏] and 𝑓, 𝑔 ∈

𝐷
𝛼
(𝑎, 𝑏). If lim

𝑥→𝑥0
𝑓(𝑥) = 0

𝛼, lim
𝑥→𝑥0

𝑔(𝑥) = 0
𝛼 and

𝑔
(𝛼)

(𝑥) ̸= 0
𝛼. Suppose that lim

𝑥→𝑥0
(𝑓
(𝛼)

(𝑥)/𝑔
(𝛼)

(𝑥)) = 𝐴
𝛼,

and then

lim
𝑥→𝑥0

𝑓 (𝑥)

𝑔 (𝑥)

= 𝐴
𝛼

. (8)

Lemma 7 (see [13]). Suppose that 𝑓(𝑥) ∈ 𝐶
𝛼
[𝑎, 𝑏]; then

𝑑
𝛼

(
𝑎
𝐼
(𝛼)

𝑥
𝑓)

𝑑𝑥
𝛼

= 𝑓 (𝑥) , 𝑎 < 𝑥 < 𝑏.
(9)

3. Generalized 𝑠-Convexity Functions

The convexity of functions plays a significant role in many
fields. In this section, let us introduce twokinds of generalized
𝑠-convex functions on fractal sets. And then, we study the
properties of the two kinds of generalized 𝑠-convex functions.

Definition 8. Let R
+
= [0, +∞). A function 𝑓 : R

+
→ R𝛼 is

said to be generalized 𝑠-convex (0 < 𝑠 < 1) in the first sense,
if

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) ≤ 𝜆

𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) , (10)

for all 𝑢, V ∈ R
+
and all 𝜆

1
, 𝜆
2

≥ 0 with 𝜆
𝑠

1
+ 𝜆
𝑠

2
= 1. One

denotes this by 𝑓 ∈ 𝐺𝐾
1

𝑠
.

Definition 9. A function 𝑓 : R
+

→ R𝛼 is said to be gener-
alized 𝑠-convex (0 < 𝑠 < 1) in the second sense, if

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) ≤ 𝜆

𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) , (11)

for all 𝑢, V ∈ R
+
and all 𝜆

1
, 𝜆
2

≥ 0 with 𝜆
1
+ 𝜆
2

= 1. One
denotes this by 𝑓 ∈ 𝐺𝐾

2

𝑠
.

Note that, when 𝑠 = 1, the generalized 𝑠-convex functions
in both senses are the generalized convex functions; see [14].

Theorem 10. Let 0 < 𝑠 < 1.

(a) If 𝑓 ∈ 𝐺𝐾
1

𝑠
, then 𝑓 is nondecreasing on (0, +∞) and

𝑓 (0
+

) = lim
𝑢→0

+

𝑓 (𝑢) ≤ 𝑓 (0) . (12)

(b) If 𝑓 ∈ 𝐺𝐾
2

𝑠
, then 𝑓 is nonnegative on [0, +∞).
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Proof. (a) Since 𝑓 ∈ 𝐺𝐾
1

𝑠
, we have, for 𝑢 > 0 and 𝜆 ∈ [0, 1],

𝑓 [(𝜆
1/𝑠

+ (1 − 𝜆)
1/𝑠

) 𝑢]

≤ 𝜆
𝛼

𝑓 (𝑢) + (1 − 𝜆)
𝛼

𝑓 (𝑢) = 𝑓 (𝑢) .

(13)

The function

ℎ (𝜆) = 𝜆
1/𝑠

+ (1 − 𝜆)
1/𝑠 (14)

is continuous on [0, 1], decreasing on [0, 1/2], and increasing
on [1/2, 1] and ℎ([0, 1]) = [ℎ(1/2), ℎ(1)] = [2

1−1/𝑠

, 1]. This
yields that

𝑓 (𝑡𝑢) ≤ 𝑓 (𝑢) , (15)

for 𝑢 > 0 and 𝑡 ∈ [2
1−1/𝑠

, 1]. If 𝑡 ∈ [2
2(1−1/𝑠)

, 1], then 𝑡
1/2

∈

[2
1−1/𝑠

, 1]. Therefore, by the fact that (15) holds, we get

𝑓 (𝑡𝑢) = 𝑓 (𝑡
1/2

(𝑡
1/2

𝑢)) ≤ 𝑓 (𝑡
1/2

𝑢) ≤ 𝑓 (𝑢) , (16)

for all 𝑢 > 0. So we can obtain that

𝑓 (𝑡𝑢) ≤ 𝑓 (𝑢) , ∀𝑢 > 0, 𝑡 ∈ (0, 1] . (17)

So, taking 0 < 𝑢 < V, we get

𝑓 (𝑢) = 𝑓((

𝑢

V
) V) ≤ 𝑓 (V) , (18)

which means that 𝑓 is nondecreasing on (0, +∞).
As for the second part, for 𝑢 > 0 and 𝜆

1
, 𝜆
2

≥ 0 with
𝜆
𝑠

1
+ 𝜆
𝑠

2
= 1, we have

𝑓 (𝜆
1
𝑢) = 𝑓 (𝜆

1
𝑢 + 𝜆
2
0) ≤ 𝜆

𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (0) . (19)

And taking 𝑢 → 0
+, we get

lim
𝑢→0

+

𝑓 (𝑢) = lim
𝑢→0

+

𝑓 (𝜆
1
𝑢) ≤ 𝜆

𝑠𝛼

1
lim
𝑢→0

+

𝑓 (𝑢) + 𝜆
𝑠𝛼

2
𝑓 (0) .

