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We consider a modified Leslie-Gower predator-prey model with the Beddington-DeAngelis functional response and feedback
controls as follows: �̇� (𝑡) = 𝑥 (𝑡) (𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑥 (𝑡) − 𝑐 (𝑡) 𝑦 (𝑡) / (𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)) − 𝑒

1
(𝑡) 𝑢 (𝑡)), �̇� (𝑡) = −𝑑

1
(𝑡) 𝑢 (𝑡) +

𝑝

1
(𝑡) 𝑥 (𝑡 − 𝜏), ̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑎

2
(𝑡) − 𝑟 (𝑡) 𝑦 (𝑡) / (𝑥 (𝑡) + 𝑘 (𝑡)) − 𝑒

2
(𝑡) ] (𝑡)), and ]̇(𝑡) = −𝑑

2
(𝑡)](𝑡)+𝑝

2
(𝑡)𝑦(𝑡−𝜏). Sufficient conditions

which guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are
obtained.

1. Introduction

In recent years, themodified predator-prey systemswith peri-
odic or almost periodic coefficients have been studied exten-
sively.

Leslie [1] proposed the famous Leslie predator-prey sys-
tem as follows:

�̇� (𝑡) = 𝑥 (𝑎 − 𝑏𝑥) − 𝑝 (𝑥) 𝑦,

̇𝑦 = 𝑦 (𝑒 − 𝑓

𝑦

𝑥

) ,

(1)

where 𝑥 and 𝑦 stand for the population of the prey and
the predator at time 𝑡, respectively, and 𝑝(𝑥) is the so-called
predator functional response to the prey. The term 𝑦/𝑥 is the
Leslie-Gower term which measures the loss in the predator
population due to rarity of its favorite food.

Global stability of the positive locally asymptotically
stable equilibrium in a class of predator-prey systems has
been introduced by Hsu and Huang [2], and the system is as
follows:

𝑑𝑥

𝑑𝑡

= 𝑟𝑥 (1 −

𝑥

𝑘

− 𝑦𝑝 (𝑥)) ,

𝑑𝑦

𝑑𝑥

= 𝑦 [𝑠 (1 −

ℎ𝑦

𝑠

)] ,

𝑥 (0) > 0, 𝑦 (0) > 0, 𝑟, 𝑠, 𝑘, ℎ > 0.

(2)

When the functional response 𝑝(𝑥) equals𝑚𝑥, then (2) turns
into a Leslie-Gower system [3].

On the other hand, the periodic solution (almost peri-
odic solution) and some other properties of Leslie-Gower
predator-prey models were studied (see [4–9]). In particular,
Zhang [10] discussed the almost periodic solution of a modi-
fied Leslie-Gower predator-preymodel with the Beddington-
DeAngelis function response as follows:

�̇� (𝑡) = 𝑥 (𝑡) (𝑟

1
(𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−

𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟

2
(𝑡) −

𝑑 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)

) ,

(3)

where 𝑥(𝑡) is the size of prey population and 𝑦(𝑡) is the size
of predator population.
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Stimulated by the above reasons, in this paper, we incor-
porate the feedback control into model (3) and consider the
following model:

�̇� (𝑡) = 𝑥 (𝑡) (𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−

𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

− 𝑒

1
(𝑡) 𝑢 (𝑡)) ,

�̇� (𝑡) = −𝑑

1
(𝑡) 𝑢 (𝑡) + 𝑝

1
(𝑡) 𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑎

2
(𝑡) −

𝑟 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)

− 𝑒

2
(𝑡) ] (𝑡)) ,

]̇ (𝑡) = −𝑑
2
(𝑡) ] (𝑡) + 𝑝

2
(𝑡) 𝑦 (𝑡 − 𝜏) ,

(4)

where 𝜏 > 0 and all the coefficients 𝑏(𝑡), 𝑐(𝑡), 𝑟(𝑡), 𝑘(𝑡),
𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝑎

𝑖
(𝑡), 𝑑
𝑖
(𝑡), 𝑝
𝑖
(𝑡), and 𝑒

𝑖
(𝑡) (𝑖 = 1, 2) are all

continuous, almost periodic functions on 𝑅.
Associated with (4), we consider a group of initial

conditions with the following form (we assume, without loss
of generality, that the initial time 𝑡

0
= 0):

𝑥 (𝑠) = 𝜙 (𝑠) ≥ 0, 𝑠 ∈ [−𝜏, 0] , 𝜙 (0) > 0,

𝑦 (𝑠) = 𝜑 (𝑠) ≥ 0, 𝑠 ∈ [−𝜏, 0] , 𝜑 (0) > 0,

𝑢 (0) > 0, ] (0) > 0.

(5)

Let 𝑓 be a continuous bounded function on 𝑅 and we set

𝑓

𝑙
= inf
𝑡∈𝑅

𝑓 (𝑡) , 𝑓

𝑢
= sup
𝑡∈𝑅

𝑓 (𝑡) . (6)

Throughout this paper, we assume that the coefficients of the
almost periodic system (4) satisfy

min
𝑖=1,2

{𝑏

𝑙
, 𝑐

𝑙
, 𝛼

𝑙
, 𝛽

𝑙
, 𝛾

𝑙
, 𝑟

𝑙
, 𝑘

𝑙
, 𝑎

𝑙

𝑖
, 𝑑

𝑙

𝑖
, 𝑝

𝑙

𝑖
, 𝑒

𝑙

𝑖
} > 0,

max
𝑖=1,2

{𝑏

𝑢
, 𝑐

𝑢
, 𝛼

𝑢
, 𝛽

𝑢
, 𝛾

𝑢
, 𝑟

𝑢
, 𝑘

𝑢
, 𝑎

𝑢

𝑖
, 𝑑

𝑢

𝑖
, 𝑝

𝑢

𝑖
, 𝑒

𝑢

𝑖
} < +∞.

