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The delay-dependent stochastic stability problem of Markovian jump systems with time-varying delays is investigated in this
paper. Though the Lyapunov-Krasovskii functional is general and simple, less conservative results are derived by using the convex
combination method, improvedWirtinger’s integral inequality, and a slack condition on Lyapunov matrix.The obtained results are
formulated in terms of linearmatrix inequalities (LMIs).Numerical examples are provided to verify the effectiveness and superiority
of the presented results.

1. Introduction

Markovian jump systems are a special class of stochastic
hybrid systems. Many dynamical systems subject to random
abrupt variations, such as mechanical systems, economics,
and systems with human operators, can be modeled by
Markovian jump systems [1]. Due to their extensive applica-
tions in many files, the analysis and synthesis of Markovian
jump systems have received much research attention and lots
of significant results have been reported; see, for example, [2–
8] and the references therein.

Time delay is an inherent characteristic of many dynamic
systems such as networked control systems, industrial sys-
tems, and process control systems. The systems with or
without time delays are convergentwhen time delays are close
to zero; otherwise, they may be divergent. In other words,
time delays can degrade the performance of systems designed
without considering the delays and can even destabilize
the systems. During the past few decades, considerable
attention has been paid to the stability analysis of time-
delay systems [9–16]. The existing stability criteria for linear
systems can be classified into two types: delay-independent
oneswhich are applicable to delays of arbitrary size and delay-
dependent ones which include information on the size of
delays. In general, delay-dependent stability criteria are less
conservative than delay-independent ones especially when
the size of the delay is small. Thus, considerable attention

has been paid to the delay-dependent stability criteria; see
[11–23], for example. As for delay-dependent stability, many
methods have been taken for deriving stability criteria, such
as free-weighting matrices methods [11], model transforma-
tion techniques [12, 13], convex combination methods [14–
17], delay decomposition approaches [18], multiple integral
approaches [19], and input-output approaches [20]. Recently,
the bounding techniques of the cross terms and integral terms
in the derivatives of the Lyapunov-Krasovskii functional
are widely investigated, such as improved Jensen’s integral
inequality [21], reciprocally convex approach [22, 23], and
improved Wirtinger’s integral inequality [24]. Some less
conservative stability results have been derived by using the
above techniques.

In this paper, we develop some new stability criteria
by using an improved Wirtinger’s integral inequality and
the convex combination method to deal with the cross
terms and integral terms in the derivatives of the Lyapunov-
Krasovskii functional. In addition, the positive definiteness of
some Lyapunov matrix is not required. The obtained results
can be applied to both slow and fast time-varying delays.
The numerical examples demonstrate the effectiveness and
superiority of the presented results.

Notation. Throughout this paper, (Ω, 𝐹, 𝑃) is a probability
space, Ω is the sample space, 𝐹 is the 𝜎-algebra of the sample
space, and 𝑃 is the probability measure on 𝐹. E{⋅} refers to
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the expectation operator with respect to some probability
measure 𝑃.𝐴 > 0 (<0) means𝐴 is a symmetric positive (neg-
ative) definite matrix and 𝐴−1 denotes the inverse of matrix
𝐴. 𝐴𝑇 represents the transpose of 𝐴. Sym(𝑀) stands for
𝑀 + 𝑀𝑇. The symbol ∗ in LMIs denotes the symmetric term
of the matrix. col{𝑋, 𝑌} represents a column vector formed
by 𝑋 and 𝑌. Identity matrix, of appropriate dimensions, will
be denoted by 𝐼. diag(⋅, ⋅) denotes a diagonal matrix. Ω(𝑖, 𝑗)

means the element in the 𝑖th row and 𝑗th column of the block
matrix Ω.

2. Problem Statement

Fix a probability space (Ω, 𝐹, 𝑃) and consider the following
Markovian jump systems:

�̇� (𝑡) = 𝐴 (𝑟
𝑡

) 𝑥 (𝑡) + 𝐴
𝑑

(𝑟
𝑡

) 𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑
2

, 0] ,
(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and 𝜙(𝑡) is a compatible
vector-valued initial function defined on [−𝑑

2

, 0]. {𝑟
𝑡

, 𝑡 ⩾ 0}

is a continuous-time Markovian process taking values in a
finite space 𝑆 = {1, 2, . . . , 𝑁}; 𝐴(𝑟

𝑡

) and 𝐴
𝑑

(𝑟
𝑡

)(𝑟
𝑡

= 𝑖, 𝑖 ∈ 𝑆)

are real constantmatrices with appropriate dimensionswhich
depend on 𝑟

𝑡

. The time delay 𝑑(𝑡) satisfies

0 < 𝑑
1

⩽ 𝑑 (𝑡) ⩽ 𝑑
2

, ̇𝑑 (𝑡) ⩽ 𝜇. (2)

The evolution of theMarkovian process {𝑟
𝑡

, 𝑡 ⩾ 0} is governed
by the following transition probability:

Pr {𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡

= 𝑖} = {
𝜋
𝑖𝑗

Δ + 𝑜 (Δ) , 𝑗 ̸= 𝑖,

1 + 𝜋
𝑖𝑖

Δ + 𝑜 (Δ) , 𝑗 = 𝑖,
(3)

where Δ > 0 and lim
Δ→0

(𝑜(Δ)/Δ) = 0; 𝜋
𝑖𝑗

⩾ 0 for 𝑖 ̸= 𝑗 is the
transition probability frommode 𝑖 at time 𝑡 to mode 𝑗 at time
𝑡 + Δ and 𝜋

𝑖𝑖

= −∑
𝑁

𝑗=1,𝑗 ̸=𝑖

𝜋
𝑖𝑗

.
For simplicity, when 𝑟

𝑡

= 𝑖, 𝑖 ∈ 𝑆, the matrices 𝐴(𝑟
𝑡

) and
𝐴
𝑑

(𝑟
𝑡

) are denoted by 𝐴
𝑖

and 𝐴
𝑑𝑖

, respectively.
The following definition and lemmas are needed in the

proof of our main results.