(20)

So,

lim
𝑢→0

+

𝑓 (𝑢) ≤ 𝑓 (0) . (21)

(b) For 𝑓 ∈ 𝐺𝐾
2

𝑠
, we can get that, for 𝑢 ∈ R

+
,

𝑓 (𝑢) = 𝑓(

𝑢

2

+

𝑢

2

) ≤

𝑓 (𝑢)

2
𝑠𝛼

+

𝑓 (𝑢)

2
𝑠𝛼

= 2
(1−𝑠)𝛼

𝑓 (𝑢) . (22)

So, (21−𝑠−1)
𝛼

𝑓(𝑢) ≥ 0
𝛼.This means that𝑓(𝑢) ≥ 0

𝛼, since
0 < 𝑠 < 1.

Remark 11. The above results do not hold, in general, in the
case of generalized convex functions, that is, when 𝑠 = 1,
because a generalized convex function, 𝑓 : R

+
→ R𝛼, need

not be either nondecreasing or nonnegative.

Remark 12. If 0 < 𝑠 < 1, then the function 𝑓 ∈ 𝐺𝐾
1

𝑠
is

nondecreasing on (0, +∞) but not necessarily on [0, +∞).

Function 𝐹 : R2 → R𝛼 is called to be generalized convex
in each variable, if

𝐹 (𝜆
1
𝑢 + 𝜆
2
V, 𝜆
1
𝑟 + 𝜆
2
𝑡) ≤ 𝜆

𝛼

1
𝐹 (𝑢, 𝑟) + 𝜆

𝛼

2
𝐹 (V, 𝑡) . (23)

For all (𝑢, 𝑟), (V, 𝑡) ∈ R2 and 𝜆
1
, 𝜆
2
∈ [0, 1] with 𝜆

1
+ 𝜆
2
= 1.

Theorem 13. Let 0 < 𝑠 < 1. If 𝑓, 𝑔 : R → R and 𝑓, 𝑔 ∈ 𝐾
1

𝑠

and if𝐹 : R2 → R𝛼 is a generalized convex and nondecreasing
function in each variable, then the function ℎ : R

+
→ R𝛼

defined by

ℎ (𝑢) = 𝐹 (𝑓 (𝑢) , 𝑔 (𝑢)) (24)

is in 𝐺𝐾
1

𝑠
. In particular, if 𝑓, 𝑔 ∈ 𝐾

1

𝑠
, then 𝑓

𝛼

+ 𝑔
𝛼,

max{𝑓𝛼, 𝑔𝛼} ∈ 𝐺𝐾
1

𝑠
.

Proof. If 𝑢, V ∈ R
+
, then for all 𝜆

1
, 𝜆
2
≥ 0 with 𝜆

𝑠

1
+ 𝜆
𝑠

2
= 1,

ℎ (𝜆
1
𝑢 + 𝜆
2
V)

= 𝐹 (𝑓 (𝜆
1
𝑢 + 𝜆
2
V) , 𝑔 (𝜆

1
𝑢 + 𝜆
2
V))

≤ 𝐹 (𝜆
𝑠

1
𝑓 (𝑢) + 𝜆

𝑠

2
𝑓 (V) , 𝜆𝑠

1
𝑔 (𝑢) + 𝜆

𝑠

2
𝑔 (V))

≤ 𝜆
𝑠𝛼

1
𝐹 (𝑓 (𝑢) , 𝑔 (𝑢)) + 𝜆

𝑠𝛼

2
𝐹 (𝑓 (V) , 𝑔 (V))

= 𝜆
𝑠𝛼

1
ℎ (𝑢) + 𝜆

𝑠𝛼

2
ℎ (V) .

(25)

Thus, ℎ ∈ 𝐺𝐾
1

𝑠
.

Moreover, since 𝐹(𝑢, V) = 𝑢
𝛼

+ V𝛼, 𝐹(𝑢, V) = max{𝑢𝛼, V𝛼}
are nondecreasing generalized convex functions on 𝑅

2, so
they yield particular cases of our theorem.

Let us pay attention to the situation when the condition
𝜆
𝑠

1
+𝜆
𝑠

2
= 1 (𝜆

1
+𝜆
2
= 1) in the definition of𝐺𝐾

1

𝑠
(𝐺𝐾
2

𝑠
) can be

equivalently replaced by the condition 𝜆
𝑠

1
+𝜆
𝑠

2
≤ 1 (𝜆

1
+𝜆
2
≤

1).

Theorem 14. (a) Let 𝑓 ∈ 𝐺𝐾
1

𝑠
. Then inequality (10) holds for

all 𝑢, V ∈ 𝑅
+
and all 𝜆

1
, 𝜆
2
≥ 0 with 𝜆

𝑠

1
+ 𝜆
𝑠

2
< 1 if and only if

𝑓(0) ≤ 0
𝛼.