(7)

By constructing a suitable Lyapunov functional, we obtain
some sufficient conditions for the existence of a globally
attractive positive almost periodic solution of system (4) with
initial conditions (5).

2. Permanence

In this section, we give some definitions and results that we
will use in the rest of the paper.

Lemma 1 (see [11]). If 𝑎 > 0, 𝑏 > 0, and �̇� ≥ (≤) 𝑥(𝑏 − 𝑎𝑥),
when 𝑡 ≥ 0 and 𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑏

𝑎

, (lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑏

𝑎

) . (8)

Lemma 2 (see [11]). If 𝑎 > 0, 𝑏 > 0, and �̇� ≥ (≤) 𝑏 − 𝑎𝑥, when
𝑡 ≥ 0 and 𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑏

𝑎

, (lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑏

𝑎

) . (9)

Set the following:

𝑀

1
=

𝑎

𝑢

1

𝑏

𝑙
, 𝐿

1
=

𝑝

𝑢

1
𝑀

1

𝑑

𝑙

1

,

𝑀

2
=

𝑎

𝑢

2
(𝑀

1
+ 𝑘

𝑢
)

𝑟

𝑙
, 𝐿

2
=

𝑝

𝑢

2
𝑀

2

𝑑

𝑙

2

,

𝑚

1
=

𝑎

𝑙

1
− 𝑐

𝑢
/𝑟

𝑙
− 𝑒

𝑢

1
𝐿

1

𝑏

𝑢
, 𝑙

1
=

𝑝

𝑙

1
𝑚

1

𝑑

𝑢

1

,

𝑚

2
=

1

𝑟

𝑢
(𝑎

𝑙

2
− 𝑒

𝑢

2
𝐿

2
) (𝑚

1
+ 𝑘

𝑙
) , 𝑙

2
=

𝑝

𝑙

2
𝑚

2

𝑑

𝑢

2

.

(10)

Theorem 3. Suppose that system (4) with initial condition (5)
satisfies the following condition:

𝑎

𝑙

1
−

𝑐

𝑢

𝑟

𝑙
− 𝑒

𝑢

1
𝐿

1
> 0, 𝑎

𝑙

2
− 𝑒

𝑢

2
𝐿

2
> 0.

(11)

Then system (4) is permanent; that is, any positive solution
(𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡), ](𝑡))𝑇 of the system (4) satisfies

0 < 𝑚

1
≤ lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀

1
,

0 < 𝑙

1
≤ lim inf
𝑡→+∞

𝑢 (𝑡) ≤ lim sup
𝑡→+∞

𝑢 (𝑡) ≤ 𝐿

1
,

0 < 𝑚

2
≤ lim inf
𝑡→+∞

𝑦 (𝑡) ≤ lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑀

2
,

0 < 𝑙

2
≤ lim inf
𝑡→+∞

] (𝑡) ≤ lim sup
𝑡→+∞

] (𝑡) ≤ 𝐿
2
.

(12)

Proof. From the first equation of (4), we have the following:

�̇� (𝑡) ≤ 𝑥 (𝑡) (𝑎

𝑢

1
− 𝑏

𝑙
𝑥 (𝑡)) . (13)

Applying Lemma 1 to (13) leads to

lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑎

𝑢

1

𝑏

𝑙
= 𝑀

1
. (14)

From (14), we know that there exists an enough large 𝑇
1
> 0

such that

𝑥 (𝑡) ≤ 𝑀

1
, 𝑡 ≥ 𝑇

1
> 0, (15)

so there exists an enough large 𝑇
2
= 𝑇

1
+ 𝜏 such that

𝑥 (𝑡 − 𝜏) ≤ 𝑀

1
, 𝑡 ≥ 𝑇

2
> 0. (16)

It follows from (16) and the second equation of system (4)
that, for 𝑡 ≥ 𝑇

2
,

�̇� (𝑡) ≤ −𝑑

𝑙
𝑢 (𝑡) + 𝑝

𝑢

1
𝑀

1
.

(17)

Applying Lemma 2 to (17) leads to

lim sup
𝑡→+∞

𝑢 (𝑡) ≤

𝑝

𝑢

1
𝑀

1

𝑑

𝑙

1

= 𝐿

1
. (18)
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By using a similar argument as that in the proof of (14) and
(18), we can get the following:

lim sup
𝑡→+∞

𝑦 (𝑡) ≤

𝑎

𝑢

2
(𝑀

1
+ 𝑘

𝑢
)

𝑟

𝑙
= 𝑀

2
,

lim sup
𝑡→+∞

] (𝑡) ≤
𝑝

𝑢

2
𝑀

2

𝑑

𝑙

2

= 𝐿

2
.

(19)

From (18) and the first equation of system (4) we know

�̇� (𝑡) ≥ 𝑥 (𝑡) (𝑎

𝑙

1
−

𝑐

𝑢

𝛾

𝑙
− 𝑒

𝑢

1
𝐿

1
− 𝑏

𝑢
𝑥 (𝑡)) . (20)

Applying Lemma 1 and (11) to the above leads to

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑎

𝑙

1
− 𝑐

𝑢
/𝑟

𝑙
− 𝑒

𝑢

1
𝐿

1

𝑏

𝑢
= 𝑚

1
.

