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We discuss the global and blow-up solutions of the following nonlinear parabolic problems with a gradient term under Robin
boundary conditions: (𝑏(𝑢))

𝑡
= ∇ ⋅ (ℎ(𝑡)𝑘(𝑥)𝑎(𝑢)∇𝑢) + 𝑓(𝑥, 𝑢, |∇𝑢|

2
, 𝑡), in 𝐷 × (0, 𝑇), (𝜕𝑢/𝜕𝑛) + 𝛾𝑢 = 0, on 𝜕𝐷 × (0, 𝑇), 𝑢(𝑥, 0) =

𝑢
0
(𝑥) > 0, in𝐷, where𝐷 ⊂ R𝑁 (𝑁 ≥ 2) is a bounded domain with smooth boundary 𝜕𝐷. Under some appropriate assumption on

the functions 𝑓, ℎ, 𝑘, 𝑏, and 𝑎 and initial value 𝑢
0
, we obtain the sufficient conditions for the existence of a global solution, an upper

estimate of the global solution, the sufficient conditions for the existence of a blow-up solution, an upper bound for “blow-up time,”
and an upper estimate of “blow-up rate.” Our approach depends heavily on the maximum principles.

1. Introduction

The study of global and blow-up solutions for nonlinear
parabolic equations has received a lot of attention in the past
several decades (see [1–4]). In most works, so far, a variety
of approaches have been developed in dealing with different
nonlinear parabolic problems, such as the existence of global
solution, blow-up solution, an upper bound for “blow-up
time,” an upper estimate of “blow-up rate,” or global solution.
So far, some applications in physics, chemistry, and biology
are relevant to blow-up phenomena which can be found in
[5–11]. In this paper, we consider the global and blow-up
solutions of the following nonlinear parabolic equation with
Robin boundary condition:

(𝑏 (𝑢))
𝑡
= ∇ ⋅ (ℎ (𝑡) 𝑘 (𝑥) 𝑎 (𝑢) ∇𝑢) + 𝑓 (𝑥, 𝑢, 𝑞, 𝑡) ,

in 𝐷 × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
+ 𝛾𝑢 = 0, on 𝜕𝐷 × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) > 0, in 𝐷,

(1)

where 𝑞 = |∇𝑢|
2,𝐷 ⊂ R𝑁 (𝑁 ≥ 2) is a bounded domain with

smooth boundary 𝜕𝐷, 𝜕𝑢/𝜕𝑛 represents the outward normal
derivative on 𝜕𝐷, 𝛾 is positive constant, 𝑢

0
is the initial value,

𝑇 is the maximal existence time of 𝑢, and 𝐷 is the closure of
𝐷. Set R+ = (0, +∞). We assume, throughout the paper, that
𝑏(𝑠) is a positive 𝐶

3
(R+) function, 𝑏󸀠(𝑠) > 0 for any 𝑠 ∈ R+,

𝑎(𝑠) is a positive 𝐶2(R+) function, 𝑘(𝑥) is a positive 𝐶1(𝐷)

function, ℎ(𝑡) is a positive 𝐶1(R+) function, 𝑓(𝑥, 𝑠, 𝑑, 𝑡) is
a nonnegative 𝐶1(𝐷 × R+ × R+ × R+) function, and 𝑢

0
(𝑥)

is a positive 𝐶2(𝐷) function. Under these assumptions, the
classical parabolic equation theory [12] ensures that there
exists a unique classical solution 𝑢(𝑥, 𝑡) with some 𝑇 > 0 for
the problem (1), and the solution is positive over 𝐷 × [0, 𝑇).
Moreover, by the regularity theorem [13], 𝑢(𝑥, 𝑡) ∈ 𝐶3(𝐷 ×

(0, 𝑇)) ∩ 𝐶2(𝐷 × [0, 𝑇)).
The problems of the global and blow-up solutions for

nonlinear parabolic equations have been investigated exten-
sively by many authors and have got a lot of meaningful
results. Some special cases of problem (1) have been treated
already. Ding [14] deals with the following problem:

(𝑏 (𝑢))
𝑡
= ∇ ⋅ (𝑎 (𝑢) ∇𝑢) + 𝑓 (𝑢) , in 𝐷 × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
+ 𝛾𝑢 = 0, on 𝜕𝐷 × (0, 𝑇) ,

𝑢 (𝑥, 0) = ℎ (𝑥) > 0, in 𝐷,

(2)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 241650, 9 pages
http://dx.doi.org/10.1155/2014/241650

http://dx.doi.org/10.1155/2014/241650


2 Abstract and Applied Analysis

where 𝐷 is a bounded domain of R𝑁 (𝑁 ≥ 2) with
smooth boundary 𝜕𝐷. By constructing auxiliary functions
and using a first-order differential inequality technique, Ding
derives conditions on the data, which guarantee the existence
of blow-up or global solution. The following problem is
investigated by Enache in [15]:

𝑢
𝑡
= ∇ ⋅ (𝑎 (𝑢) ∇𝑢) + 𝑓 (𝑢) , in 𝐷 × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
+ 𝛾𝑢 = 0, on 𝜕𝐷 × (0, 𝑇) ,

𝑢 (𝑥, 0) = ℎ (𝑥) > 0, in 𝐷,

(3)

where 𝐷 is a bounded domain of R𝑁 (𝑁 ≥ 2) with smooth
boundary 𝜕𝐷. By constructing auxiliary functions and first-
order differential inequality technique, Enache establishes
some conditions on nonlinearities and the initial date to
guarantee that 𝑢(𝑥, 𝑡) exists for all times 𝑡 > 0 or blows
up at some finite time 𝑇. Besides, the following problem is
investigated by Zhang in [16]:

(𝑏 (𝑢))
𝑡
= Δ𝑢 + 𝑓 (𝑢) , in 𝐷 × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
+ 𝛾𝑢 = 0, on 𝜕𝐷 × (0, 𝑇) ,

𝑢 (𝑥, 0) = ℎ (𝑥) > 0, in 𝐷,

(4)

where 𝐷 is a bounded domain in R𝑁 (𝑁 ≥ 2) with smooth
boundary. Under appropriate assumptions on the functions
𝑓, 𝑏, and ℎ, Zhang obtains the conditions under which the
solutions may exist globally or blow up in a finite time.
Moreover, upper estimates of the “blow-up time,” blow-up
rate, and global solutions are obtained also.