(b) Let𝑓 ∈ 𝐺𝐾
2

𝑠
.Then inequality (11) holds for all 𝑢, V ∈ 𝑅

+

and all 𝜆
1
, 𝜆
2
≥ 0 with 𝜆

1
+ 𝜆
2
< 1 if and only if 𝑓(0) = 0

𝛼.

Proof. (a) Necessity is obvious by taking 𝑢 = V = 0 and 𝜆
1
=

𝜆
2
= 0. Let us show the sufficiency.
Assume that 𝑢, V ∈ R

+
and 𝜆

1
, 𝜆
2

≥ 0 with 0 < 𝜆
3

=

𝜆
𝑠

1
+ 𝜆
𝑠

2
< 1. Put 𝑎 = 𝜆

1
𝜆
−1/𝑠

3
and 𝑏 = 𝜆

2
𝜆
−1/𝑠

3
. Then 𝑎

𝑠

+ 𝑏
𝑠

=

𝜆
𝑠

1
/𝜆
3
+ 𝜆
𝑠

2
/𝜆
3
= 1 and

𝑓 (𝜆
1
𝑢 + 𝜆
2
V)

= 𝑓 (𝑎𝜆
1/𝑠

3
𝑢 + 𝑏𝜆

1/𝑠

3
V)

≤ 𝑎
𝑠𝛼

𝑓 (𝜆
1/𝑠

3
𝑢) + 𝑏

𝑠𝛼

𝑓 (𝜆
1/𝑠

3
V)
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= 𝑎
𝑠𝛼

𝑓 [𝜆
1/𝑠

3
𝑢 + (1 − 𝜆

3
)
1/𝑠

0]

+ 𝑏
𝑠𝛼

𝑓 [𝜆
1/𝑠

3
V + (1 − 𝜆

3
)
1/𝑠

0]

≤ 𝑎
𝑠𝛼

[𝜆
𝛼

3
𝑓 (𝑢) + (1 − 𝜆

3
)
𝛼

𝑓 (0)]

+ 𝑏
𝑠𝛼

[𝜆
𝛼

3
𝑓 (V) + (1 − 𝜆

3
)
𝛼

𝑓 (0)]

= 𝑎
𝑠𝛼

𝜆
𝛼

3
𝑓 (𝑢) + 𝑏

𝑠𝛼

𝜆
𝛼

3
𝑓 (V) + (1 − 𝜆

3
)
𝛼

𝑓 (0)

≤ 𝜆
𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(26)

(b) Necessity. Taking 𝑢 = V = 𝜆
1

= 𝜆
2

= 0, we obtain
𝑓(0) ≤ 0

𝛼. And using Theorem 10(b), we get 𝑓(0) ≥ 0
𝛼.

Therefore 𝑓(0) = 0
𝛼.

Sufficiency. Let 𝑢, V ∈ R
+
and 𝜆

1
, 𝜆
2
≥ 0 with 0 < 𝜆

3
=

𝜆
1
+𝜆
2
< 1. Put 𝑎 = 𝜆

1
/𝜆
3
and 𝑏 = 𝜆

2
/𝜆
3
, and then 𝑎+𝑏 = 1.

So,

𝑓 (𝜆
1
𝑢 + 𝜆
2
V)

= 𝑓 (𝑎𝜆
3
𝑢 + 𝑏𝜆

3
V)

≤ 𝑎
𝑠𝛼

𝑓 (𝜆
3
𝑢) + 𝑏

𝑠𝛼

𝑓 (𝜆
3
V)

= 𝑎
𝑠𝛼

𝑓 [𝜆
3
𝑢 + (1 − 𝜆

3
) 0]

+ 𝑏
𝑠𝛼

𝑓 [𝜆
3
V + (1 − 𝜆

3
) 0]

≤ 𝑎
𝑠𝛼

[𝜆
𝑠𝛼

3
𝑓 (𝑢) + (1 − 𝜆

3
)
𝑠𝛼

𝑓 (0)]

+ 𝑏
𝑠𝛼

[𝜆
𝑠𝛼

3
𝑓 (V) + (1 − 𝜆

3
)
𝑠𝛼

𝑓 (0)]

= 𝑎
𝑠𝛼

𝜆
𝑠𝛼

3
𝑓 (𝑢) + 𝑏

𝑠𝛼

𝜆
𝑠𝛼

3
𝑓 (V)

+ (1 − 𝜆
3
)
𝑠𝛼

𝑓 (0)

= 𝜆
𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(27)

Theorem 15. (a) Let 0 < 𝑠 ≤ 1. If 𝑓 ∈ 𝐺𝐾
2

𝑠
and 𝑓(0) = 0

𝛼,
then 𝑓 ∈ 𝐺𝐾

1

𝑠
.

(b) Let 0 < 𝑠
1
≤ 𝑠
2
≤ 1. If 𝑓 ∈ 𝐺𝐾

2

𝑠2

and 𝑓(0) = 0
𝛼, then

𝑓 ∈ 𝐺𝐾
2

𝑠1

.
(c) Let 0 < 𝑠

1
≤ 𝑠
2
≤ 1. If 𝑓 ∈ 𝐺𝐾

1

𝑠2

and 𝑓(0) ≤ 0
𝛼, then

𝑓 ∈ 𝐺𝐾
1

𝑠1

.