(21)

Therefore, we know that there exists an enough large 𝑇
3
such

that

𝑥 (𝑡) ≥ 𝑚

1
, 𝑡 ≥ 𝑇

3
> 0. (22)

From the second equation of system (4) we have the follow-
ing:

�̇� (𝑡) ≥ −𝑑

𝑢

1
𝑢 (𝑡) + 𝑝

𝑙

1
𝑚

1
.

(23)

Applying Lemma 2 to the above, we obtain the following:

lim inf
𝑡→+∞

𝑢 (𝑡) ≥

𝑝

𝑙

1
𝑚

1

𝑑

𝑢

1

= 𝑙

1
.

(24)

By using a similarmethod as that in the proof of (21) and (24),
it follows that

lim inf
𝑡→+∞

𝑦 (𝑡) ≥

1

𝑟

𝑢
(𝑎

𝑙

2
− 𝑒

𝑢

2
𝐿

2
) (𝑚

1
+ 𝑘

𝑙
) = 𝑚

2

lim inf
𝑡→+∞

] (𝑡) ≥
𝑝

𝑙

2
𝑚

2

𝑑

𝑢

2

= 𝑙

2
.

(25)

This completes the proof.

We denote by Ω the set of all solutions 𝑧(𝑡) = (𝑥(𝑡), 𝑢(𝑡),
𝑦(𝑡), ](𝑡))𝑇 of system (4) satisfying 𝑚

1
≤ 𝑥(𝑡) ≤ 𝑀

1
, 𝑙
1
≤

𝑢(𝑡) ≤ 𝐿

1
,𝑚
2
≤ 𝑦(𝑡) ≤ 𝑀

2
, and 𝑙

2
≤ ](𝑡) ≤ 𝐿

2
for all 𝑡 > 0.

Theorem 4. Consider the following: Ω ̸= 0.

Proof. From the properties of almost periodic function there
exists a sequence {𝑡

𝑛
} with 𝑡

𝑛
→ +∞ as 𝑛 → +∞ such that

𝑎

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑎

𝑖
(𝑡) , 𝑑

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑑

𝑖
(𝑡) ,

𝑒

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑒

𝑖
(𝑡) , 𝑝

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑝

𝑖
(𝑡) ,

(𝑖 = 1, 2) ,

𝑏 (𝑡 + 𝑡

𝑛
) → 𝑏 (𝑡) , 𝑐 (𝑡 + 𝑡

𝑛
) → 𝑐 (𝑡) ,

𝑟 (𝑡 + 𝑡

𝑛
) → 𝑟 (𝑡) , 𝑘 (𝑡 + 𝑡

𝑛
) → 𝑘 (𝑡) ,

𝛼 (𝑡 + 𝑡

𝑛
) → 𝛼 (𝑡) , 𝛽 (𝑡 + 𝑡

𝑛
) → 𝛽 (𝑡) ,

𝛾 (𝑡 + 𝑡

𝑛
) → 𝛾 (𝑡) ,

(26)

as 𝑛 → ∞ uniformly on 𝑅. Let 𝑧(𝑡) = (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡), ](𝑡))𝑇
be a solution of system (4) satisfying 𝑚

1
≤ 𝑥(𝑡) ≤ 𝑀

1
,

𝑙

1
≤ 𝑢(𝑡) ≤ 𝐿

1
, 𝑚
2
≤ 𝑦(𝑡) ≤ 𝑀

2
, and 𝑙

2
≤ ](𝑡) ≤ 𝐿

2
for

𝑡 > 𝑇. Clearly, the sequence 𝑧(𝑡 + 𝑡
𝑛
) is uniformly bounded

and equicontinuous on each bounded subset of 𝑅. Therefore,
by the Arzelà-Ascoli theorem, there exists a subsequence
𝑧(𝑡 + 𝑡

𝑘
) which converges to a continuous function 𝑧∗(𝑡) =

(𝑥

∗
(𝑡), 𝑢

∗
(𝑡), 𝑦

∗
(𝑡), ]∗(𝑡))𝑇 as 𝑘 → +∞ uniformly on each

bounded subset of 𝑅. Let 𝑇
0
∈ 𝑅 be given. We may assume

that 𝑡
𝑘
+ 𝑇

0
≥ 𝑇 for all 𝑘. For 𝑡 ≥ 0, we have the following:

𝑥 (𝑡 + 𝑡

𝑘
+ 𝑇

0
)

= 𝑥 (𝑡

𝑘
+ 𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑥 (𝑠 + 𝑡

𝑘
) (𝑎

1
(𝑠 + 𝑡

𝑘
) − 𝑏 (𝑠 + 𝑡

𝑘
) 𝑥 (𝑠 + 𝑡

𝑘
)

− (𝑐 (𝑠 + 𝑡

𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
))

× (𝛼 (𝑠 + 𝑡

𝑘
) + 𝛽 (𝑠 + 𝑡

𝑘
) 𝑥 (𝑠 + 𝑡

𝑘
)

+ 𝛾 (𝑠 + 𝑡

𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
))

−1

− 𝑒

1
(𝑠 + 𝑡

𝑘
) 𝑢 (𝑠 + 𝑡

𝑘
)) 𝑑𝑠,

𝑢 (𝑡 + 𝑡

𝑘
+ 𝑇

0
)

= 𝑢 (𝑡

𝑘
+ 𝑇

0
)

− ∫

𝑡+𝑇0

𝑇0

𝑑

1
(𝑠 + 𝑡

𝑘
) 𝑢 (𝑠 + 𝑡

𝑘
) + 𝑝

1
(𝑠 + 𝑡

𝑘
) 𝑥 (𝑠 + 𝑡

𝑘
− 𝜏) 𝑑𝑠,

𝑦 (𝑡 + 𝑡

𝑘
+ 𝑇

0
)