In this paper, we obtain the existence theorem of global
and blow-up solution by constructing completely different
auxiliary functions and technically using maximum princi-
ples. As a result, the sufficient conditions for the existence
of a global solution and an upper estimate of the global
solution and the sufficient conditions for the existence of a
blow-up solution, an upper bound for “blow-up time,” and
an upper estimate of “blow-up rate” are specified under some
appropriate assumption on the functions 𝑓, ℎ, 𝑘, 𝑏, and 𝑎

and initial value 𝑢
0
. Our results extend and supplement those

obtained in [14–16].
The content of this paper is organized as follows. In

Section 2, we study the existence of the global solution of (1).
In Section 3, we investigate the blow-up solution of (1). In
Section 4, we will give a few examples to explain our results.

2. Global Solution

Our main result for the global solution is the following
Theorem 1.

Theorem 1. Let 𝑢 be a solution of (1). Suppose that the
following conditions (𝑖)–(𝑖𝑣) are satisfied.

(i) For any 𝑠 ∈ R+,

(𝑠𝑏
󸀠
(𝑠))
󸀠

≥ 0,

𝑠𝑏
󸀠
(𝑠) − (𝑠𝑏

󸀠
(𝑠))
󸀠

≤ 0,

(
𝑎 (𝑠)

𝑏󸀠 (𝑠)
)

󸀠

≤ 0,

[
1

𝑎 (𝑠)
(
𝑎 (𝑠)

𝑏󸀠 (𝑠)
)

󸀠

+
1

𝑏󸀠 (𝑠)
]

󸀠

+
1

𝑎 (𝑠)
(
𝑎 (𝑠)

𝑏󸀠 (𝑠)
)

󸀠

+
1

𝑏󸀠 (𝑠)
≤ 0.

(5)

(ii) For any (𝑥, 𝑠, 𝑑, 𝑡) ∈ 𝐷 ×R+ ×R+ ×R+,

(
𝑓 (𝑥, 𝑠, 𝑑, 𝑡)

ℎ (𝑡)
)
𝑡

≤ 0,

𝑓
𝑑
(𝑥, 𝑠, 𝑑, 𝑡) [(

1

𝑏󸀠 (𝑠)
)

󸀠

+
1

𝑏󸀠 (𝑠)
] ≤ 0,

(
𝑓 (𝑥, 𝑠, 𝑑, 𝑡) 𝑏

󸀠
(𝑠)

𝑎 (𝑠)
)
𝑠

−
𝑓 (𝑥, 𝑠, 𝑑, 𝑡) 𝑏

󸀠
(𝑠)

𝑎 (𝑠)

+
ℎ󸀠 (𝑡) (𝑏

󸀠
(𝑠))
2

𝑎 (𝑠) ℎ (𝑡)
≤ 0.

(6)

(iii) Consider the integration

∫
+∞

𝑚0

𝑏󸀠 (𝑠)

e𝑠
d𝑠 = +∞, 𝑚

0
= min
𝐷

𝑢
0
(𝑥) . (7)

(iv) Consider

𝛼 = max
𝐷

{
∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢

0
) ∇𝑢
0
) + 𝑓 (𝑥, 𝑢

0
, 𝑞
0
, 0)

𝑒𝑢0
} > 0,

𝑞
0
=
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
2

.

(8)

Then the solution 𝑢 to problem (1)must be a global solution
and

𝑢 (𝑥, 𝑡) ≤ 𝐻
−1

(𝛼𝑡 + 𝐻 (𝑢
0
(𝑥, 𝑡))) , (𝑥, 𝑡) ∈ 𝐷 ×R+, (9)

where

𝐻(𝑧) = ∫
𝑧

𝑚0

𝑏
󸀠
(𝑠)

e𝑠
d𝑠, 𝑧 ≥ 𝑚

0
, (10)

and𝐻−1 is the inverse function of𝐻.

Proof. Consider the auxiliary function

𝑃 (𝑥, 𝑡) = 𝑏
󸀠
(𝑢) 𝑢
𝑡
− 𝛼𝑒
𝑢
. (11)
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Then, we have

∇𝑃 = 𝑏
󸀠󸀠
𝑢
𝑡
∇𝑢 + 𝑏

󸀠
∇𝑢
𝑡
− 𝛼𝑒
𝑢
∇𝑢, (12)

Δ𝑃 = 𝑏
󸀠󸀠󸀠
𝑢
𝑡
|∇𝑢|
2
+ 2𝑏
󸀠󸀠
∇𝑢 ⋅ ∇𝑢

𝑡

+ 𝑏
󸀠󸀠
𝑢
𝑡
Δ𝑢 + 𝑏

󸀠
Δ𝑢
𝑡
− 𝛼𝑒
𝑢
|∇𝑢|
2
− 𝛼𝑒
𝑢
Δ𝑢.

(13)

By (1),

(𝑏 (𝑢))
𝑡
= 𝑏
󸀠
𝑢
𝑡
= ∇ ⋅ (ℎ (𝑡) 𝑘 (𝑥) 𝑎 (𝑢) ∇𝑢) + 𝑓

= ℎ (𝑡) 𝑘 (𝑥) 𝑎 (𝑢) Δ𝑢 + ℎ (𝑡) 𝑘 (𝑥) 𝑎
󸀠
(𝑢) |∇𝑢|

2

+ ℎ (𝑡) 𝑎 (𝑢) (∇𝑘 ⋅ ∇𝑢) + 𝑓.

(14)

We have

𝑢
𝑡
=

𝑎𝑘ℎ

𝑏󸀠
Δ𝑢 +

𝑎
󸀠
𝑘ℎ

𝑏󸀠
|∇𝑢|
2
+

𝑎ℎ

𝑏󸀠
(∇𝑘 ⋅ ∇𝑢) +

𝑓

𝑏󸀠
,

(𝑢
𝑡
)
𝑡
= ℎ
󸀠
(
𝑎𝑘

𝑏󸀠
Δ𝑢 +

𝑎󸀠𝑘

𝑏󸀠
|∇𝑢|
2
+

𝑎

𝑏󸀠
(∇𝑘 ⋅ ∇𝑢))

+ ℎ(
𝑎𝑘

𝑏󸀠
Δ𝑢 +

𝑎󸀠𝑘

𝑏󸀠
|∇𝑢|
2
+

𝑎

𝑏󸀠
(∇𝑘 ⋅ ∇𝑢))