Proof. (a)Assume that𝑓 ∈ 𝐺𝐾
2

𝑠
and𝑓(0) = 0

𝛼. Let𝜆
1
, 𝜆
2
≥ 0

with 𝜆
𝑠

1
+ 𝜆
𝑠

2
= 1, and we have 𝜆

1
+ 𝜆
2
≤ 𝜆
𝑠

1
+ 𝜆
𝑠

2
= 1. From

Theorem 14(b), we can get

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) ≤ 𝜆

𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) , (28)

for 𝑢, V ∈ R
+
, and then 𝑓 ∈ 𝐺𝐾

1

𝑠
.

(b) Assume that 𝑓 ∈ 𝐺𝐾
2

𝑠2

, 𝑢, V ∈ R
+
, and 𝜆

1
, 𝜆
2
≥ 0 with

𝜆
1
+ 𝜆
2
= 1. Then we have

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) ≤ 𝜆

𝑠2𝛼

1
𝑓 (𝑢) + 𝜆

𝑠2𝛼

2
𝑓 (V)

≤ 𝜆
𝑠1𝛼

1
𝑓 (𝑢) + 𝜆

𝑠1𝛼

2
𝑓 (V) .

(29)

So 𝑓 ∈ 𝐺𝐾
2

𝑠1

.
(c) Assume that 𝑓 ∈ 𝐺𝐾

1

𝑠2

, 𝑢, V ∈ 𝑅
+
, and 𝜆

1
, 𝜆
2
≥ 0 with

𝜆
𝑠1

1
+ 𝜆
𝑠1

2
= 1. Then 𝜆

𝑠2

1
+ 𝜆
𝑠2

2
≤ 𝜆
𝑠1

1
+ 𝜆
𝑠1

2
= 1. Thus, according

toTheorem 14(a), we have

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) ≤ 𝜆

𝑠2𝛼

1
𝑓 (𝑢) + 𝜆

𝑠2𝛼

2
𝑓 (V)

≤ 𝜆
𝑠1𝛼

1
𝑓 (𝑢) + 𝜆

𝑠1𝛼

2
𝑓 (V) .

(30)

So, 𝑓 ∈ 𝐺𝐾
1

𝑠1

.

Theorem 16. Let 0 < 𝑠 < 1 and 𝑝 : R
+

→ R𝛼
+
be a nonde-

creasing function. Then the function 𝑓 defined for 𝑢 ∈ R
+
by

𝑓 (𝑢) = 𝑢
(𝑠/(1−𝑠))𝛼

𝑝 (𝑢) (31)

belongs to 𝐺𝐾
1

𝑠
.

Proof. Let V ≥ 𝑢 ≥ 0 and 𝜆
1
, 𝜆
2
≥ 0 with 𝜆

𝑠

1
+ 𝜆
𝑠

2
= 1. We

consider two cases.

Case I. It is easy to see that 𝑓 is a nondecreasing function. Let
𝜆
1
𝑢 + 𝜆
2
V ≤ 𝑢, and then

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) ≤ 𝑓 (𝑢) = (𝜆

𝑠𝛼

1
+ 𝜆
𝑠𝛼

2
) 𝑓 (𝑢)

≤ 𝜆
𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(32)

Case II. Let 𝜆
1
𝑢 + 𝜆

2
V > 𝑢, and then 𝜆

2
V > (1 − 𝜆

1
)𝑢. So,

𝜆
2
> 0 and 𝜆

1
≤ 𝜆
𝑠

1
. Thus,

𝜆
1
− 𝜆
𝑠+1

1
≤ 𝜆
𝑠

1
− 𝜆
𝑠+1

1
; (33)

that is,

𝜆
1

(1 − 𝜆
1
)

≤

𝜆
𝑠

1

(1 − 𝜆
𝑠

1
)

=

(1 − 𝜆
𝑠

2
)

𝜆
𝑠

2

,

𝜆
1
𝜆
2

(1 − 𝜆
1
)

≤ 𝜆
1−𝑠

2
− 𝜆
2
.

(34)

Thus, we can get that

𝜆
1
𝑢 + 𝜆
2
V ≤ (𝜆

1
+ 𝜆
2
) V ≤ (𝜆

𝑠

1
+ 𝜆
𝑠

2
) V = V,

𝜆
1
𝑢 + 𝜆
2
V ≤

𝜆
1
𝜆
2
V

(1 − 𝜆
1
)

+ 𝜆
2
V

≤ (𝜆
1−𝑠

2
− 𝜆
2
) V + 𝜆

2
V = 𝜆
1−𝑠

2
V.

(35)

Then,

(𝜆
1
𝑢 + 𝜆
2
V)𝑠/(1−𝑠) ≤ 𝜆

𝑠

2
V𝑠/(1−𝑠). (36)
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We obtain

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) = (𝜆

1
𝑢 + 𝜆
2
V)(𝑠/(1−𝑠))𝛼𝑝 (𝜆

1
𝑢 + 𝜆
2
V)

≤ 𝜆
𝑠𝛼

2
V(𝑠/(1−𝑠))𝛼𝑝 (V)

= 𝜆
𝑠𝛼

2
𝑓 (V) ≤ 𝜆

𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(37)

Theorem 17. (a) Let 𝑓 ∈ 𝐺𝐾
1

𝑠1

and 𝑔 ∈ 𝐾
1

𝑠2

, where 0 < 𝑠
1
,

𝑠
2
≤ 1. If 𝑓 is a nondecreasing function and 𝑔 is a nonnegative

function such that 𝑓(0) ≤ 0
𝛼 and 𝑔(0) = 0, then the

composition 𝑓 ∘ 𝑔 of 𝑓 with 𝑔 belongs to 𝐺𝐾
1

𝑠
, where 𝑠 = 𝑠

1
𝑠
2
.