Definition 1 (see [2]). System (1) is stochastically stable, if, for
any initial state (𝑥

0

, 𝑟
0

), the following relation holds for any
initial condition (𝑥

0

, 𝑟
0

):

lim
𝑡→+∞

E {‖𝑥(𝑡)‖
2

| 𝑥
0

, 𝑟
0

} = 0. (4)

Lemma 2 (see [22]). Let 𝑓
1

, 𝑓
2

, . . . , 𝑓
𝑛

: R𝑚 → R have
positive values in an open subset D of R𝑚. Then, the recipro-
cally convex combination of 𝑓

𝑖

over D satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝑖

𝛼𝑖=1}

∑
𝑖

1

𝛼
𝑖

𝑓
𝑖

(𝑡) = ∑
𝑖

𝑓
𝑖

(𝑡) + max
𝑔𝑖,𝑗(𝑡)

∑
𝑖 ̸=𝑗

𝑔
𝑖,𝑗

(𝑡) (5)

subject to

{

{

{

𝑔
𝑖,𝑗

: R
𝑚

→ R, 𝑔
𝑗,𝑖

≜ 𝑔
𝑖,𝑗

, [

[

𝑓
𝑖

(𝑡) 𝑔
𝑖,𝑗

(𝑡)

𝑔
𝑖,𝑗

(𝑡) 𝑓
𝑗

(𝑡) ]

]

⩾ 0
}

}

}

. (6)

Lemma 3 (see [24]). If 𝜔(𝑦) is a differentiable function in
[𝑎, 𝑏] → R𝑛. Then for any given symmetric positive definite
matrix 𝑅 > 0, the following inequality holds:

∫
𝑏

𝑎

�̇�
𝑇

(𝑡) 𝑅�̇� (𝑡) 𝑑𝑡 ⩾
1

𝑏 − 𝑎
[
]
1

]
2

]

𝑇

�̃� [
]
1

]
2

] , (7)

where ]
1

= 𝜔(𝑏)−𝜔(𝑎), ]
2

= 𝜔(𝑏)+𝜔(𝑎)−(2/(𝑏−𝑎)) ∫
𝑏

𝑎

𝜔(𝑡)𝑑𝑡,
and �̃� = diag(𝑅, 3𝑅).

3. Improved Stability Criterion

In this section, we will present an improved stochastic stabil-
ity criterion in terms of LMIs by using Lyapunov-Krasovskii
functional method and convex combination technique.

Before stating the main results, some notations are given.
Let

𝑑
12

= 𝑑
2

− 𝑑
1

,

𝜁 (𝑡) = col{𝑥 (𝑡) , ∫
𝑡

𝑡−𝑑1

𝑥 (𝑠) d𝑠, ∫
𝑡−𝑑1

𝑡−𝑑2

𝑥 (𝑠) d𝑠} ,

𝜉 (𝑡) = col{𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑥 (𝑡 − 𝑑
1

) , 𝑥 (𝑡 − 𝑑
2

) ,

1

𝑑
1

∫
𝑡

𝑡−𝑑1

𝑥 (𝑠) d𝑠, 1

𝑑 (𝑡) − 𝑑
1

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

𝑥 (𝑠) d𝑠,

1

𝑑
2

− 𝑑 (𝑡)
∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

𝑥 (𝑠) d𝑠} ,

P
𝑖

= [

[

𝑃
11𝑖

𝑃
12

𝑃
13

∗ 𝑃
22

𝑃
23

∗ ∗ 𝑃
33

]

]

, (𝑖 ∈ 𝑆) ,

Γ
𝑇

1

= [

[

𝐼 0 0 0 0 0 0

0 0 0 0 𝑑
1

𝐼 0 0

0 0 0 0 0 (𝑑 (𝑡) − 𝑑
1

) 𝐼 (𝑑
2

− 𝑑 (𝑡)) 𝐼

]

]

,

𝑋 = [
𝑋
11

𝑋
12

𝑋
21

𝑃
22

] ,

Γ
2

= [

[

𝐴
𝑖

𝐴
𝑑𝑖

0 0 0 0 0

𝐼 0 −𝐼 0 0 0 0

0 0 𝐼 −𝐼 0 0 0

]

]

, (𝑖 ∈ 𝑆) .

(8)

Theorem 4. Given scalars 0 < 𝑑
1

< 𝑑
2

and 𝜇, the time-
varying delay system (1) is stochastically stable, if there exist
matrixP

𝑖

∈ R3𝑛×3𝑛; symmetric positive definite matrices 𝑅
1

∈

R𝑛×𝑛, 𝑅
2

∈ R𝑛×𝑛, 𝑄
1

∈ R𝑛×𝑛, 𝑄
2

∈ R𝑛×𝑛, 𝑄
3

∈ R𝑛×𝑛, and
𝑀 ∈ R𝑛×𝑛; and any matrices 𝑋 ∈ R𝑛×𝑛, 𝑁

𝑙

∈ R𝑛×𝑛, and
𝐺
𝑙

∈ R𝑛×𝑛 (𝑙 = 1, 2) such that, for all 𝑖 ∈ 𝑆,
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Ξ
1

=
[
[
[

[

𝑅
2

− 𝑀 0 𝑋
11

𝑋
12

∗ 3 (𝑅
2

− 𝑀) 𝑋
21

𝑋
22

∗ ∗ 𝑅
2

− 𝑀 0

∗ ∗ 0 3 (𝑅
2

− 𝑀)

]
]
]

]

> 0, (9)

Ξ
2𝑖

=

[
[
[
[
[
[
[

[

𝑃
11𝑖

+ 2𝑑
1

𝑅
1

+
2𝑑2
12

𝑑
1

+ 𝑑
2

𝑅
2

𝑃
12

− 2𝑅
1

𝑃
13

−
2𝑑
12

𝑑
1

+ 𝑑
2

𝑅
2

∗ 𝑃
22

+
1

𝑑
1

(𝑄
1

+ 2𝑅
1

) 𝑃
23

∗ ∗ 𝑃
33

+
1

𝑑
12

𝑄
2

+
2

𝑑
1

+ 𝑑
2

𝑅
2

]
]
]
]
]
]
]

]

> 0, (10)

Ξ
3𝑖

=

[
[
[
[
[
[
[

[

[Ω
1

]
5𝑛×5𝑛

[Ω
2

]
5𝑛×𝑛

[Ω
3

]
5𝑛×𝑛

[Ω
4

]
5𝑛×𝑛

[Ω
5

]
5𝑛×𝑛

[Ω
6

]
5𝑛×𝑛

∗ −12 (𝑅
2

− 𝑀) −4𝑋
22

0 0 0

∗ ∗ −12 (𝑅
2

− 𝑀) 0 0 0

∗ ∗ ∗ −𝑅
1

0 0

∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝑀

]
]
]
]
]
]
]