𝑡

+ (
𝑓

𝑏󸀠
)
𝑡

= (
𝑎󸀠󸀠

𝑏󸀠
−

𝑎󸀠𝑏󸀠󸀠

(𝑏󸀠)
2
)ℎ𝑘𝑢

𝑡
|∇𝑢|
2
+

2𝑎󸀠𝑘ℎ

𝑏󸀠
(∇𝑢 ⋅ ∇𝑢

𝑡
)

+ (
𝑎󸀠

𝑏󸀠
−

𝑎𝑏󸀠󸀠

(𝑏󸀠)
2
)ℎ𝑢
𝑡
(∇𝑘 ⋅ ∇𝑢)

+
𝑎ℎ

𝑏󸀠
(∇𝑘 ⋅ ∇𝑢

𝑡
) + (

𝑎󸀠

𝑏󸀠
−

𝑎𝑏󸀠󸀠

(𝑏󸀠)
2
)ℎ𝑘𝑢

𝑡
Δ𝑢

+
𝑎𝑘ℎ

𝑏󸀠
Δ𝑢
𝑡
+

𝑎󸀠𝑘ℎ󸀠

𝑏󸀠
|∇𝑢|
2
+

𝑎ℎ󸀠

𝑏󸀠
(∇𝑘 ⋅ ∇𝑢)

+
𝑎𝑘ℎ󸀠

𝑏󸀠
Δ𝑢

+
𝑓
𝑢
𝑢
𝑡
+ 2𝑓
𝑞
(∇𝑢 ⋅ ∇𝑢

𝑡
) + 𝑓
𝑡

𝑏󸀠
−

𝑓𝑏󸀠󸀠𝑢
𝑡

(𝑏󸀠)
2
.

(15)

Then

𝑃
𝑡
= 𝑏
󸀠󸀠
(𝑢
𝑡
)
2

+ 𝑏
󸀠
(𝑢
𝑡
)
𝑡
− 𝛼𝑒
𝑢
𝑢
𝑡

= 𝑏
󸀠󸀠
(𝑢
𝑡
)
2

+ (𝑎
󸀠
−

𝑎𝑏󸀠󸀠

𝑏󸀠
)𝑘ℎ𝑢

𝑡
Δ𝑢 + 𝑎𝑘ℎΔ𝑢

𝑡

+ 𝑎𝑘ℎ
󸀠
Δ𝑢 + (𝑎

󸀠󸀠
−

𝑎󸀠𝑏󸀠󸀠

𝑏󸀠
)𝑘ℎ𝑢

𝑡
|∇𝑢|
2
+ 𝑎
󸀠
𝑘ℎ
󸀠
|∇𝑢|
2

+ (2𝑎
󸀠
𝑘ℎ + 2𝑓

𝑞
) (∇𝑢 ⋅ ∇𝑢

𝑡
)

+ (𝑎
󸀠
−

𝑎𝑏
󸀠󸀠

𝑏󸀠
)ℎ𝑢
𝑡
(∇𝑘 ⋅ ∇𝑢) + 𝑎ℎ (∇𝑘 ⋅ ∇𝑢

𝑡
)

+ 𝑎ℎ
󸀠
(∇𝑘 ⋅ ∇𝑢)

+ (𝑓
𝑢
−

𝑓𝑏󸀠󸀠

𝑏󸀠
− 𝛼𝑒
𝑢
)𝑢
𝑡
+ 𝑓
𝑡
.

(16)

By (13) and (16), it follows that

𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 − 𝑃

𝑡

= (
𝑎𝑘ℎ𝑏󸀠󸀠󸀠

𝑏󸀠
+

𝑎󸀠𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 𝑎
󸀠󸀠
𝑘ℎ)𝑢

𝑡
|∇𝑢|
2

+ (
2𝑎𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 2𝑎
󸀠
𝑘ℎ − 2𝑓

𝑞
) (∇𝑢 ⋅ ∇𝑢

𝑡
)

+ (
2𝑎𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 𝑎
󸀠
𝑘ℎ)𝑢

𝑡
Δ𝑢

− (
𝑎𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
+ 𝑎
󸀠
ℎ
󸀠
𝑘) |∇𝑢|

2
− (

𝑎𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
+ 𝑎𝑘ℎ

󸀠
)Δ𝑢

− 𝑏
󸀠󸀠
(𝑢
𝑡
)
2
+ (

𝑓𝑏󸀠󸀠

𝑏󸀠
+ 𝛼𝑒
𝑢
− 𝑓
𝑢
)𝑢
𝑡

+ (
𝑎ℎ𝑏
󸀠󸀠

𝑏󸀠
− 𝑎
󸀠
ℎ)𝑢
𝑡
(∇𝑘 ⋅ ∇𝑢)

− 𝑎ℎ (∇𝑘 ⋅ ∇𝑢
𝑡
) − 𝑎ℎ

󸀠
(∇𝑘 ⋅ ∇𝑢) − 𝑓

𝑡
.

(17)

By (14), we have

Δ𝑢 =
𝑏󸀠

𝑎𝑘ℎ
𝑢
𝑡
−

𝑎󸀠

𝑎
|∇𝑢|
2
−

1

𝑘
(∇𝑘 ⋅ ∇𝑢) −

𝑓

𝑎𝑘ℎ
. (18)

Substitute (18) into (17) to get

𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 − 𝑃

𝑡

= (
𝑎𝑘ℎ𝑏󸀠󸀠󸀠

𝑏󸀠
+

(𝑎󸀠)
2

𝑘ℎ

𝑎
−

𝑎
󸀠𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 𝑎
󸀠󸀠
𝑘ℎ)𝑢

𝑡
|∇𝑢|
2

+ (
2𝑎𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 2𝑎
󸀠
𝑘ℎ − 2𝑓

𝑞
) (∇𝑢 ⋅ ∇𝑢

𝑡
)

+ (𝑏
󸀠󸀠
−

𝑎󸀠𝑏󸀠

𝑎
)𝑢
2

𝑡
+ (

𝑎󸀠𝑓

𝑎
−

𝑓𝑏󸀠󸀠

𝑏󸀠
− 𝑓
𝑢
−

𝑏󸀠ℎ󸀠

ℎ
)𝑢
𝑡

+ (
𝑎󸀠𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
−

𝑎𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
) |∇𝑢|

2
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−
𝑎ℎ𝑏󸀠󸀠

𝑏󸀠
𝑢
𝑡
(∇𝑘 ⋅ ∇𝑢) − 𝑎ℎ (∇𝑘 ⋅ ∇𝑢

𝑡
)

+
𝑎ℎ

𝑏󸀠
𝛼𝑒
𝑢
(∇𝑘 ⋅ ∇𝑢) +

𝑓

𝑏󸀠
𝛼𝑒
𝑢
+

𝑓ℎ󸀠

ℎ
− 𝑓
𝑡
.