(b) Let 𝑓 ∈ 𝐺𝐾
1

𝑠1

and 𝑔 ∈ 𝐺𝐾
1

𝑠2

, where 0 < 𝑠
1
, 𝑠
2

≤ 1.
Assume that 0 < 𝑠

1
, 𝑠
2

< 1. If 𝑓 and 𝑔 are nonnegative
functions such that either 𝑓(0) = 0

𝛼 and 𝑔(0
+

) = 𝑔(0), or
𝑔(0) = 0

𝛼 and 𝑓(0
+

) = 𝑓(0), then the product 𝑓𝑔 of 𝑓 and 𝑔

belongs to 𝐺𝐾
1

𝑠
, where 𝑠 = min{𝑠

1
, 𝑠
2
}.

Proof. (a) Let 𝑢, V ∈ R
+
, 𝜆
1
, 𝜆
2
≥ 0 with 𝜆

𝑠

1
+ 𝜆
𝑠

2
= 1, where

𝑠 = 𝑠
1
𝑠
2
. Since 𝜆

𝑠𝑖

1
+ 𝜆
𝑠𝑖

2
≤ 𝜆
𝑠1𝑠2

1
+ 𝜆
𝑠1𝑠2

2
= 1 for 𝑖 = 1, 2, then

according to Theorem 3(a) in [3] and Theorem 14(a) in the
paper, we have

𝑓 ∘ 𝑔 (𝜆
1
𝑢 + 𝜆
2
V)

= 𝑓 (𝑔 (𝜆
1
𝑢 + 𝜆
2
V))

≤ 𝑓 (𝜆
𝑠2

1
𝑔 (𝑢) + 𝜆

𝑠2

2
𝑔 (V))

≤ 𝜆
𝑠1𝑠2𝛼

1
𝑓 (𝑔 (𝑢)) + 𝜆

𝑠1𝑠2𝛼

2
𝑓 (𝑔 (V))

= 𝜆
𝑠𝛼

1
𝑓 ∘ 𝑔 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 ∘ 𝑔 (V)

(38)

which means that 𝑓 ∘ 𝑔 ∈ 𝐺𝐾
1

𝑠
.

(b) According to Theorem 10(a), 𝑓, 𝑔 are nondecreasing
on (0, +∞).

So,

(𝑓 (𝑢) − 𝑓 (V)) (𝑔 (V) − 𝑔 (𝑢)) ≤ 0
𝛼

, (39)

or, equivalently,

𝑓 (𝑢) 𝑔 (V) + 𝑓 (V) 𝑔 (𝑢) ≤ 𝑓 (𝑢) 𝑔 (𝑢) + 𝑓 (V) 𝑔 (V) , (40)

for all V > 𝑢 > 0.
If V > 𝑢 = 0, then the inequality is still true because 𝑓, 𝑔

are nonnegative and either 𝑓(0) = 0
𝛼 and 𝑔(0

+

) = 𝑔(0) or
𝑔(0) = 0

𝛼 and 𝑓(0
+

) = 𝑓(0).
Now let 𝑢, V ∈ R

+
and 𝜆

1
, 𝜆
2
≥ 0 with 𝜆

𝑠

1
+ 𝜆
𝑠

2
= 1, where

𝑠 = min{𝑠
1
, 𝑠
2
}. Then 𝜆

𝑠𝑖

1
+ 𝜆
𝑠𝑖

2
≤ 𝜆
𝑠

1
+ 𝜆
𝑠

2
= 1 for 𝑖 = 1, 2. And

byTheorem 14(a), we have

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) 𝑔 (𝜆

1
𝑢 + 𝜆
2
V)

≤ (𝜆
𝑠1𝛼

1
𝑓 (𝑢) + 𝜆

𝑠1𝛼

2
𝑓 (V))

× (𝜆
𝑠2𝛼

1
𝑔 (𝑢) + 𝜆

𝑠2𝛼

2
𝑔 (V))

= 𝜆
(𝑠1+𝑠2)𝛼

1
𝑓 (𝑢) 𝑔 (𝑢) + 𝜆

𝑠1𝛼

1
𝜆
𝑠2𝛼

2
𝑓 (𝑢) 𝑔 (V)

+ 𝜆
𝑠2𝛼

1
𝜆
𝑠1𝛼

2
𝑓 (V) 𝑔 (𝑢) + 𝜆

(𝑠1+𝑠2)𝛼

2
𝑓 (V) 𝑔 (V)

≤ 𝜆
2𝑠𝛼

1
𝑓 (𝑢) 𝑔 (𝑢)

+ 𝜆
𝑠𝛼

1
𝜆
𝑠𝛼

2
(𝑓 (𝑢) 𝑔 (V) + 𝑓 (V) 𝑔 (𝑢))

+ 𝜆
2𝑠𝛼

2
𝑓 (V) 𝑔 (V)

≤ 𝜆
2𝑠𝛼

1
𝑓 (𝑢) 𝑔 (𝑢)

+ 𝜆
𝑠𝛼

1
𝜆
𝑠𝛼

2
(𝑓 (𝑢) 𝑔 (𝑢) + 𝑓 (V) 𝑔 (V))

+ 𝜆
2𝑠𝛼

2
𝑓 (V) 𝑔 (V)

= 𝜆
𝑠𝛼

1
𝑓 (𝑢) 𝑔 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) 𝑔 (V) ,

(41)

which means that 𝑓𝑔 ∈ 𝐺𝐾
1

𝑠
.