]

< 0, (11)

Ξ
4𝑖

=

[
[
[
[
[
[
[

[

[Ω
1

]
5𝑛×5𝑛

[Ω̂
2

]
5𝑛×𝑛

[Ω̂
3

]
5𝑛×𝑛

[Ω
4

]
5𝑛×𝑛

[Ω
5

]
5𝑛×𝑛

[Ω̂
6

]
5𝑛×𝑛

∗ −12 (𝑅
2

− 𝑀) −4𝑋
22

0 0 0

∗ ∗ −12 (𝑅
2

− 𝑀) 0 0 0

∗ ∗ ∗ −𝑅
1

0 0

∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝑀

]
]
]
]
]
]
]

]

< 0, (12)

where

Ω
1

(1, 1) = Sym (𝑃
11𝑖

𝐴
𝑖

+ 𝑃
12

) +

𝑁

∑
𝑗=1

𝜋
𝑖𝑗

𝑃
11𝑗

+ 𝑄
1

− 4𝑅
1

,

Ω
1

(1, 2) = 𝑃
11𝑖

𝐴
𝑑𝑖

,

Ω
1

(1, 3) = −2𝑅
1

− 𝑃
12

+ 𝑃
13

,

Ω
1

(1, 4) = −𝑃
13

, Ω
1

(1, 5) = 6𝑅
1

+ 𝑑
1

(𝐴
𝑇

𝑖

𝑃
12

+ 𝑃
𝑇

22

) ,

Ω
1

(2, 2) = − (1 − 𝜇)𝑄
3

− 8𝑅
2

+ 8𝑀

+ Sym (𝑋
11

+ 𝑋
12

− 𝑋
21

− 𝑋
22

− 𝑁
1

+ 𝐺
1

) ,

Ω
1

(2, 3) = −𝑋
𝑇

11

− 𝑋
𝑇

12

− 𝑋
𝑇

21

− 𝑋
𝑇

22

− 2𝑅
2

+ 𝑁
1

− 𝑁
𝑇

2

+ 𝐺
𝑇

2

+ 2𝑀,

Ω
1

(2, 4) = −2𝑅
2

− 𝑋
11

+ 𝑋
12

+ 𝑋
21

− 𝑋
22

− 𝑁
𝑇

3

− 𝐺
𝑇

1

+ 𝐺
𝑇

3

+ 2𝑀,

Ω
1

(2, 5) = 𝑑
1

𝐴
𝑇

𝑑𝑖

𝑃
12

Ω
1

(3, 3) = −4𝑅
1

− 𝑄
1

+ 𝑄
2

+ 𝑄
3

− 4𝑅
2

+ 4𝑀 + Sym (𝑁
2

) ,

Ω
1

(3, 4) = 𝑋
11

− 𝑋
12

+ 𝑋
21

− 𝑋
22

+ 𝑁
3

− 𝐺
2

,

Ω
1

(3, 5) = 6𝑅
1

+ 𝑑
1

(𝑃
𝑇

23

− 𝑃
𝑇

22

) ,

Ω
1

(4, 4) = −𝑄
2

− 4𝑅
2

+ 4𝑀 − Sym (𝐺
3

) ,

Ω
1

(4, 5) = −𝑑
1

𝑃
𝑇

23

, Ω
1

(5, 5) = −12𝑅
1

,

Ω
2

(1, 1) = 𝑑
12

(𝐴
𝑇

𝑖

𝑃
13

+ 𝑃
23

) ,

Ω
2

(2, 1) = 𝑑
12

𝐴
𝑇

𝑑𝑖

𝑃
13

+ 2𝑋
𝑇

21

+ 2𝑋
𝑇

22

+ 6𝑅
6

− 6𝑀,

Ω
2

(3, 1) = −𝑑
12

(𝑃
23

− 𝑃
𝑇

33

) + 6𝑅
6

− 6𝑀,

Ω
2

(4, 1) = −𝑑
12

𝑃
𝑇

33

− 2𝑋
𝑇

21

+ 2𝑋
𝑇

22

, Ω
2

(5, 1) = 0,

Ω
3

(1, 1) = 0, Ω
3

(2, 1) = 6𝑅
2

− 6𝑀 − 2𝑋
12

+ 2𝑋
22

,

Ω
3

(3, 1) = 2𝑋
12

+ 2𝑋
22

,

Ω
3

(4, 1) = 6𝑅
2

− 6𝑀, Ω
3

(5, 1) = 0,

Ω
4

(1, 1) = 𝑑
1

𝐴
𝑇

𝑖

𝑅
1

, Ω
4

(2, 1) = 𝑑
1

𝐴
𝑇

𝑑𝑖

𝑅
1

,

Ω
4

(3, 1) = Ω
4

(4, 1) = Ω
4

(5, 1) = 0,

Ω
5

(1, 1) = 𝑑
12

𝐴
𝑇

𝑖

𝑅
2

, Ω
5

(2, 1) = 𝑑
12

𝐴
𝑇

𝑑𝑖

𝑅
2

,

Ω
5

(3, 1) = Ω
5

(4, 1) = Ω
5

(5, 1) = 0,

Ω
6

(1, 1) = 0, Ω
6

(2, 1) = 𝑁
1

, Ω
6

(3, 1) = 𝑁
2

,

Ω
6

(4, 1) = 𝑁
3

, Ω
6

(5, 1) = 0,

Ω̂
2

(1, 1) = 0, Ω̂
2

(2, 1) = 2𝑋
𝑇

21

+ 2𝑋
𝑇

22

+ 6𝑅
6

− 6𝑀,

Ω̂
2

(3, 1) = 6𝑅
6

− 6𝑀,

Ω̂
2

(4, 1) = −2𝑋
𝑇

21

+ 2𝑋
𝑇

22

, Ω̂
2

(5, 1) = 0,
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Ω̂
3

(1, 1) = 𝑑
12

(𝐴
𝑇

𝑖

𝑃
13

+ 𝑃
23

) ,

Ω̂
3

(2, 1) = 𝑑
12

𝐴
𝑇

𝑑𝑖

𝑃
13

+ 6𝑅
2

− 6𝑀 − 2𝑋
12

+ 2𝑋
22

,

Ω̂
3

(3, 1) = −𝑑
12

(𝑃
23

− 𝑃
𝑇

33

) + 2𝑋
12

+ 2𝑋
22

,

Ω̂
3

(4, 1) = −𝑑
12

𝑃
𝑇

33

+ 6𝑅
2

− 6𝑀, Ω̂
3

(5, 1) = 0,

Ω̂
6

(1, 1) = 0, Ω̂
6

(2, 1) = 𝐺
1

, Ω
6

(3, 1) = 𝐺
2

,

Ω̂
6

(4, 1) = 𝐺
3

, Ω̂
6

(5, 1) = 0.