(19)
By (12), we have

∇𝑢
𝑡
=

1

𝑏󸀠
∇𝑃 −

𝑏󸀠󸀠

𝑏󸀠
𝑢
𝑡
∇𝑢 + 𝛼

𝑒𝑢

𝑏󸀠
∇𝑢. (20)

Next, we substitute (20) into (19) to obtain
𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 − 𝑃

𝑡

= (
2𝑎𝑘ℎ𝑏󸀠󸀠

(𝑏󸀠)
2

−
2𝑎󸀠𝑘ℎ

𝑏󸀠
−

2𝑓
𝑞

𝑏󸀠
) (∇𝑢 ⋅ ∇𝑃) −

𝑎ℎ

𝑏󸀠
(∇𝑘 ⋅ ∇𝑃)

+ (
𝑎𝑘ℎ𝑏󸀠󸀠󸀠

𝑏󸀠
−

2𝑎𝑘ℎ(𝑏󸀠󸀠)
2

(𝑏󸀠)
2

+
𝑎󸀠𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 𝑎
󸀠󸀠
𝑘ℎ

+
(𝑎󸀠)
2

𝑘ℎ

𝑎
+

2𝑏󸀠󸀠𝑓
𝑞

𝑏󸀠
)𝑢
𝑡
|∇𝑢|
2

+ (
2𝑎𝑘ℎ𝑏󸀠󸀠

(𝑏󸀠)
2

𝛼𝑒
𝑢
−

𝑎󸀠𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
−

𝑎𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
−
2𝑓
𝑞

𝑏󸀠
𝛼𝑒
𝑢
) |∇𝑢|

2

+ (𝑏
󸀠󸀠
−

𝑎󸀠𝑏󸀠

𝑎
)𝑢
2

𝑡
+ (

𝑎󸀠𝑓

𝑎
−

𝑓𝑏󸀠󸀠

𝑏󸀠
− 𝑓
𝑢
−

𝑏󸀠ℎ󸀠

ℎ
)𝑢
𝑡

+
𝑓

𝑏󸀠
𝛼𝑒
𝑢
+

𝑓ℎ󸀠

ℎ
− 𝑓
𝑡
.

(21)
So we have
𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 + (

2𝑎󸀠𝑘ℎ

𝑏󸀠
+

2𝑓
𝑞

𝑏󸀠
−

2𝑎𝑘ℎ𝑏󸀠󸀠

(𝑏󸀠)
2

)

× (∇𝑢 ⋅ ∇𝑃) +
𝑎ℎ

𝑏󸀠
(∇𝑘 ⋅ ∇𝑃) − 𝑃

𝑡

= (
𝑎𝑘ℎ𝑏󸀠󸀠󸀠

𝑏󸀠
−

2𝑎𝑘ℎ(𝑏󸀠󸀠)
2

(𝑏󸀠)
2

+
𝑎󸀠𝑘ℎ𝑏󸀠󸀠

𝑏󸀠
− 𝑎
󸀠󸀠
𝑘ℎ +

(𝑎󸀠)
2

𝑘ℎ

𝑎

+
2𝑏󸀠󸀠𝑓
𝑞

𝑏󸀠
)𝑢
𝑡
|∇𝑢|
2

+ (
2𝑎𝑘ℎ𝑏󸀠󸀠

(𝑏󸀠)
2

𝛼𝑒
𝑢
−

𝑎󸀠𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
−

𝑎𝑘ℎ

𝑏󸀠
𝛼𝑒
𝑢
−
2𝑓
𝑞

𝑏󸀠
𝛼𝑒
𝑢
) |∇𝑢|

2

+ (𝑏
󸀠󸀠
−

𝑎󸀠𝑏󸀠

𝑎
)𝑢
2

𝑡
+ (

𝑎󸀠𝑓

𝑎
−

𝑓𝑏󸀠󸀠

𝑏󸀠
− 𝑓
𝑢
−

𝑏󸀠ℎ󸀠

ℎ
)𝑢
𝑡

+
𝑓

𝑏󸀠
𝛼𝑒
𝑢
+

𝑓ℎ󸀠

ℎ
− 𝑓
𝑡
.

(22)

According to (11), we have

𝑢
𝑡
=

1

𝑏󸀠
𝑃 + 𝛼

𝑒𝑢

𝑏󸀠
. (23)

Substituting (23) into (22), we have

𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 + [2𝑘ℎ(

𝑎

𝑏󸀠
)
󸀠

+
2𝑓
𝑞

𝑏󸀠
] (∇𝑢 ⋅ ∇𝑃) +

𝑎ℎ

𝑏󸀠
(∇𝑘 ⋅ ∇𝑃)

+ [
𝑎

(𝑏󸀠)
2
(
𝑓𝑏󸀠

𝑎
)
𝑢

+
ℎ󸀠

ℎ
]𝑃

+ [𝑎𝑘ℎ(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

)

󸀠

+ 2𝑓
𝑞
(
1

𝑏󸀠
)
󸀠

] |∇𝑢|
2
𝑃 − 𝑃
𝑡

= (−𝛼𝑒
𝑢
)(

2𝑓
𝑞

𝑏󸀠
−

2𝑏󸀠󸀠𝑓
𝑞

(𝑏󸀠)
2
) |∇𝑢|

2

+ (−𝛼𝑒
𝑢
) 𝑘ℎ(

𝑎󸀠

𝑏󸀠
−

𝑎𝑏󸀠󸀠

(𝑏󸀠)
2
) |∇𝑢|

2

+ 𝛼𝑒
𝑢
(

𝑎𝑘ℎ𝑏󸀠󸀠󸀠

(𝑏󸀠)
2

−
2𝑎𝑘ℎ(𝑏󸀠󸀠)

2

(𝑏󸀠)
3

+
𝑎󸀠𝑘ℎ𝑏󸀠󸀠

(𝑏󸀠)
2

−
𝑎󸀠󸀠𝑘ℎ

𝑏󸀠

+
(𝑎󸀠)
2

𝑘ℎ

𝑎𝑏󸀠
) |∇𝑢|

2

− 𝛼𝑒
𝑢
𝑎𝑘ℎ(

1

𝑏󸀠
−

𝑏󸀠󸀠

(𝑏󸀠)
2
) |∇𝑢|

2
+ (𝑏
󸀠󸀠
−

𝑎󸀠𝑏󸀠

𝑎
)𝑢
2

𝑡

+ 𝛼𝑒
𝑢
(
𝑎󸀠𝑓

𝑎𝑏󸀠
−

𝑓𝑏󸀠󸀠

(𝑏󸀠)
2
−

𝑓
𝑢

𝑏󸀠
+

𝑓

𝑏󸀠
−

ℎ󸀠

ℎ
) +

ℎ
󸀠

ℎ
𝑓 − 𝑓
𝑡
.