Remark 18. From the above proof, we can get that if 𝑓 is a
nondecreasing function in𝐺𝐾

2

𝑠
and𝑔 is a nonnegative convex

function on [0, +∞), then the composition 𝑓 ∘ 𝑔 of 𝑓 with 𝑔

belongs to 𝐺𝐾
2

𝑠
.

Remark 19. Generalized convex functions on [0, +∞) need
not be monotonic. However, if 𝑓 and 𝑔 are nonnegative,
generalized convex and either both are nondecreasing or both
are nonincreasing on [0, +∞), then the product 𝑓𝑔 is also a
generalized convex function.

Let 𝑓 : R
+

→ R
+
be a continuous function. Then 𝑓 is

said to be a 𝜑-function if 𝑓(0) = 0 and 𝑓 is nondecreasing
onR
+
. Similarly, we can define the 𝜑-type function on fractal

sets as follows. A function𝑓 : R
+

→ R𝛼
+
is said to be a𝜑-type

function if 𝑓(0) = 0
𝛼 and 𝑓 ∈ 𝐶

𝛼
(R
+
) is nondecreasing.

Corollary 20. IfΦ is a generalized convex𝜑-type function and
𝑔 ∈ 𝐾

1

𝑠
is a 𝜑-function, then the composition Φ ∘ 𝑔 belongs to

𝐺𝐾
1

𝑠
. In particular, the 𝜑-type function ℎ(𝑢) = Φ(𝑢

𝑠

) belongs
to 𝐺𝐾

1

𝑠
.

Corollary 21. If Φ is a convex 𝜑-function and 𝑓 ∈ 𝐺𝐾
2

𝑠
is a

𝜑-type function, then the composition 𝑓 ∘ Φ belongs to 𝐺𝐾
2

𝑠
.

In particular, the 𝜑-type function ℎ(𝑢) = [Φ(𝑢)]
𝑠𝛼 belongs to

𝐺𝐾
2

𝑠
.

Theorem 22. If 0 < 𝑠 < 1 and 𝑓 ∈ 𝐺𝐾
1

𝑠
is a 𝜑-type function,

then there exists a generalized convex 𝜑-type function Φ such
that

𝑓 (2
−1/𝑠

𝑢) ≤ Φ (𝑢
𝑠

) ≤ 𝑓 (𝑢) , (42)

for all 𝑢 ≥ 0.

Proof. By the generalized 𝑠-convexity of the function 𝑓 and
by 𝑓(0) = 0

𝛼, we obtain 𝑓(𝜆
1
𝑢) ≤ 𝜆

𝑠𝛼

1
𝑓(𝑢) for all 𝑢 ≥ 0 and

all 𝜆
1
∈ [0, 1].
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Assume now that V > 𝑢 > 0. Then

𝑓 (𝑢
1/𝑠

) ≤ 𝑓((

𝑢

V
)

1/𝑠

V1/𝑠) ≤ (

𝑢
𝛼

V𝛼
)𝑓 (V1/𝑠) ; (43)

that is,

𝑓 (𝑢
1/𝑠

)

𝑢
𝛼

≤

𝑓 (V1/𝑠)
V𝛼

.
(44)

Inequality (44) means that the function 𝑓(𝑢
1/𝑠

)/𝑢
𝛼 is a

nondecreasing function on (0, +∞). And, since 𝑓 is a 𝜑-type
function, thus 𝑓 is local fractional continuous [0, +∞).

Define

Φ (𝑢) =

{
{

{
{

{

0
𝛼

, 𝑢 = 0,

Γ(1 + 𝛼)
0
𝐼
(𝛼)

𝑢
(

𝑓(𝑡
1/𝑠

)

𝑡
𝛼

) , 𝑢 > 0.

(45)

From Lemmas 6 and 7, it is easy to see that Φ is a
generalized convex 𝜑-type function and

Φ(𝑢
𝑠

) = Γ(1 + 𝛼)
0
𝐼
(𝛼)

𝑢
𝑠 (

𝑓(𝑡
1/𝑠

)

𝑡
𝛼

)

≤ (

𝑓((𝑢
𝑠

)
1/𝑠

)

𝑢
𝑠𝛼

)𝑢
𝑠𝛼

= 𝑓 (𝑢) .