(13)

Proof. Consider the Lyapunov-Krasovskii functional given
by

𝑉 (𝑥
𝑡

, 𝑖) = 𝑉
1

(𝑥
𝑡

, 𝑖) + 𝑉
2

(𝑥
𝑡

, 𝑖) + 𝑉
3

(𝑥
𝑡

, 𝑖) , (14)

where
𝑉
1

(𝑥
𝑡

, 𝑖) = 𝜁
𝑇

(𝑡)P (𝑟
𝑡

) 𝜁 (𝑡) ,

𝑉
2

(𝑥
𝑡

, 𝑖) = ∫
𝑡

𝑡−𝑑1

𝑥
𝑇

(𝑠) 𝑄
1

𝑥 (𝑠) d𝑠

+ ∫
𝑡−𝑑1

𝑡−𝑑2

𝑥
𝑇

(𝑠) 𝑄
2

𝑥 (𝑠) d𝑠

+ ∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑄
3

𝑥 (𝑠) d𝑠,

𝑉
3

(𝑥
𝑡

, 𝑖) = 𝑑
1

∫
0

−𝑑1

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑅
1

�̇� (𝑠) d𝑠 d𝜃

+ 𝑑
12

∫
−𝑑1

−𝑑2

∫
𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑅
2

�̇� (𝑠) d𝑠 d𝜃.

(15)

We first show, for some 𝜖 > 0, the Lyapunov-Krasovskii
functional condition 𝑉(𝑥

𝑡

, 𝑖) ⩾ 𝜖‖𝑥
𝑡

‖
2 for any initial

condition (𝑥
0

, 𝑟
0

). Note that 𝑄
1

> 0, 𝑄
2

> 0, 𝑅
1

> 0, and
𝑅
2

> 0; it follows easily from Jensen’s inequality that

𝑉 (𝑥
𝑡

, 𝑖) ⩾ 𝜁
𝑇

(𝑡)P
𝑖

𝜁 (𝑡) +
1

𝑑
1

∫
𝑡

𝑡−𝑑1

𝑥
𝑇

(𝑠) d𝑠𝑄
1

× ∫
𝑡

𝑡−𝑑1

𝑥 (𝑠) d𝑠 +
1

𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑2

𝑥
𝑇

(𝑠) d𝑠𝑄
2

× ∫
𝑡−𝑑1

𝑡−𝑑2

𝑥 (𝑠) d𝑠 + ∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑄
3

𝑥 (𝑠) d𝑠

+
2

𝑑
1

(𝑑
1

𝑥
𝑇

(𝑡) − ∫
𝑡

𝑡−𝑑1

𝑥
𝑇

(𝑠) d𝑠)

× 𝑅
1

(𝑑
1

𝑥 (𝑡) − ∫
𝑡

𝑡−𝑑1

𝑥 (𝑠) d𝑠)

+
2𝑑
12

𝑑2
2

− 𝑑2
1

(𝑑
12

𝑥
𝑇

(𝑡) − ∫
𝑡−𝑑1

𝑡−𝑑2

𝑥
𝑇

(𝑠) d𝑠)

× 𝑅
2

(𝑑
12

𝑥 (𝑡) − ∫
𝑡−𝑑1

𝑡−𝑑2

𝑥 (𝑠) d𝑠)

= 𝜁
𝑇

(𝑡) Ξ
2𝑖

𝜁 (𝑡) + ∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑄
3

𝑥 (𝑠) d𝑠.

(16)

Thus, if 𝑄
3

> 0 and Ξ
2𝑖

> 0, then there exists a sufficiently
small 𝜖 > 0 such that 𝑉(𝑥

𝑡

, 𝑖) ⩾ 𝜖‖𝑥
𝑡

‖
2.

We next show that L𝑉(𝑥
𝑡

, 𝑖) ⩽ −𝜖‖𝑥(𝑡)‖
2 for the

sufficiently small 𝜖. Let L be the weak infinitesimal
generator of the random process {𝑥

𝑡

, 𝑟
𝑡

}. Calculating the
difference of 𝑉(𝑥

𝑡

, 𝑖) along the trajectories of (1), we have

L𝑉 (𝑥
𝑡

, 𝑖) = 2𝜁
𝑇

(𝑡)P
𝑖

̇𝜁 (𝑡) + 𝜁
𝑇

(𝑡)(

𝑁

∑
𝑗=1

𝜋
𝑖𝑗

P
𝑗

)𝜁 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄
1

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝑑
1

) (−𝑄
1

+ 𝑄
2

+ 𝑄
3

) 𝑥 (𝑡 − 𝑑
1

)

− (1 − ̇𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
3

𝑥 (𝑡 − 𝑑 (𝑡))

− 𝑥
𝑇

(𝑡 − 𝑑
2

) 𝑄
2

𝑥 (𝑡 − 𝑑
2

) + 𝑑
2

1

�̇�
𝑇

(𝑡) 𝑅
1

�̇� (𝑡)

+ 𝑑
2

12

�̇�
𝑇

(𝑡) 𝑅
2

�̇� (𝑡) − 𝑑
1

∫
𝑡

𝑡−𝑑1

�̇�
𝑇

(𝑠) 𝑅
1

�̇� (𝑠) d𝑠

− 𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑2

�̇�
𝑇

(𝑠) 𝑅
2

�̇� (𝑠) d𝑠,

(17)

where 𝜁𝑇(𝑡) = 𝜉𝑇(𝑡)Γ
1

and ̇𝜁(𝑡) = Γ
2

𝜉(𝑡).
Using theNewton-Leibniz formula, for any𝑁

𝑙

and𝐺
𝑙

(𝑙 =

1, 2, 3) with appropriate dimensions, the following are true:

0 = 2𝜉
𝑇

(𝑡)N[𝑥 (𝑡 − 𝑑
1

) − 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇� (𝑠) d𝑠] ,

0 = 2𝜉
𝑇

(𝑡)G[𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
2

) − ∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇� (𝑠) d𝑠] ,

(18)

where N = [0 𝑁
𝑇

1

𝑁
𝑇

2

𝑁
𝑇

3

0 0 0]
𝑇, G =

[0 𝐺𝑇
1

𝐺𝑇
2

𝐺𝑇
3

0 0 0]
𝑇.