= 𝑦 (𝑡

𝑘
+ 𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑦 (𝑠 + 𝑡

𝑘
) (𝑎

2
(𝑠 + 𝑡

𝑘
) −

𝑟 (𝑠 + 𝑡

𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
)

𝑥 (𝑠 + 𝑡

𝑘
) + 𝑘 (𝑠 + 𝑡

𝑘
)

− 𝑒

2
(𝑠 + 𝑡

𝑘
) ] (𝑠 + 𝑡

𝑘
) ) 𝑑𝑠,

]̇ (𝑡 + 𝑡
𝑘
+ 𝑇

0
)

= ] (𝑡
𝑘
+ 𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

−𝑑

2
(𝑠 + 𝑡

𝑘
) ] (𝑠 + 𝑡

𝑘
) + 𝑝

2
(𝑠 + 𝑡

𝑘
) 𝑦 (𝑠 + 𝑡

𝑘
− 𝜏) 𝑑𝑠.

(27)
Applying Lebesgue’s dominated convergence theorem and
letting 𝑘 → +∞ in (27), we obtain the following:
𝑥

∗
(𝑡 + 𝑇

0
)

= 𝑥

∗
(𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑥

∗
(𝑠) (𝑎

1
(𝑠) − 𝑏 (𝑠) 𝑥

∗
(𝑠)

−

𝑐 (𝑠) 𝑦

∗
(𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥

∗
(𝑠) + 𝛾 (𝑠) 𝑦

∗
(𝑠)

− 𝑒

1
(𝑠) 𝑢

∗
(𝑠)) 𝑑𝑠,
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𝑢

∗
(𝑡 + 𝑇

0
) = 𝑢

∗
(𝑇

0
)

− ∫

𝑡+𝑇0

𝑇0

𝑑

1
(𝑠) 𝑢

∗
(𝑠) + 𝑝

1
(𝑠) 𝑥

∗
(𝑠 − 𝜏) 𝑑𝑠,

𝑦

∗
(𝑡 + 𝑇

0
) = 𝑦

∗
(𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

𝑦

∗
(𝑠) (𝑎

2
(𝑠) −

𝑟 (𝑠) 𝑦

∗
(𝑠)

𝑥

∗
(𝑠) + 𝑘 (𝑠)

− 𝑒

2
(𝑠) ]∗ (𝑠)) 𝑑𝑠,

]∗ (𝑡 + 𝑇
0
) = ]∗ (𝑇

0
)

+ ∫

𝑡+𝑇0

𝑇0

−𝑑

2
(𝑠) ]∗ (𝑠) + 𝑝

2
(𝑠) 𝑦

∗
(𝑠 − 𝜏) 𝑑𝑠.

(28)

Since 𝑇
0
∈ 𝑅 is arbitrarily given, 𝑧∗(𝑡) = (𝑥∗(𝑡), 𝑢∗(𝑡), 𝑦∗(𝑡),

]∗(𝑡))𝑇 is a solution of system (4) on 𝑅. It is clear that 𝑚
1
≤

𝑥

∗
(𝑡) ≤ 𝑀

1
, 𝑙
1
≤ 𝑢

∗
(𝑡) ≤ 𝐿

1
, 𝑚
2
≤ 𝑦

∗
(𝑡) ≤ 𝑀

2
, 𝑙
2
≤ ]∗(𝑡) ≤

𝐿

2
for 𝑡 ∈ 𝑅. Thus 𝑧∗(𝑡) ∈ Ω. This completes the proof.

3. Existence of a Unique Almost
Periodic Solution

Now let us state several definitions and lemmas which will be
useful in the proving of the main result of this section.

Definition 5 (see [12]). A function 𝑓(𝑡, 𝑥), where 𝑓 is an
𝑚-vector, 𝑡 is a real scalar, and 𝑥 is an 𝑛-vector, is said to be
almost periodic in 𝑡 uniformly with respect to 𝑥 ∈ 𝑆 ⊂ 𝑅𝑛, if
𝑓(𝑡, 𝑥) is continuous in 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑆 and if, for any 𝜀 > 0,
there is a constant 𝑙(𝜀) > 0 such that in any interval of length
𝑙(𝜀) there exists a 𝜍 such that the inequality









𝑓 (𝑡 + 𝜍, 𝑥) − 𝑓 (𝑡, 𝑥)









< 𝜀 (29)

is satisfied for all 𝑡 ∈ (−∞, +∞), 𝑥 ∈ 𝑆.The number 𝜍 is called
an 𝜀-𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 number of 𝑓(𝑡, 𝑥).

Definition 6 (see [12]). A function 𝑓 : 𝑅 → 𝑅 is said to
be asymptotically almost periodic function, if there exists an
almost periodic function 𝑞(𝑡) and a continuous function 𝑟(𝑡)
such that 𝑓(𝑡) = 𝑞(𝑡) + 𝑟(𝑡), 𝑡 ∈ 𝑅 and 𝑟(𝑡) → 0 as 𝑡 → ∞.

Lemma 7 (see [13]). Let 𝑓 be a nonnegative, integral, and
uniformly continuous function defined on [0, +∞); then
lim
𝑡→+∞

𝑓(𝑡) = 0.