(24)

Namely,

𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 + [(2𝑘ℎ(

𝑎

𝑏󸀠
)
󸀠

+
2𝑓
𝑞

𝑏󸀠
)∇𝑢 +

𝑎ℎ

𝑏󸀠
∇𝑘] ⋅ ∇𝑃

+ {
𝑎

(𝑏󸀠)
2
(
𝑓𝑏
󸀠

𝑎
)
𝑢

+
ℎ󸀠

ℎ

+ [𝑎𝑘ℎ(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

)

󸀠

+ 2𝑓
𝑞
(
1

𝑏󸀠
)
󸀠

] |∇𝑢|
2
}𝑃 − 𝑃

𝑡

= −𝛼𝑒
𝑢
{2𝑓
𝑞
[(

1

𝑏󸀠
)
󸀠

+
1

𝑏󸀠
] + 𝑎𝑘ℎ

× [(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

+
1

𝑏󸀠
)

󸀠

+
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

+
1

𝑏󸀠
]} |∇𝑢|

2
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−
(𝑏󸀠)
2

𝑎
(
𝑎

𝑏󸀠
)
󸀠

𝑢
2

𝑡
− 𝛼𝑒
𝑢 𝑎

(𝑏󸀠)
2

× [

[

(
𝑓𝑏󸀠

𝑎
)
𝑢

−
𝑓𝑏󸀠

𝑎
+

ℎ󸀠(𝑏󸀠)
2

𝑎ℎ
]

]

− ℎ(
𝑓

ℎ
)
𝑡

.

(25)

The assumptions (5) and (6) guarantee that the right-hand
side of (25) is nonnegative; that is,

𝑎𝑘ℎ

𝑏󸀠
Δ𝑃 + [(2𝑘ℎ(

𝑎

𝑏󸀠
)
󸀠

+
2𝑓
𝑞

𝑏󸀠
)∇𝑢 +

𝑎ℎ

𝑏󸀠
∇𝑘] ⋅ ∇𝑃

+ {
𝑎

(𝑏󸀠)
2
(
𝑓𝑏󸀠

𝑎
)
𝑢

+
ℎ󸀠

ℎ

+[𝑎𝑘ℎ(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

)

󸀠

+ 2𝑓
𝑞
(
1

𝑏󸀠
)
󸀠

] |∇𝑢|
2
}𝑃 − 𝑃

𝑡

≥ 0, in 𝐷 × (0, 𝑇) .

(26)

By applying maximum principle (see [17]), it follows from
(26) that 𝑃 can attain its nonnegative maximum only for
𝐷 × {0} or 𝜕𝐷 × (0, 𝑇).

For𝐷 × {0}, by (8), we have

max
𝐷

𝑃 (𝑥, 0)

= max
𝐷

{𝑏
󸀠
(𝑢
0
) (𝑢
0
)
𝑡
− 𝛼𝑒
𝑢0}

= max
𝐷

{[∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢
0
) ∇𝑢
0
)

+ 𝑓 (𝑥, 𝑢
0
, 𝑞
0
, 0)] − 𝛼𝑒

𝑢0}

= max
𝐷

{𝑒
𝑢0 [

∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢
0
) ∇𝑢
0
) + 𝑓 (𝑥, 𝑢

0
, 𝑞
0
, 0)

𝑒𝑢0

−𝛼]} = 0.

(27)

For 𝜕𝐷 × (0, 𝑇), we claim that 𝑃 cannot take a positive
maximum at any point (𝑥, 𝑡). In fact, suppose that 𝑃 can take
a positive maximum at one point (𝑥

0
, 𝑡
0
) ∈ 𝜕𝐷 × (0, 𝑇); then

𝑃 (𝑥
0
, 𝑡
0
) > 0,

𝜕𝑃

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0)
> 0. (28)

Combine (1) and (11) with (23); we have

𝜕𝑃

𝜕𝑛
= 𝑏
󸀠󸀠
𝑢
𝑡

𝜕𝑢

𝜕𝑛
+ 𝑏
󸀠 𝜕𝑢𝑡

𝜕𝑛
− 𝛼𝑒
𝑢 𝜕𝑢

𝜕𝑛

= −𝛾𝑏
󸀠󸀠
𝑢𝑢
𝑡
+ 𝑏
󸀠
(
𝜕𝑢

𝜕𝑛
)
𝑡

+ 𝛾𝛼𝑢𝑒
𝑢

= −𝛾𝑏
󸀠󸀠
𝑢𝑢
𝑡
+ 𝑏
󸀠
(−𝛾𝑢)

𝑡
+ 𝛾𝛼𝑢𝑒

𝑢

= −𝛾(𝑢𝑏
󸀠
)
󸀠

𝑢
𝑡
+ 𝛾𝛼𝑢𝑒

𝑢

= −𝛾(𝑢𝑏
󸀠
)
󸀠

(
1

𝑏󸀠
𝑃 + 𝛼

1

𝑏󸀠
𝑒
𝑢
) + 𝛾𝛼𝑢𝑒

𝑢

= −𝛾
(𝑢𝑏󸀠)
󸀠

𝑏󸀠
𝑃 + 𝛾𝛼𝑒

𝑢
𝑢𝑏󸀠 − (𝑢𝑏󸀠)

󸀠

𝑏󸀠
,

on 𝜕𝐷 × (0, 𝑇) .