It can be shown readily that there exists a matrix 𝑀 > 0

such that

0 ⩽ 2𝜉
𝑇

(𝑡)N [𝑥 (𝑡 − 𝑑
1

) − 𝑥 (𝑡 − 𝑑 (𝑡))]

+ 2𝜉
𝑇

(𝑡)G [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
2

)]

+
𝑑 (𝑡) − 𝑑

1

𝑑
12

𝜉
𝑇

(𝑡)N𝑀
−1

N
𝑇

𝜉 (𝑡)

+
𝑑
2

− 𝑑 (𝑡)

𝑑
12

𝜉
𝑇

(𝑡)G𝑀
−1

G
𝑇

𝜉 (𝑡)

+ 𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠)𝑀�̇� (𝑠) d𝑠

+ 𝑑
12

∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠)𝑀�̇� (𝑠) d𝑠.

(19)
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Adding equalities (18) to the right hand of (17) and consid-
ering conditions (2) and (19), we have

L𝑉 (𝑥
𝑡

, 𝑖) ⩽ 2𝜉
𝑇

(𝑡) Γ
1

P
𝑖

Γ
2

𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) Γ
1

(

𝑁

∑
𝑗=1

𝜋
𝑖𝑗

P
𝑗

)Γ
𝑇

1

𝜉 (𝑡) + 𝑥
𝑇

(𝑡) 𝑄
1

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝑑
1

) (−𝑄
1

+ 𝑄
2

+ 𝑄
3

) 𝑥 (𝑡 − 𝑑
1

)

− (1 − 𝜇) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
3

𝑥 (𝑡 − 𝑑 (𝑡))

− 𝑥
𝑇

(𝑡 − 𝑑
2

) 𝑄
2

𝑥 (𝑡 − 𝑑
2

) + 𝑑
2

1

�̇�
𝑇

(𝑡) 𝑅
1

�̇� (𝑡)

+ 𝑑
2

12

�̇�
𝑇

(𝑡) 𝑅
2

�̇� (𝑡)

+ 2𝜉
𝑇

(𝑡)N [𝑥 (𝑡 − 𝑑
1

) − 𝑥 (𝑡 − 𝑑 (𝑡))]

+ 2𝜉
𝑇

(𝑡)G [𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
2

)]

+
𝑑 (𝑡) − 𝑑

1

𝑑
12

𝜉
𝑇

(𝑡)N𝑀
−1

N
𝑇

𝜉 (𝑡)

+
𝑑
2

− 𝑑 (𝑡)

𝑑
12

𝜉
𝑇

(𝑡)G𝑀
−1

G
𝑇

𝜉 (𝑡)

− 𝑑
1

∫
𝑡

𝑡−𝑑1

�̇�
𝑇

(𝑠) 𝑅
1

�̇� (𝑠) d𝑠

− 𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠) (𝑅
2

− 𝑀) �̇� (𝑠) d𝑠

− 𝑑
12

∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠) (𝑅
2

− 𝑀) �̇� (𝑠) d𝑠.

(20)
Now, we deal with the integral terms in inequality (20) by
applying Lemma 3. Consider

−𝑑
1

∫
𝑡

𝑡−𝑑1

�̇�
𝑇

(𝑠) 𝑅
1

�̇� (𝑠) d𝑠 ⩽ −[
]
1

(𝑡)

]
2

(𝑡)
]

𝑇

[
𝑅
1

0

0 3𝑅
1

] [
]
1

(𝑡)

]
2

(𝑡)
] ,

(21)
where ]

1

(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 𝑑
1

), ]
2

(𝑡) = 𝑥(𝑡) + 𝑥(𝑡 − 𝑑
1

) −

(2/𝑑
1

) ∫
𝑡

𝑡−𝑑1

𝑥(𝑠)d𝑠;

− 𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠) 𝑅
2

�̇� (𝑠) d𝑠 − 𝑑
12

∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠) 𝑅
2

�̇� (𝑠) d𝑠

⩽ −[
𝜍
1

(𝑡)

𝜍
2

(𝑡)
]

𝑇[
[
[

[

𝑑
12

𝑑 (𝑡) − 𝑑
1

Σ 0

∗
𝑑
12

𝑑
2

− 𝑑 (𝑡)
Σ

]
]
]

]

[
𝜍
1

(𝑡)

𝜍
2

(𝑡)
] ,

(22)
where Σ = diag(𝑅

2

− 𝑀, 3(𝑅
2

− 𝑀)),
𝜍
1

(𝑡)

= [

[

𝑥 (𝑡 − 𝑑
1

) − 𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝑑
1

) + 𝑥 (𝑡 − 𝑑 (𝑡)) −
2

𝑑 (𝑡) − 𝑑
1

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

𝑥 (𝑠) d𝑠
]

]

,

𝜍
2

(𝑡)

= [

[

𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑
2

)

𝑥 (𝑡 − 𝑑 (𝑡)) + 𝑥 (𝑡 − 𝑑
2

) −
2

𝑑
2

− 𝑑 (𝑡)
∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

𝑥 (𝑠) d𝑠
]

]

.

(23)
Applying Lemma 2 to (22), it yields that if there exists a
matrix 𝑋 = [

𝑋11 𝑋12

𝑋21 𝑋22

] with appropriate dimensions such that
(9) holds, then

− 𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�
𝑇

(𝑠) 𝑅
2

�̇� (𝑠) d𝑠 − 𝑑
12

∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�
𝑇

(𝑠) 𝑅
2

�̇� (𝑠) d𝑠

⩽ −[
𝜍
1

(𝑡)

𝜍
2

(𝑡)
]

𝑇

[
Σ 𝑋

∗ Σ
] [

𝜍
1

(𝑡)

𝜍
2

(𝑡)
] .