Theorem 8. Suppose that all conditions of Theorem 3 hold;
furthermore assume that

(H) Θ > 0, where Θ = min{Θ
1
, Θ

2
, Θ

3
, Θ

4
},

Θ

1
= 𝑏

𝑙
𝑚

1
− 𝑝

𝑢

1
𝑀

1
−

𝑐

𝑢
𝛽

𝑢
𝑀

1
𝑀

2

(𝛼

𝑙
+ 𝛽

𝑙
𝑚

1
+ 𝛾

𝑙
𝑚

2
)

2

−

𝑟

𝑢
𝑀

1
𝑀

2

(𝑚

1
+ 𝑘

𝑙
)

2
> 0,

Θ

2
=

𝛾

𝑙

𝑀

1
+ 𝑘

𝑢
−

𝑐

𝑙
𝑚

2

𝛼

𝑢
+ 𝛽

𝑢
𝑀

1
+ 𝛾

𝑢
𝑀

2

−

𝑐

𝑢
𝛾

𝑢
𝑀

2

2

(𝛼

𝑙
+ 𝛽

𝑙
𝑚

1
+ 𝛾

𝑙
𝑚

2
)

2
− 𝑝

𝑢

2
𝑀

2
> 0,

Θ

3
= 𝑑

𝑙

1
− 𝑒

𝑢

1
, Θ

4
= 𝑑

𝑙

2
− 𝑒

𝑢

2
.

(30)

Then system (4)with initial conditions (5) is globally attractive.

Proof. Let 𝑥(𝑡) = 𝑒

𝑥1(𝑡), 𝑦(𝑡) = 𝑒

𝑦1(𝑡), and then system (4) is
transformed into
�̇�

1
(𝑡) = 𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑒

𝑥1(𝑡)

−

𝑐 (𝑡) 𝑒

𝑦1(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥1(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦1(𝑡)
− 𝑒

1
(𝑡) 𝑢 (𝑡) ,

�̇� (𝑡) = −𝑑

1
(𝑡) 𝑢 (𝑡) + 𝑝

1
(𝑡) 𝑒

𝑥1(𝑡−𝜏)
,

̇𝑦

1
(𝑡) = 𝑎

2
(𝑡) −

𝑟 (𝑡) 𝑒

𝑦1(𝑡)

𝑒

𝑥1(𝑡)
+ 𝑘 (𝑡)

− 𝑒

2
(𝑡) ] (𝑡) ,

]̇ (𝑡) = −𝑑
2
(𝑡) ] (𝑡) + 𝑝

2
(𝑡) 𝑒

𝑦1(𝑡−𝜏)
.

(31)

Suppose that 𝑧
1
(𝑡) = (𝑥

1
(𝑡), 𝑢(𝑡), 𝑦

1
(𝑡), ](𝑡))𝑇 and 𝑧∗

1
(𝑡) =

(𝑥

∗

1
(𝑡), 𝑢

∗
(𝑡), 𝑦

∗

1
(𝑡), ]∗(𝑡))𝑇 are any two positive solutions of

(31).
Let 𝑉(𝑡) = 𝑉

1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡), where

𝑉

1
(𝑡) =









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









,

𝑉

2
(𝑡) =









𝑢 (𝑡) − 𝑢

∗
(𝑡)









+ 𝑝

𝑢

1
∫

𝑡

𝑡−𝜏













𝑒

𝑥1(𝑡)
− 𝑒

𝑥
∗

1
(𝑡)












𝑑𝑠,

𝑉

3
(𝑡) =









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









,

𝑉

4
(𝑡) =









] (𝑡) − ]∗ (𝑡)


+ 𝑝

𝑢

2
∫

𝑡

𝑡−𝜏













𝑒

𝑦1(𝑡)
− 𝑒

𝑦
∗

1
(𝑡)












𝑑𝑠.

(32)

Calculating the right derivative 𝐷+𝑉
1
(𝑡) of 𝑉

1
(𝑡) along the

solution of (31), we have the following:

𝐷

+
𝑉

1
(𝑡) = sgn (𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡))

× [−𝑏 (𝑡) (𝑒

𝑥1(𝑡)
− 𝑒

𝑥
∗

1
(𝑡)
)

−

𝑐 (𝑡) 𝑒

𝑦1(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥1(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

+

𝑐 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

− 𝑒

1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡)) ]
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= sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

× [−𝑏 (𝑡) 𝑒

𝜉(𝑡)
(𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡))

−

𝑐 (𝑡) 𝑒

𝑦1(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥1(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

+

𝑐 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥1(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

−

𝑐 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥1(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

+

𝑐 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

− 𝑒

1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡)) ]

≤ sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

× [−𝑏

𝑙
𝑚

1
(𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡))]

−

𝑐 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥1(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦1(𝑡)

⋅ 𝑒

𝜂(𝑡)
(𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡))

+ (𝑐 (𝑡) 𝑒

𝑦
∗

1
(𝑡)
[𝛽 (𝑡) (𝑒

𝑥1(𝑡)
− 𝑒

𝑥
∗

1
(𝑡)
)

+ 𝛾 (𝑡) (𝑒

𝑦1(𝑡)
− 𝑒

𝑦
∗

1
(𝑡)
)])

× ((𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)
)

× (𝛼 (𝑡) + 𝛽 (𝑡) 𝑒

𝑥
∗

1
(𝑡)
+ 𝛾 (𝑡) 𝑒

𝑦
∗

1
(𝑡)
))

−1

− 𝑒

1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡))

≤ (

𝑐

𝑢
𝛽

𝑢
𝑀

1
𝑀

2

(𝛼

𝑙
+ 𝛽

𝑙
𝑚

1
+ 𝛾

𝑙
𝑚

2
)

2
− 𝑏

𝑙
𝑚

1
)

×









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









+ (

𝑐

𝑢
𝛾

𝑢
𝑀

2

2

(𝛼

𝑙
+ 𝛽

𝑙
𝑚

1
+ 𝛾

𝑙
𝑚

2
)

2

+

𝑐

𝑙
𝑚

2

𝛼

𝑢
+ 𝛽

𝑢
𝑀

1
+ 𝛾

𝑢
𝑀

2

)

×









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









+ 𝑒

𝑢

1









𝑢 (𝑡) − 𝑢

∗
(𝑡)









.