(29)

Next, by using a part condition of (5) (𝑠𝑏󸀠(𝑠))󸀠 ≥ 0, 𝑠𝑏󸀠(𝑠) −
(𝑠𝑏󸀠(𝑠))

󸀠

≤ 0 for any 𝑠 ∈ R+, we can obtain

𝜕𝑃

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0)
≤ 0, (30)

which contradicts with inequality (28). Thus, we know that
the maximum of 𝑃 in𝐷 × [0, 𝑇) is zero; that is,

𝑃 ≤ 0, in 𝐷 × [0, 𝑇) . (31)

With (11), we know

𝑏
󸀠
(𝑢)

𝑒𝑢
𝑢
𝑡
≤ 𝛼. (32)

For each fixed 𝑥 ∈ 𝐷, we integrate (32) from 0 to 𝑡:

∫
𝑡

0

𝑏󸀠 (𝑢)

𝑒𝑢
𝑢
𝑡
𝑑𝑡 = ∫

𝑢(𝑥,𝑡)

𝑢0(𝑥)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 ≤ 𝛼𝑡, (33)

which implies that 𝑢 must be a global solution of (1). In fact,
suppose that 𝑢 blows up at finite time 𝑇; then

lim
𝑡→𝑇

−

𝑢 (𝑥, 𝑡) = +∞. (34)

Passing to the limit as 𝑡 → 𝑇− in (33) yields

∫
+∞

𝑢0(𝑥)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 ≤ 𝛼𝑇,

∫
+∞

𝑚0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 = ∫

𝑢0(𝑥)

𝑚0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 + ∫

+∞

𝑢0(𝑥)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠

≤ ∫
𝑢0(𝑥)

𝑚0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 + 𝛼𝑇 < +∞,

(35)

which contradicts with the condition (iii). This shows that 𝑢
is global solution. Moreover, it follows from (33) that

∫
𝑢(𝑥,𝑡)

𝑢0(𝑥)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 = ∫

𝑢(𝑥,𝑡)

𝑚0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 − ∫

𝑢0(𝑥)

𝑚0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠

= 𝐻 (𝑢 (𝑥, 𝑡)) − 𝐻 (𝑢
0
(𝑥)) ≤ 𝛼𝑡.

(36)

Since𝐻 is an increasing function, we have

𝑢 (𝑥, 𝑡) ≤ 𝐻
−1

(𝛼𝑡 + 𝐻 (𝑢
0
(𝑥))) . (37)

The proof is completed.
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3. Blow-Up Solution

The following theorem is the main result for the blow-up
solution of (1).

Theorem2. Let 𝑢 be a solution of problem (1). Assume that the
following conditions (i)–(iv) are satisfied.

(i) For any 𝑠 ∈ R+,

(𝑠𝑏
󸀠
(𝑠))
󸀠

≥ 0, 𝑠𝑏
󸀠
(𝑠) − (𝑠𝑏

󸀠
(𝑠))
󸀠

≥ 0, (
𝑎 (𝑠)

𝑏󸀠 (𝑠)
)

󸀠

≥ 0,

[
1

𝑎 (𝑠)
(
𝑎 (𝑠)

𝑏󸀠 (𝑠)
)

󸀠

+
1

𝑏󸀠 (𝑠)
]

󸀠

+
1

𝑎 (𝑠)
(
𝑎 (𝑠)

𝑏󸀠 (𝑠)
)

󸀠

+
1

𝑏󸀠 (𝑠)
≥ 0.

(38)

(ii) For any (𝑥, 𝑠, 𝑑, 𝑡) ∈ 𝐷 ×R+ ×R+ ×R+,

(
𝑓 (𝑥, 𝑠, 𝑑, 𝑡)

ℎ (𝑡)
)
𝑡

≥ 0,

𝑓
𝑑
(𝑥, 𝑠, 𝑑, 𝑡) [(

1

𝑏󸀠 (𝑠)
)

󸀠

+
1

𝑏󸀠 (𝑠)
] ≥ 0,

(
𝑓 (𝑥, 𝑠, 𝑑, 𝑡) 𝑏

󸀠
(𝑠)

𝑎 (𝑠)
)
𝑠

−
𝑓 (𝑥, 𝑠, 𝑑, 𝑡) 𝑏

󸀠
(𝑠)

𝑎 (𝑠)

+
ℎ󸀠 (𝑡) (𝑏

󸀠
(𝑠))
2

𝑎 (𝑠) ℎ (𝑡)
≥ 0.

(39)

(iii) Consider the integration

∫
+∞

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
d𝑠 < +∞, 𝑀

0
= max
𝐷

𝑢
0
(𝑥) . (40)

(iv) Consider

𝛽 = min
𝐷

{
∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢

0
) ∇𝑢
0
) + f (𝑥, 𝑢

0
, 𝑞
0
, 0)

𝑒𝑢0
} > 0,

𝑞
0
=
󵄨󵄨󵄨󵄨∇𝑢0

󵄨󵄨󵄨󵄨
2

.

(41)

Then the solution 𝑢 of problem (1) must blow up in finite
time 𝑇, and

𝑇 ≤
1

𝛽
∫
+∞

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠,

𝑢 (𝑥, 𝑡) ≤ 𝐺
−1

(𝛽 (𝑇 − 𝑡)) , (𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇) ,

(42)

where

𝐺 (𝑧) = ∫
+∞

𝑧

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠, 𝑧 > 0, (43)

and 𝐺−1 is the inverse function of 𝐺.

Proof. Construct the following auxiliary function:

𝑄 (𝑥, 𝑡) = 𝑏
󸀠
(𝑢) 𝑢
𝑡
− 𝛽𝑒
𝑢
. (44)

So we have

∇𝑄 = 𝑏
󸀠󸀠
𝑢
𝑡
∇𝑢 + 𝑏

󸀠
∇𝑢
𝑡
− 𝛽𝑒
𝑢
∇𝑢,

Δ𝑄 = 𝑏
󸀠󸀠󸀠
𝑢
𝑡
|∇𝑢|
2
+ 2𝑏
󸀠󸀠
∇𝑢 ⋅ ∇𝑢

𝑡
+ 𝑏
󸀠󸀠
𝑢
𝑡
Δ𝑢 + 𝑏

󸀠
Δ𝑢
𝑡

− 𝛽𝑒
𝑢
|∇𝑢|
2
− 𝛽𝑒
𝑢
Δ𝑢.