(24)
Combining (20), (21), and (24), we have

L𝑉 (𝑥
𝑡

, 𝑖) ⩽
𝑑 (𝑡) − 𝑑

1

𝑑
12

𝜉
𝑇

(𝑡)

× (Υ
1

+ 𝑑
2

1

Υ
𝑇

3

𝑅
1

Υ
3

+ 𝑑
2

12

Υ
𝑇

3

𝑅
2

Υ
3

+ N𝑀
−1

N
𝑇

)

× 𝜉 (𝑡) +
𝑑
2

− 𝑑 (𝑡)

𝑑
12

𝜉
𝑇

(𝑡)

× (Υ
2

+ 𝑑
2

1

Υ
𝑇

3

𝑅
1

Υ
3

+ 𝑑
2

12

Υ
𝑇

3

𝑅
2

Υ
3

+ G𝑀
−1

G
𝑇

)

× 𝜉 (𝑡) ,

(25)
where

Υ
1

= [

[

[Ω
1

]
5𝑛×5𝑛

[Ω
2

]
5𝑛×𝑛

[Ω
3

]
5𝑛×𝑛

∗ −12 (𝑅
2

− 𝑀) −4𝑋
22

∗ ∗ −12 (𝑅
2

− 𝑀)

]

]

,

Υ
2

= [

[

[Ω
1

]
5𝑛×5𝑛

[Ω
2

]
5𝑛×𝑛

[Ω̂
3

]
5𝑛×𝑛

∗ −12 (𝑅
2

− 𝑀) −4𝑋
22

∗ ∗ −12 (𝑅
2

− 𝑀)

]

]

,

Υ
3

= (𝐴
𝑖

, 𝐴
𝑑𝑖

, 0, 0, 0, 0, 0) .

(26)

Using the Schur complement formula to (11) and (12), respec-
tively, we have

Υ
1

+ 𝑑
2

1

Υ
𝑇

3

𝑅
1

Υ
3

+ 𝑑
2

12

Υ
𝑇

3

𝑅
2

Υ
3

+ N𝑀
−1

N
𝑇

< 0,

Υ
2

+ 𝑑
2

1

Υ
𝑇

3

𝑅
1

Υ
3

+ 𝑑
2

12

Υ
𝑇

3

𝑅
2

Υ
3

+ G𝑀
−1

G
𝑇

< 0.

(27)

By using convex combination approach [15], inequalities
(27) imply that L𝑉(𝑥

𝑡

, 𝑖) < 0, which implies there exists a
sufficiently small 𝜖 > 0 such that L𝑉(𝑥

𝑡

, 𝑖) ⩽ −𝜖‖𝑥(𝑡)‖
2 for

any initial condition (𝑥
0

, 𝑟
0

). Therefore, for any 𝑡 > 0, by
Dynkin’s formula, we have

E {𝑉 (𝑥
𝑡

, 𝑖)} − {𝑉 (𝑥
0

, 𝑟
0

)} ⩽ −𝜖E{∫
𝑡

0

‖𝑥(𝑠)‖
2d𝑠 | (𝑥

0

, 𝑟
0

)} ,

(28)
which yields

E{∫
𝑡

0

‖𝑥 (𝑠)‖
2d𝑠 | (𝑥

0

, 𝑟
0

)} ⩽
1

𝜖
{𝑉 (𝑥
0

, 𝑟
0

)} < ∞. (29)
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The previous inequality means that lim
𝑡→+∞

E{‖𝑥(𝑡)‖
2

|

(𝑥
0

, 𝑟
0

)} = 0. Thus, system (1) is stochastically stable by
Definition 1.

Remark 5. In order to guarantee the Lyapunov-Krasovskii
functional 𝑉(𝑥

𝑡

, 𝑟
𝑡

) > 0, most authors require the Lyapunov
matrix 𝑃

𝑖

> 0 in 𝑉
1

(see, e.g., [4–8]). The Lyapunov-
Krasovskii functional employed in this paper is very simple,
but a less conservative result is developed by using the LMI
(10) instead of inequality P

𝑖

> 0, which can be seen
in Section 4. However, it should be pointed out that the
provided result cannot be used when the lower delay bound
is considered to be zero because of the existence of 1/𝑑

1

in
LMI (10).

Remark 6. It is well known that the convex combination
approach is effective in reducing conservatism in
stability analysis. In some literature, the integral terms
−2𝜉
𝑇(𝑡)N∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�(𝑠)d𝑠 and −2𝜉𝑇(𝑡)G∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�(𝑠)d𝑠 are
estimated by ((𝑑(𝑡) − 𝑑

1

)/𝑑
12

)𝜉𝑇(𝑡)N𝑅−1
2

N𝑇𝜉(𝑡) +

𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�𝑇(𝑠)𝑅
2

�̇�(𝑠)d𝑠 and ((𝑑
2

− 𝑑(𝑡))/

𝑑
12

)𝜉𝑇(𝑡)G𝑅−1
2

G𝑇𝜉(𝑡) + 𝑑
12

∫
𝑡−𝑑(𝑡)

𝑡−𝑑2

�̇�𝑇(𝑠)𝑅
2

�̇�(𝑠)d𝑠, respec-

tively, which make the term 𝑑
12

∫
𝑡−𝑑1

𝑡−𝑑2

�̇�𝑇(𝑠)𝑅
2

�̇�(𝑠)d𝑠 in (17)

disappear. In order to obtain a less conservative result,
we applied Lemma 3 to deal with the integral term. In
this case, integral term 𝑑

12

∫
𝑡−𝑑1

𝑡−d2
�̇�𝑇(𝑠)𝑅

2

�̇�(𝑠)d𝑠 must be
reserved. Based on the above consideration, another matrix
𝑀 > 0 is introduced when we estimate the integral terms
−2𝜉𝑇(𝑡)N∫

𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�(𝑠)d𝑠 and −2𝜉𝑇(𝑡)G∫
𝑡−𝑑1

𝑡−𝑑(𝑡)

�̇�(𝑠)d𝑠.
When 𝑆 = {1}, the Markovian jump system (1) reduces to

the following linear system with interval time-varying delay:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑

𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑
2

, 0] .
(30)

Based on the above method, we are now ready to give an
improved asymptotic stability criterion for system (30).