(33)

Further, it follows that

𝐷

+
𝑉

2
(𝑡) = sgn (𝑢 (𝑡) − 𝑢∗ (𝑡))

× ( − 𝑑

1
(𝑡) (𝑢 (𝑡) − 𝑢

∗
(𝑡))

+ 𝑝

1
(𝑡) (𝑒

𝑥1(𝑡−𝜏)
− 𝑒

𝑥
∗

1
(𝑡−𝜏)

)

+ 𝑝

𝑢

1
(𝑒

𝑥1(𝑡)
− 𝑒

𝑥
∗

1
(𝑡)
)

− 𝑝

1
(𝑡) (𝑒

𝑥1(𝑡−𝜏)
− 𝑒

𝑥
∗

1
(𝑡−𝜏)

))

≤ −𝑑

𝑙

1









𝑢 (𝑡) − 𝑢

∗
(𝑡)









+ 𝑝

𝑢

1
𝑀

1









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









,

𝐷

+
𝑉

3
(𝑡) = sgn (𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡))

× [−

𝑟 (𝑡) 𝑒

𝑦1(𝑡)

𝑒

𝑥1(𝑡)
+ 𝑘 (𝑡)

+

𝑟 (𝑡) 𝑒

𝑦
∗

1
(𝑡)

𝑒

𝑥
∗

1
(𝑡)
+ 𝑘 (𝑡)

−𝑒

2
(𝑡) (] (𝑡) − ]∗ (𝑡)) ]

≤ −

𝑟

𝑙
𝑚

2

𝑀

1
+ 𝑘

𝑢









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









+

𝑟

𝑢
𝑀

1
𝑀

1

(𝑚

1
+ 𝑘

𝑙
)

2









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









+ 𝑒

𝑢

2









] (𝑡) − ]∗ (𝑡)


,

𝐷

+
𝑉

4
(𝑡) ≤ − 𝑑

𝑙

2









] (𝑡) − ]∗ (𝑡)


+ 𝑝

𝑢

2
𝑀

2









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









.

(34)

Therefore, we have the following:

𝐷

+
𝑉 (𝑡)

= 𝐷

+
𝑉

1
(𝑇) + 𝐷

+
𝑉

2
(𝑇) + 𝐷

+
𝑉

3
(𝑇) + 𝐷

+
𝑉

4
(𝑇)

≤ −(𝑏

𝑙
𝑚

1
− 𝑝

𝑢

1
𝑀

1
−

𝑐

𝑢
𝛽

𝑢
𝑀

1
𝑀

2

(𝛼

𝑙
+ 𝛽

𝑙
𝑚

1
+ 𝛾

𝑙
𝑚

2
)

2
−

𝑟

𝑢
𝑀

1
𝑀

1

(𝑚

1
+ 𝑘

𝑙
)

2
)

×









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









− (

𝑟

𝑙
𝑚

2

𝑀

1
+ 𝑘

𝑢
−

𝑐

𝑙
𝑚

2

𝛼

𝑢
+ 𝛽

𝑢
𝑀

1
+ 𝛾

𝑢
𝑀

2

−

𝑐

𝑢
𝛾

𝑢
𝑀

2

2

(𝛼

𝑙
+ 𝛽

𝑙
𝑚

1
+ 𝛾

𝑙
𝑚

2
)

2
− 𝑝

𝑢

2
𝑀

2
)









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









− (𝑑

𝑙

1
− 𝑒

𝑢

1
)









𝑢 (𝑡) − 𝑢

∗
(𝑡)









− (𝑑

𝑙

2
− 𝑒

𝑢

2
)









] (𝑡) − ]∗ (𝑡)


≤ −Θ (









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









+









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









+









𝑢 (𝑡) − 𝑢

∗
(𝑡)









+









] (𝑡) − ]∗ (𝑡)


) .

(35)

Integrating the above inequality on internal [0, 𝑡], it follows
that, for 𝑡 ≥ 0,

𝑉 (𝑡) + Θ∫

𝑡

0









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









+









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









+









𝑢 (𝑡) − 𝑢

∗
(𝑡)









+









] (𝑡) − ]∗ (𝑡)


𝑑𝑠

≤ 𝑉 (0) < +∞.

(36)
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Then, for 𝑡 > 0, we obtain that

∫

𝑡

0









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









+









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









+









𝑢 (𝑡) − 𝑢

∗
(𝑡)









+









] (𝑡) − ]∗ (𝑡)


𝑑𝑠 ≤

𝑉 (0)

Θ

< +∞.

(37)

By Lemma 7, we obtain

lim
𝑡→+∞









𝑥

1
(𝑡) − 𝑥

∗

1
(𝑡)









= 0, lim
𝑡→+∞









𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡)









= 0,

lim
𝑡→+∞









𝑢 (𝑡) − 𝑢

∗
(𝑡)









= 0, lim
𝑡→+∞









] (𝑡) − ]∗ (𝑡)


= 0.

(38)

Then the solution of systems (4) and (5) is globally attractive.

Theorem 9. Suppose that all conditions of Theorem 8 hold;
then there exists a unique almost periodic solution of systems
(4) and (5).