(46)

Moreover,

Φ(𝑢
𝑠

) ≥ Γ(1 + 𝛼)
(𝑢
𝑠
/2)

𝐼
(𝛼)

𝑢
𝑠 (

𝑓(𝑡
1/𝑠

)

𝑡
𝛼

)

≥

(𝑓((𝑢
𝑠

/2)
1/𝑠

) 2
𝛼

𝑢
−𝑠𝛼

) 𝑢
𝑠𝛼

2
𝛼

= 𝑓 (2
−1/𝑠

𝑢) .

(47)

Therefore,

𝑓 (2
−1/𝑠

𝑢) ≤ Φ (𝑢
𝑠

) ≤ 𝑓 (𝑢) , (48)

for all 𝑢 ≥ 0.

4. Applications

Based on the properties of the two kinds of generalized 𝑠-
convex functions in the above section, some applications are
given.

Example 1. Let 0 < 𝑠 < 1, and 𝑎
𝛼

, 𝑏
𝛼

, 𝑐
𝛼

∈ R𝛼. For 𝑢 ∈ R
+
,

define

𝑓 (𝑢) = {

𝑎
𝛼

, 𝑢 = 0,

𝑏
𝛼

𝑢
𝑠𝛼

+ 𝑐
𝛼

, 𝑢 > 0.

(49)

We have the following conclusions.

(i) If 𝑏𝛼 ≥ 0
𝛼 and 𝑐

𝛼

≤ 𝑎
𝛼, then 𝑓 ∈ 𝐺𝐾

1

𝑠
.

(ii) If 𝑏𝛼 ≥ 0
𝛼 and 𝑐

𝛼

< 𝑎
𝛼, then 𝑓 is nondecreasing on

(0, +∞) but not on [0, +∞).

(iii) If 𝑏𝛼 ≥ 0
𝛼 and 0

𝛼

≤ 𝑐
𝛼

≤ 𝑎
𝛼, then 𝑓 ∈ 𝐺𝐾

2

𝑠
.

(iv) If 𝑏𝛼 > 0
𝛼 and 𝑐

𝛼

< 0
𝛼, then 𝑓 ∉ 𝐺𝐾

2

𝑠
.

Proof. (i) Let 𝜆
1
, 𝜆
2
≥ 0with 𝜆

𝑠

1
+𝜆
𝑠

2
= 1. Then, there are two

nontrivial cases.

Case I. Let 𝑢, V > 0. Then 𝜆
1
𝑢 + 𝜆
2
V > 0.

Thus,

𝑓 (𝜆
1
𝑢 + 𝜆
2
V) = 𝑏

𝛼

(𝜆
1
𝑢 + 𝜆
2
V)𝑠𝛼 + 𝑐

𝛼

≤ 𝑏
𝛼

(𝜆
𝑠𝛼

1
𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼

2
V𝑠𝛼) + 𝑐

𝛼

= 𝑏
𝛼

(𝜆
𝑠𝛼

1
𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼

2
V𝑠𝛼) + 𝑐

𝛼

(𝜆
𝑠𝛼

1
+ 𝜆
𝑠𝛼

2
)

= 𝜆
𝑠𝛼

1
(𝑏
𝛼

𝑢
𝑠𝛼

+ 𝑐
𝛼

) + 𝜆
𝑠𝛼

2
(𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼

)

= 𝜆
𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(50)

Case II. Let V > 𝑢 = 0. We need only to consider 𝜆
2
> 0.

Thus, we have

𝑓 (𝜆
1
0 + 𝜆
2
V) = 𝑓 (𝜆

2
V)

= 𝑏
𝛼

𝜆
𝑠𝛼

2
V𝑠𝛼 + 𝑐

𝛼

= 𝑏
𝛼

𝜆
𝑠𝛼

2
V𝑠𝛼 + 𝑐

𝛼

(𝜆
𝑠𝛼

1
+ 𝜆
𝑠𝛼

2
)

= 𝜆
𝑠𝛼

1
𝑐
𝛼

+ 𝜆
𝑠𝛼

2
(𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼

)

= 𝜆
𝑠𝛼

1
𝑐
𝛼

+ 𝜆
𝑠𝛼

2
𝑓 (V)

≤ 𝜆
𝑠𝛼

1
𝑎
𝛼

+ 𝜆
𝑠𝛼

2
𝑓 (V)

= 𝜆
𝑠𝛼

1
𝑓 (0) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(51)

So, 𝑓 ∈ 𝐺𝐾
1

𝑠
.

(ii) FromTheorem 10, we can see that property (ii) is true.
(iii) Let𝜆

1
, 𝜆
2
≥ 0with𝜆

1
+𝜆
2
= 1. Similar to the estimate

of (i), there are also two cases.
Let V, V > 0. Then 𝜆

1
𝑢 + 𝜆
2
V > 0,

Thus,

𝑓 (𝜆
1
𝑢 + 𝜆
2
V)

= 𝑏
𝛼

(𝜆
1
𝑢 + 𝜆
2
V)𝑠𝛼 + 𝑐

𝛼

< 𝑏
𝛼

(𝜆
𝑠𝛼

1
𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼

2
V𝑠𝛼) + 𝑐

𝛼

(𝜆
𝛼

1
+ 𝜆
𝛼

2
)

≤ 𝑏
𝛼

(𝜆
𝑠𝛼

1
𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼

2
V𝑠𝛼) + 𝑐

𝛼

(𝜆
𝑠𝛼

1
+ 𝜆
𝑠𝛼

2
)

= 𝜆
𝑠𝛼

1
(𝑏
𝛼

𝑢
𝑠𝛼

+ 𝑐
𝛼

) + 𝜆
𝑠𝛼

2
(𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼

)

≤ 𝜆
𝑠𝛼

1
𝑓 (𝑢) + 𝜆

𝑠𝛼

2
𝑓 (V) .