Corollary 7. Given scalars 0 < 𝑑
1

< 𝑑
2

and 𝜇, the time-
varying delay system (30) is asymptotically stable, if there exist
matrix 𝑃

𝜄𝜅

= 𝑃𝑇
𝜅𝜄

∈ R𝑛×𝑛, (𝜄, 𝜅 = 1, 2, 3); symmetric positive
definite matrices 𝑅

1

∈ R𝑛×𝑛, 𝑅
2

∈ R𝑛×𝑛, 𝑄
1

∈ R𝑛×𝑛, 𝑄
2

∈

R𝑛×𝑛, 𝑄
3

∈ R𝑛×𝑛, and 𝑀 ∈ R𝑛×𝑛; and any matrices 𝑋 ∈ R𝑛×𝑛,
𝑁
𝑙

∈ R𝑛×𝑛, and 𝐺
𝑙

∈ R𝑛×𝑛 (𝑙 = 1, 2) such that

Ψ
1

=
[
[
[

[

𝑅
2

− 𝑀 0 𝑋
11

𝑋
12

∗ 3 (𝑅
2

− 𝑀) 𝑋
21

𝑋
22

∗ ∗ 𝑅
2

− 𝑀 0

∗ ∗ 0 3 (𝑅
2

− 𝑀)

]
]
]

]

> 0,

Ψ
2

=

[
[
[
[
[
[
[

[

𝑃
11

+ 2𝑑
1

𝑅
1

+
2𝑑2
12

𝑑
1

+ 𝑑
2

𝑅
2

𝑃
12

− 2𝑅
1

𝑃
13

−
2𝑑
12

𝑑
1

+ 𝑑
2

𝑅
2

∗ 𝑃
22

+
1

𝑑
1

(𝑄
1

+ 2𝑅
1

) 𝑃
23

∗ ∗ 𝑃
33

+
1

𝑑
12

𝑄
2

+
2

𝑑
1

+ 𝑑
2

𝑅
2

]
]
]
]
]
]
]

]

> 0,

Ψ
3

=

[
[
[
[
[
[
[

[

[Φ
1

]
5𝑛×5𝑛

[Φ
2

]
5𝑛×𝑛

[Φ
3

]
5𝑛×𝑛

[Φ
4

]
5𝑛×𝑛

[Φ
5

]
5𝑛×𝑛

[Φ
6

]
5𝑛×𝑛

∗ −12 (𝑅
2

− 𝑀) −4𝑋
22

0 0 0

∗ ∗ −12 (𝑅
2

− 𝑀) 0 0 0

∗ ∗ ∗ −𝑅
1

0 0

∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝑀

]
]
]
]
]
]
]

]

< 0,

Ψ
4

=

[
[
[
[
[
[
[

[

[Φ
1

]
5𝑛×5𝑛

[Φ̂
2

]
5𝑛×𝑛

[Φ̂
3

]
5𝑛×𝑛

[Φ
4

]
5𝑛×𝑛

[Φ
5

]
5𝑛×𝑛

[Φ̂
6

]
5𝑛×𝑛

∗ −12 (𝑅
2

− 𝑀) −4𝑋
22

0 0 0

∗ ∗ −12 (𝑅
2

− 𝑀) 0 0 0

∗ ∗ ∗ −𝑅
1

0 0

∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝑀

]
]
]
]
]
]
]

]

< 0,

(31)

where

Φ
1

(1, 1) = Sym (𝑃
11

𝐴 + 𝑃
12

) + 𝑄
1

− 4𝑅
1

,

Φ
1

(1, 2) = 𝑃
11

𝐴
𝑑

,

Φ
1

(1, 𝑠) = Ω
1

(1, 𝑠) , (𝑠 = 3, 4) ,

Φ
1

(1, 5) = 6𝑅
1

+ 𝑑
1

(𝐴
𝑇

𝑃
12

+ 𝑃
𝑇

22

) ,

Φ
1

(2, 𝑠) = Ω
1

(2, 𝑠) , (𝑠 = 1, 2, 3, 4)

Φ
1

(2, 5) = 𝑑
1

𝐴
𝑇

𝑑

𝑃
12

Φ
1

(3, 𝑠) = Ω
1

(3, 𝑠) , (𝑠 = 3, 4, 5) ,
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Φ
1

(4, 𝑠) = Ω
1

(4, 𝑠) , (𝑠 = 4, 5) ,

Φ
1

(5, 5) = Ω
1

(5, 5) ,

Φ
2

(1, 1) = 𝑑
12

(𝐴
𝑇

𝑃
13

+ 𝑃
23

) ,

Φ
2

(2, 1) = 𝑑
12

𝐴
𝑇

𝑑

𝑃
13

+ 2𝑋
𝑇

21

+ 2𝑋
𝑇

22

+ 6𝑅
6

− 6𝑀,

Φ
2

(𝑠, 1) = Ω
2

(𝑠, 1) , (𝑠 = 3, 4, 5) ,

Φ
3

(𝑠, 1) = Ω
3

(𝑠, 1) , (𝑠 = 1, 2, 3, 4, 5) ,

Φ
4

(1, 1) = 𝑑
1

𝐴
𝑇

𝑅
1

, Φ
4

(2, 1) = 𝑑
1

𝐴
𝑇

𝑑

𝑅
1

,

Φ
4

(𝑠, 1) = Ω
4

(𝑠, 1) , (𝑠 = 3, 4, 5) ,

Φ
5

(1, 1) = 𝑑
12

𝐴
𝑇

𝑅
2

, Φ
5

(2, 1) = 𝑑
12

𝐴
𝑇

𝑑

𝑅
2

,

Φ
5

(𝑠, 1) = Ω
5

(𝑠, 1) , (𝑠 = 3, 4, 5) ,

Φ̂
2

(𝑠, 1) = Ω̂
2

(𝑠, 1) , (𝑠 = 1, 2, 3, 4, 5) ,

Φ̂
3

(1, 1) = 𝑑
12

(𝐴
𝑇

𝑃
13

+ 𝑃
23

) ,

Φ̂
3

(2, 1) = 𝑑
12

𝐴
𝑇

𝑑

𝑃
13

+ 6𝑅
2

− 6𝑀 − 2𝑋
12

+ 2𝑋
22

,

Φ̂
3

(𝑠, 1) = Ω̂
3

(𝑠, 1) , (𝑠 = 3, 4, 5) ,

Φ̂
6

(𝑠, 1) = Ω̂
6

(𝑠, 1) , (𝑠 = 1, 2, 3, 4, 5) .