(45)

As the previous derivation from (14) to (25), we can obtain

𝑎𝑘ℎ

𝑏󸀠
Δ𝑄

+ [(2𝑘ℎ(
𝑎

𝑏󸀠
)
󸀠

+
2𝑓
𝑞

𝑏󸀠
)∇𝑢 +

𝑎ℎ

𝑏󸀠
∇𝑘] ⋅ ∇𝑄

+ {
𝑎

(𝑏󸀠)
2
(
𝑓𝑏󸀠

𝑎
)
𝑢

+
ℎ󸀠

ℎ

+ [𝑎𝑘ℎ(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

)

󸀠

+2𝑓
𝑞
(
1

𝑏󸀠
)
󸀠

] |∇𝑢|
2
}𝑄 − 𝑄

𝑡

= −𝛽𝑒
𝑢
{2𝑓
𝑞
[(

1

𝑏󸀠
)
󸀠

+
1

𝑏󸀠
]

+𝑎𝑘ℎ[(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

+
1

𝑏󸀠
)

󸀠

+
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

+
1

𝑏󸀠
]} |∇𝑢|

2

−
(𝑏󸀠)
2

𝑎
(
𝑎

𝑏󸀠
)
󸀠

𝑢
2

𝑡
− 𝛽𝑒
𝑢 𝑎

(𝑏󸀠)
2

× [

[

(
𝑓𝑏󸀠

𝑎
)
𝑢

−
𝑓𝑏󸀠

𝑎
+
ℎ󸀠(𝑏󸀠)

2

𝑎ℎ
]

]

− ℎ(
𝑓

ℎ
)
𝑡

.

(46)

It is seen from (38) and (39) that the right-hand side of (46)
is nonpositive; that is,

𝑎𝑘ℎ

𝑏󸀠
Δ𝑄

+ [(2𝑘ℎ(
𝑎

𝑏󸀠
)
󸀠

+
2𝑓
𝑞

𝑏󸀠
)∇𝑢 +

𝑎ℎ

𝑏󸀠
∇𝑘] ⋅ ∇𝑄

+ {
𝑎

(𝑏󸀠)
2
(
𝑓𝑏
󸀠

𝑎
)
𝑢

+
ℎ󸀠

ℎ

+ [𝑎𝑘ℎ(
1

𝑎
(
𝑎

𝑏󸀠
)
󸀠

)

󸀠

+2𝑓
𝑞
(
1

𝑏󸀠
)
󸀠

] |∇𝑢|
2
}𝑄 − 𝑄

𝑡

≤ 0, in 𝐷 × (0, 𝑇) .

(47)

By applying maximum principle (see [17]), it follows from
(47) that 𝑄 can attain its nonpositive minimum only for
𝐷 × {0} or 𝜕𝐷 × (0, 𝑇).
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For𝐷 × {0}, with (41), we have

min
𝐷

𝑄 (𝑥, 0)

= min
𝐷

{𝑏
󸀠
(𝑢
0
) (𝑢
0
)
𝑡
− 𝛽𝑒
𝑢0}

= min
𝐷

{∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢
0
) ∇𝑢
0
)

+𝑓 (𝑥, 𝑢
0
, 𝑞
0
, 0) − 𝛽𝑒

𝑢0}

=min
𝐷

{𝑒
𝑢0[

∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢
0
) ∇𝑢
0
) + 𝑓 (𝑥, 𝑢

0
, 𝑞
0
, 0)

𝑒𝑢0

−𝛽]} = 0.

(48)

For 𝜕𝐷×(0, 𝑇), substituting𝑃 and 𝛼with𝑄 and 𝛽 in (29),
respectively, we have

𝜕𝑄

𝜕𝑛
= −𝛾

(𝑢𝑏󸀠)
󸀠

𝑏󸀠
𝑄 + 𝛾𝛽𝑒

𝑢
𝑢𝑏󸀠 − (𝑢𝑏󸀠)

󸀠

𝑏󸀠
, on 𝜕𝐷 × (0, 𝑇) .

(49)

Combining (47)–(49) with condition (i), we can apply the
maximum principles again to obtain that the minimum of 𝑄
in𝐷 × [0, 𝑇) is zero. Thus,

𝑄 ≥ 0, in 𝐷 × [0, 𝑇) , (50)

𝑏󸀠 (𝑢)

𝑒𝑢
𝑢
𝑡
≥ 𝛽. (51)

At the point 𝑥∗ ∈ 𝐷, where 𝑢
0
(𝑥∗) = 𝑀

0
, we can integrate

(51) from 0 to 𝑡 to get

∫
𝑡

0

𝑏󸀠 (𝑢)

𝑒𝑢
𝑢
𝑡
𝑑𝑡 = ∫

𝑢(𝑥
∗
,𝑡)

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 ≥ 𝛽𝑡, (52)

which implies that 𝑢 must blow up in finite time. Actually, if
𝑢 is a global solution of (1), then, for any 𝑡 > 0, (52) shows

∫
+∞

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 ≥ ∫

𝑢(𝑥
∗
,𝑡)

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 ≥ 𝛽𝑡. (53)

Letting 𝑡 → +∞ in (53), we have

∫
+∞

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 = +∞, (54)

which contradicts with assumption (40). This shows that 𝑢
must blow up in finite time 𝑡 = 𝑇. Moreover, letting 𝑡 → 𝑇

in (52), we have

𝑇 ≤
1

𝛽
∫
+∞

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠. (55)

By integrating inequality (51) over [𝑡, 𝑠] (0 < 𝑡 < 𝑠 < 𝑇), for
each fixed 𝑥, we obtain

𝐺 (𝑢 (𝑥, 𝑡)) ≥ 𝐺 (𝑢 (𝑥, 𝑡)) − 𝐺 (𝑢 (𝑥, 𝑠))

= ∫
+∞

𝑢(𝑥,𝑡)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 − ∫

+∞

𝑢(𝑥,𝑠)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠

= ∫
𝑢(𝑥,𝑠)

𝑢(𝑥,𝑡)

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 = ∫

𝑠

𝑡

𝑏󸀠 (𝑢)

𝑒𝑢
𝑢
𝑡
𝑑𝑡 ≥ 𝛽 (𝑠 − 𝑡) .

(56)

Hence, by letting 𝑠 → 𝑇, we have

𝐺 (𝑢 (𝑥, 𝑡)) ≥ 𝛽 (𝑇 − 𝑡) . (57)

Since 𝐺 is a decreasing function, we obtain

𝑢 (𝑥, 𝑡) ≤ 𝐺
−1

(𝛽 (𝑇 − 𝑡)) . (58)

The proof is completed.