Proof. According to Theorem 4, there exists a bounded pos-
itive solution𝑊(𝑡) = (𝑤

1
(𝑡), 𝑤

2
(𝑡), 𝑤

3
(𝑡), 𝑤

4
(𝑡))

𝑇 of (4) and
(5). Then there exists a sequence {𝑡

𝑘
}, 𝑡
𝑘
→ ∞ as 𝑘 → ∞,

such that (𝑤
1
(𝑡 + 𝑡



𝑘
), 𝑤

2
(𝑡 + 𝑡



𝑘
), 𝑤

3
(𝑡 + 𝑡



𝑘
), 𝑤

4
(𝑡 + 𝑡



𝑘
))

𝑇 is a
solution of the following system:

�̇� (𝑡) = 𝑥 (𝑡) (𝑎

1
(𝑡 + 𝑡



𝑘
) − 𝑏 (𝑡 + 𝑡



𝑘
) 𝑥 (𝑡)

−

𝑐 (𝑡 + 𝑡



𝑘
) 𝑦 (𝑡)

𝛼 (𝑡 + 𝑡



𝑘
) + 𝛽 (𝑡 + 𝑡



𝑘
) 𝑥 (𝑡) + 𝛾 (𝑡 + 𝑡



𝑘
) 𝑦 (𝑡)

− 𝑒

1
(𝑡 + 𝑡



𝑘
) 𝑢 (𝑡)) ,

�̇� (𝑡) = − 𝑑

1
(𝑡 + 𝑡



𝑘
) 𝑢 (𝑡) + 𝑝

1
(𝑡 + 𝑡



𝑘
) 𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑎

2
(𝑡 + 𝑡



𝑘
) −

𝑟 (𝑡 + 𝑡



𝑘
) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡 + 𝑡



𝑘
)

− 𝑒

2
(𝑡 + 𝑡



𝑘
) ] (𝑡) ) ,

]̇ (𝑡) = − 𝑑

2
(𝑡 + 𝑡



𝑘
) ] (𝑡) + 𝑝

2
(𝑡 + 𝑡



𝑘
) 𝑦 (𝑡 − 𝜏) .

(39)

According to Theorem 3, we get that not only {(𝑤

1
(𝑡 +

𝑡



𝑘
), 𝑤

2
(𝑡+𝑡



𝑘
), 𝑤

3
(𝑡+𝑡



𝑘
), 𝑤

4
(𝑡+𝑡



𝑘
))

𝑇
} but also {(�̇�

1
(𝑡+𝑡



𝑘
), �̇�

2
(𝑡+

𝑡



𝑘
), �̇�

3
(𝑡 + 𝑡



𝑘
), �̇�

4
(𝑡 + 𝑡



𝑘
))

𝑇
} are uniformly bounded and

equicontinuous. By Ascoli’s theorem there exists a uniformly
convergent subsequence 𝑤

𝑖
(𝑡 + 𝑡

𝑘
) ⊆ 𝑤

𝑖
(𝑡 + 𝑡



𝑘
)(𝑖 = 1, 2, 3, 4)

such that, for any 𝜀 > 0, there exists a 𝐾(𝜀) > 0 with the
property that if𝑚, 𝑘 ≥ 𝐾(𝜀), then









𝑤

𝑖
(𝑡 + 𝑡

𝑚
) − 𝑤

𝑖
(𝑡 + 𝑡

𝑘
)









< 𝜀, (𝑖 = 1, 2, 3, 4) . (40)

This is to say,𝑤
𝑖
(𝑡+𝑡

𝑘
) (𝑖 = 1, 2, 3, 4) are asymptotically almost

periodic functions; hence there exist four almost periodic

functions 𝑃
𝑖
(𝑡 + 𝑡

𝑘
) (𝑖 = 1, 2, 3, 4) and four continuous

functions 𝐹
𝑖
(𝑡 + 𝑡

𝑘
) (𝑖 = 1, 2, 3, 4) such that

𝑤

𝑖
(𝑡 + 𝑡

𝑘
) = 𝑃

𝑖
(𝑡 + 𝑡

𝑘
) + 𝐹

𝑖
(𝑡 + 𝑡

𝑘
) , 𝑡 ∈ 𝑅, 𝑖 = 1, 2, 3, 4,

(41)

where

lim
𝑘→+∞

𝑃

𝑖
(𝑡 + 𝑡

𝑘
) = 𝑃

𝑖
(𝑡) , lim

𝑘→+∞

𝐹

𝑖
(𝑡 + 𝑡

𝑘
) = 0,

𝑖 = 1, 2, 3, 4,

(42)

𝑃

𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) are an almost periodic function.
Therefore,

lim
𝑘→+∞

𝑤

𝑖
(𝑡 + 𝑡

𝑘
) = 𝑃

𝑖
(𝑡) , (𝑖 = 1, 2, 3, 4) . (43)

On the other hand,

lim
𝑘→+∞

�̇�

𝑖
(𝑡 + 𝑡

𝑘
) = lim
𝑘→+∞

lim
ℎ→0

𝑤

𝑖
(𝑡 + 𝑡

𝑘
+ ℎ) − 𝑤

𝑖
(𝑡 + 𝑡

𝑘
)

ℎ

= lim
ℎ→+∞

lim
𝑘→0

𝑤

𝑖
(𝑡 + 𝑡

𝑘
+ ℎ) − 𝑤

𝑖
(𝑡 + 𝑡

𝑘
)

ℎ

= lim
ℎ→0

𝑃

𝑖
(𝑡 + ℎ) − 𝑃

𝑖
(𝑡)

ℎ

, (𝑖 = 1, 2, 3, 4) .