(32)

Remark 8. Theorem 4 and Corollary 7 can be applied to both
slow and fast time-varying delays. But when 𝜇 is unknown,
the above results cannot be used directly to check the stability.
From the construction of Lyapunov-Krasovskii functional, it
can be seen by setting 𝑄

3

= 0 in Theorem 4 and Corollary 7
that the corresponding conclusions are valid for the case
when 𝜇 is unknown.

4. Numerical Examples

In this section, three numerical examples will be presented to
show the validity of the main results derived above.

Example 1. Consider the Markovian jump systems (1) with

𝐴
1

= [
−2.3 0.8

1 −2.9
] , 𝐴

𝑑1

= [
0.8 1.2

0.7 −3.5
] ,

𝐴
2

= [
−1.9 0.2

0.6 −0.8
] , 𝐴

𝑑2

= [
1.3 −2.6

0.5 −1.4
] .

(33)

Consider 𝜋
11

= −𝜋
12

= −0.5, 𝜋
22

= −𝜋
21

= −3. According to
[20], for𝑑

1

= 0.2, one obtains𝑑
2

= 0.520, while byTheorem 4
in this paper we can obtain 𝑑

2

= 0.605 such that the system is
stochastically stable. More comparisons are shown in Table 1,
which indicate thatTheorem 4 ismuch less conservative than
that in [20].

Table 1: Admissible upper bounds 𝑑
2

with varying 𝑑
1

.

𝑑
1

0.2 0.25 0.3 0.35 0.4
[20] 0.520 0.537 0.557 0.579 0.603
Theorem 4 0.605 0.615 0.629 0.646 0.667

Example 2. Consider the Markovian jump systems (1) with

𝐴
1

= [
−3.4888 0.8057

−0.6451 −3.2684
] ,

𝐴
𝑑1

= [
−0.8620 −1.2919

−0.6841 −2.0729
] ,

𝐴
2

= [
−2.4898 0.2895

1.3396 −0.0211
] ,

𝐴
𝑑2

= [
−2.8306 0.4978

−0.8436 −1.0115
] .

(34)

This example has been taken from [4]. To compare the
stochastic stability condition in Theorem 4 with that in [25,
26], we choose 𝜋

22

= 0.8, 𝜇 = 0.9. Using Theorem 4 of our
paper, the admissible upper bound 𝑑

2

for different 𝑑
1

and
𝜋
11

can be found in Table 2. It can be seen from Table 2 that
Theorem 4 in our paper is less conservative.

Example 3. Consider the systems (30) with the following
parameters:

𝐴 = [
−2.0 0.0

0.0 −0.9
] , 𝐴

𝑑

= [
−1.0 0.0

−1.0 −0.1
] . (35)

This system is a well-known delay-dependent stable system
where the maximum allowable delay 𝑑max = 6.1725 [24]. For
known and unknown 𝜇, the admissible upper bounds 𝑑

2

for
different 𝑑

1

, which guarantee the asymptotical stability of the
system (30), are listed in Tables 3 and 4, respectively. It can
be seen from Tables 3 and 4 that the stability results obtained
in this paper are less conservative than those in [14, 16, 17, 22,
27, 28].

5. Conclusion

In this paper, the problem of stochastic stability for a class
of Markovian jump systems has been investigated. By using
the convex combination technique and the improved integral
inequality, some less conservative delay-dependent stability
criteria are established in terms of linear matrix inequalities.
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Table 2: Admissible upper bounds 𝑑
2

with varying 𝜋
11

and 𝑑
1

.

𝑑
1

Methods 𝜋
11

= −0.1 𝜋
11

= −0.3 𝜋
11

= −0.5 𝜋
11

= −0.7 𝜋
11

= −0.9

0.1
[25] 0.4336 0.4332 0.4328 0.4324 0.4321
[26] 0.5752 0.5507 0.5375 0.5289 0.5227

Theorem 4 0.5847 0.5895 0.5949 0.6005 0.6061

0.2
[25] 0.4459 0.4450 0.4442 0.4434 0.4428
[26] 0.5930 0.5672 0.5529 0.5433 0.5363

Theorem 4 0.5932 0.5988 0.6048 0.6108 0.6168

Table 3: Admissible upper bounds 𝑑
2

with varying 𝜇 and 𝑑
1

.

𝜇 Methods 𝑑
1

= 2 𝑑
1

= 3 𝑑
1

= 4 𝑑
1

= 5 𝑑
1

= 6

0.3

[14] 2.6972 3.2591 4.0774 — —
[27] 3.0129 3.3408 4.1690 5.0275 —
[16] 3.1046 3.4181 4.2102 5.0440 —

Corollary 7 3.2321 3.4977 4.2939 5.1372 6.0071

0.5

[14] 2.5048 3.2591 4.0774 — —
[27] 2.5663 3.3408 4.1690 5.0275 —
[16] 2.6940 3.4181 4.2102 5.0440 —

Corollary 7 2.800 3.4977 4.2939 5.1372 6.0071

0.9

[14] 2.5048 3.2591 4.0774 — —
[27] 2.5663 3.3408 4.1690 5.0275 —
[16] 2.6940 3.4181 4.2102 5.0440 —

Corollary 7 2.800 3.4977 4.2939 5.1372 6.0071

Table 4: Admissible upper bounds 𝑑
2

with unknown 𝜇 and 𝑑
1

.

𝑑
1

1.0 2.0 3.0 4.0 5.0 6.0
[14] 1.87 2.50 3.25 4.07 — —
[17] 2.04 2.60 3.30 4.08 — —
[22] 2.06 2.61 3.31 4.09 — —
[28] 2.12 2.72 3.45 4.25 5.09 —
Corollary 7
with
Remark 8

2.338 2.800 3.497 4.293 5.137 6.007

The numerical examples demonstrate the effectiveness and
superiority of the presented results.
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