(52)

Let V > 𝑢 = 0. We need only to consider 𝜆
2
> 0.
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Thus, we have

𝑓 (𝜆
1
0 + 𝜆
2
V) = 𝑓 (𝜆

2
V)

= 𝑏
𝛼

𝜆
𝑠𝛼

2
V𝑠𝛼 + 𝑐

𝛼

(𝜆
𝛼

1
+ 𝜆
𝛼

2
)

< 𝑏
𝛼

𝜆
𝑠𝛼

2
V𝑠𝛼 + 𝑐

𝛼

(𝜆
𝑠𝛼

1
+ 𝜆
𝑠𝛼

2
)

= 𝜆
𝑠𝛼

2
(𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼

) + 𝑐
𝛼

𝜆
𝑠𝛼

1

≤ 𝜆
𝑠𝛼

2
(𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼

) + 𝑎
𝛼

𝜆
𝑠𝛼

1

= 𝜆
𝑠𝛼

2
𝑓 (V) + 𝜆

𝑠𝛼

1
𝑓 (0) .

(53)

So, 𝑓 ∈ 𝐺𝐾
2

𝑠
.

(iv) Assume that 𝑓 ∈ 𝐺𝐾
2

𝑠
, and then 𝑓 is nonnegative

on (0,∞). On the other hand, we can take 𝑢
1

> 0, 𝑐
1

< 0

such that 𝑓(𝑢
1
) = 𝑏

𝛼

𝑢
𝑠𝛼

1
+ 𝑐
𝛼

1
< 0
𝛼, which contradict the

assumption.

Example 2. Let 0 < 𝑠 < 1 and 𝑘 > 1. For 𝑢 ∈ 𝑅
+
, define

𝑓 (𝑢) = {

𝑢
(𝑠/(1−𝑠))𝛼

, 0 ≤ 𝑢 ≤ 1,

𝑘
𝛼

𝑢
(𝑠/(1−𝑠))𝛼

, 𝑢 > 1.

(54)

The function 𝑓 is nonnegative, not local fractional continu-
ous at 𝑢 = 1 and belongs to 𝐺𝐾

1

𝑠
but not to 𝐺𝐾

2

𝑠
.

Proof. From Theorem 16, we have that 𝑓 ∈ 𝐺𝐾
1

𝑠
. In the

following, let us show that 𝑓 is not in 𝐺𝐾
2

𝑠
.

Take an arbitrary 𝑎 > 1 and put 𝑢 = 1. Consider all V > 1

such that 𝜆
1
𝑢 + 𝜆

2
V = 𝜆

1
+ 𝜆
2
V = 𝑎, where 𝜆

1
, 𝜆
2
≥ 0 and

𝜆
1
+ 𝜆
2
= 1.

If 𝑓 ∈ 𝐺𝐾
2

𝑠
, it must be

𝑘
𝛼

𝑎
(𝑠/(1−𝑠))𝛼

≤ 𝜆
𝑠𝛼

1
+ 𝑘
𝛼

(1 − 𝜆
1
)
𝑠𝛼

[

(𝑎 − 𝜆
1
)

(1 − 𝜆
1
)

]

(𝑠/(1−𝑠))𝛼

,

(55)

for all 𝑎 > 1 and all 0 ≤ 𝜆
1
≤ 1.

Define the function

𝑓
𝜆1

(𝑎) = 𝜆
𝑠𝛼

1
+ 𝑘
𝛼

(1 − 𝜆
1
)
𝑠𝛼

[

(𝑎 − 𝜆
1
)

(1 − 𝜆
1
)

]

(𝑠/(1−𝑠))𝛼

− 𝑘
𝛼

𝑎
(𝑠/(1−𝑠))𝛼

.

(56)

Then the function is local fractional continuous on the
(𝜆
1
,∞) and

𝑔 (𝜆
1
) = 𝑓
𝜆1
(1) = 𝜆

𝑠𝛼

1
+ 𝑘
𝛼

(1 − 𝜆
1
)
𝑠𝛼

− 𝑘
𝛼

. (57)

It is easy to see that 𝑔 is local fractional continuous on
[0, 1] and 𝑔(1) = 1

𝛼

− 𝑘
𝛼

< 0
𝛼. So there is a number 𝜆

10
, 0 <

𝜆
10

< 1, such that 𝑔(𝜆
10
) = 𝑓
𝜆10

(1) < 0
𝛼. The local fractional

continuity of 𝑓
𝜆10

yields that 𝑓
𝜆10

(𝑎) < 0
𝛼 for a certain 𝑎 > 1,

that is, inequality (55) does not hold, which means that 𝑓 ∉

𝐺𝐾
2

𝑠
.

5. Conclusion

In the paper, we introduce the definitions of two kinds of
generalized 𝑠-convex function on fractal sets and study the
properties of these generalized 𝑠-convex functions.When𝛼 =

1, these results are the classical situation.
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