(44)

So ̇

𝑃

𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) exist. Now we will prove that

(𝑃

1
(𝑡), 𝑃

2
(𝑡), 𝑃

3
(𝑡), 𝑃

4
(𝑡))

𝑇 is an almost periodic solution of
system (4).

From properties of almost periodic function, there exits a
sequence {𝑡

𝑛
}, {𝑡
𝑛
} → ∞ as 𝑛 → ∞, such that

𝑎

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑎

𝑖
(𝑡) , 𝑑

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑑

𝑖
(𝑡) ,

𝑒

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑒

𝑖
(𝑡) , 𝑝

𝑖
(𝑡 + 𝑡

𝑛
) → 𝑝

𝑖
(𝑡) ,

(𝑖 = 1, 2) ,

𝑏 (𝑡 + 𝑡

𝑛
) → 𝑏 (𝑡) , 𝑐 (𝑡 + 𝑡

𝑛
) → 𝑐 (𝑡) ,

𝑟 (𝑡 + 𝑡

𝑛
) → 𝑟 (𝑡) , 𝑘 (𝑡 + 𝑡

𝑛
) → 𝑘 (𝑡) ,

𝛼 (𝑡 + 𝑡

𝑛
) → 𝛼 (𝑡) , 𝛽 (𝑡 + 𝑡

𝑛
) → 𝛽 (𝑡) ,

𝛾 (𝑡 + 𝑡

𝑛
) → 𝛾 (𝑡) ,

(45)

as 𝑛 → ∞ uniformly on 𝑅.
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It is easy to know that 𝑤
𝑖
(𝑡 + 𝑡

𝑛
) → 𝑃

𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) as

𝑛 → ∞, and then we have the following:

̇

𝑃

1
(𝑡)

= lim
𝑛→+∞

�̇�

1
(𝑡 + 𝑡

𝑛
)

= lim
𝑛→+∞

[𝑤

1
(𝑡 + 𝑡

𝑛
) (𝑎

1
(𝑡 + 𝑡

𝑛
) − 𝑏 (𝑡 + 𝑡

𝑛
) 𝑤

1
(𝑡 + 𝑡

𝑛
)

− (𝑐 (𝑡 + 𝑡

𝑛
) 𝑤

3
(𝑡 + 𝑡

𝑛
))

× (𝛼 (𝑡 + 𝑡

𝑛
) + 𝛽 (𝑡 + 𝑡

𝑛
) 𝑤

1
(𝑡 + 𝑡

𝑛
)

+𝛾(𝑡 + 𝑡

𝑛
)𝑤

3
(𝑡 + 𝑡

𝑛
))

−1

−𝑒

1
(𝑡 + 𝑡

𝑛
) 𝑤

2
(𝑡 + 𝑡

𝑛
)) ]

= 𝑃

1
(𝑡) (𝑎

1
(𝑡) − 𝑏 (𝑡) 𝑃

1
(𝑡)

−

𝑐 (𝑡) 𝑃

3
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑃

1
(𝑡) + 𝛾 (𝑡) 𝑃

3
(𝑡)

− 𝑒

1
(𝑡) 𝑃

2
(𝑡)) .

(46)

By using a similar argument as that in the above, we have the
following:

̇

𝑃

2
(𝑡) = −𝑑

1
(𝑡) 𝑃

2
(𝑡) + 𝑝

1
(𝑡) 𝑃

1
(𝑡 − 𝜏) ,

̇

𝑃

3
(𝑡) = 𝑃

3
(𝑡) (𝑎

2
(𝑡) −

𝑟 (𝑡) 𝑃

3
(𝑡)

𝑃

1
(𝑡) + 𝑘 (𝑡)

− 𝑒

2
(𝑡) 𝑃

4
(𝑡)) ,

̇

𝑃

4
(𝑡) = −𝑑

2
(𝑡) 𝑃

4
(𝑡) + 𝑝

2
(𝑡) 𝑃

3
(𝑡 − 𝜏) .

(47)

This proves that 𝑃
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) is a nonnegative

almost periodic solution of systems (4) and (5); byTheorem 8,
it follows that there exists a globally asymptotically stable
nonnegative almost periodic solution of system (4).Theproof
is complete.

4. An Example

Consider the following system:

�̇� (𝑡) = 𝑥 (𝑡) (4 − 2𝑥 (𝑡) −

10𝑦 (𝑡)

2 + 20𝑥 (𝑡) + 20𝑦 (𝑡)

− 2𝑢 (𝑡)) ,

�̇� (𝑡) = −3𝑢 (𝑡) +

1

5

𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (

1

10

−

20𝑦 (𝑡)

𝑥 (𝑡) + 23

−

2

5

] (𝑡)) ,

]̇ (𝑡) = −2] (𝑡) + 2𝑦 (𝑡 − 𝜏) .
(48)

By a simple calculation, we check that all conditions in
Theorems 8 and 9 are fulfilled. Therefore, byTheorems 8 and
9, system (48) has a unique globally asymptotically stable
nonnegative almost periodic solution (see Figure 1).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

x

y

u

v

x
,y
,u
,�

Figure 1: Dynamic behavior of system (48) with the initial
(𝑥(0), 𝑦(0), 𝑢(0), V(0))𝑇 = (0.7, 1.5, 1.0, 1.1)

𝑇, for 𝜏 = 0, 𝑡 ∈ [0, 5].
From the figure, we could easily see that the solution (𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡),
V(𝑡))𝑇 is asymptotic to the unique almost periodic solution of the
system (48).
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