4. Applications

When ℎ(𝑡) ≡ 1, 𝑘(𝑥) ≡ 1, 𝑓(𝑥, 𝑢, 𝑞, 𝑡) = 𝑓(𝑢) or 𝑏(𝑢) = 𝑢,
ℎ(𝑡) ≡ 1, 𝑘(𝑥) ≡ 1, 𝑓(𝑥, 𝑢, 𝑞, 𝑡) = 𝑓(𝑢), or ℎ(𝑡) ≡ 1,
𝑘(𝑥) ≡ 1, 𝑎(𝑢) ≡ 1, 𝑓(𝑥, 𝑢, 𝑞, 𝑡) = 𝑓(𝑢), the conclusions
of Theorems 1 and 2 still hold true. In this sense, our results
extend and supplement the results in [14–16]. In what follows,
we present several examples to demonstrate the applications
of the abstract results.

Example 1. Let 𝑢 be a solution of the following problem:

(𝑢𝑒
𝑢
)
𝑡
= ∇ ⋅ (

1

1 + 𝑡
𝑒
|𝑥|
2

(1 + 𝑢) 𝑒
𝑢
∇𝑢)

+
1

1 + 𝑡
(𝑒
−𝑢

+ 𝑒
𝑞
) (𝑒
−𝑡

+ |𝑥|
2
) , in 𝐷 × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
+ 2𝑢 = 0, on 𝜕𝐷 × (0, 𝑇) ,

𝑢 (𝑥, 0) = 2 − |𝑥|
2
, in 𝐷,

(59)

where 𝑞 = |∇𝑢|2, 𝐷 = {𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
) | |𝑥|

2
< 1} is the unit

ball of R3. Now we have

𝑏 (𝑢) = 𝑢𝑒
𝑢
, ℎ (𝑡) =

1

1 + 𝑡
,

𝑘 (𝑥) = 𝑒
|𝑥|
2

, 𝑎 (𝑢) = (1 + 𝑢) 𝑒
𝑢
, 𝛾 = 2,

𝑓 (𝑥, 𝑢, 𝑞, 𝑡) =
1

1 + 𝑡
(𝑒
−𝑢

+ 𝑒
𝑞
) (𝑒
−𝑡

+ |𝑥|
2
) ,

𝑢
0
(𝑥) = 2 − |𝑥|

2
.

(60)

In order to determine the constant 𝛼, we assume

𝑠 = |𝑥|
2
, (61)
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and then 0 ≤ 𝑠 ≤ 1 and

𝛼 = max
𝐷

∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢
0
) ∇𝑢
0
) + 𝑓 (𝑥, 𝑢

0
, 𝑞
0
, 0)

𝑒𝑢0

= max
𝐷

{𝑒
|𝑥|
2

(10|𝑥|
2
− 18) + (1 + |𝑥|

2
)

× (𝑒
−4+2|𝑥|

2

+ 𝑒
−2+5|𝑥|

2

)}

= max
0≤𝑠≤1

{𝑒
𝑠
(10𝑠 − 18) + (1 + 𝑠)

× [𝑒
−4+2𝑠

+ 𝑒
−2+5𝑠

]} = 18.6955.

(62)

It is easy to check that (5)–(7) hold. ByTheorem 1, 𝑢must be
a global solution, and

𝑢 (𝑥, 𝑡) ≤ 𝐻
−1

(𝛼𝑡 + 𝐻 (𝑢
0
(𝑥)))

= −1 +
2√18.6955𝑡 + (1 + 𝑢

0
(𝑥))
2

= −1 +
2√18.6955𝑡 + (3 − |𝑥|

2
)
2

.

(63)

Example 2. Let 𝑢 be a solution of the following problem:

(𝑢 + ln 𝑢)
𝑡
= ∇ ⋅ ((1 + 𝑡) 𝑒

−|𝑥|
2

(1 +
1

𝑢
)∇𝑢)

+ (1 + 𝑡) (𝑒
𝑢
− 𝑒
−𝑞
) (6 + 𝑡|𝑥|

2
) ,

in 𝐷 × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
+ 2𝑢 = 0, on 𝜕𝐷 × (0, 𝑇) ,

𝑢 (𝑥, 0) = 2 − |𝑥|
2
, in 𝐷,

(64)

where 𝑞 = |∇𝑢|
2, 𝐷 = {𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
) | |𝑥|

2
< 1} is the unit

ball of R3. Now we have

𝑏 (𝑢) = 𝑢 + ln 𝑢, ℎ (𝑡) = 1 + 𝑡,

𝑘 (𝑥) = 𝑒
−|𝑥|
2

, 𝑎 (𝑢) = 1 +
1

𝑢
, 𝛾 = 2,

𝑓 (𝑥, 𝑢, 𝑞, 𝑡) = (1 + 𝑡) (𝑒
𝑢
− 𝑒
−𝑞
) (6 + 𝑡|𝑥|

2
) ,

𝑢
0
(𝑥) = 2 − |𝑥|

2
.

(65)

In order to determine the constant 𝛽, we assume

𝑠 = |𝑥|
2
, (66)

and then 0 ≤ 𝑠 ≤ 1 and

𝛽 = min
𝐷

∇ ⋅ (ℎ (0) 𝑘 (𝑥) 𝑎 (𝑢
0
) ∇𝑢
0
) + 𝑓 (𝑥, 𝑢

0
, 𝑞
0
, 0)

𝑒𝑢0

= min
𝐷

{

{

{

4|𝑥|
6
− 26|𝑥|

4
+ 50|𝑥|

2
− 36

(2 − |𝑥|
2
)
2

𝑒2

+6 (1 − 𝑒
−3|𝑥|
2
−2
)
}

}

}

= min
0≤𝑠≤1

{
4𝑠3 − 26𝑠2 + 50𝑠 − 36

(2 − 𝑠)
2
𝑒2

+6 (1 − 𝑒
−3𝑠−2

) } = 3.96997.

(67)

It is easy to check that (38)–(40) hold. By Theorem 2, 𝑢must
blow up in finite time 𝑇, and

𝑇 ≤
1

𝛽
∫
+∞

𝑀0

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠

=
1

3.96997
∫
+∞

2

(1 +
1

𝑠
)

1

𝑒𝑠
𝑑𝑠 = 0.04641,

𝑢 (𝑥, 𝑡) ≤ 𝐺
−1

(𝛽 (𝑇 − 𝑡)) = 𝐺
−1

(3.96997 (𝑇 − 𝑡)) ,

(68)

where

𝐺 (𝑧) = ∫
+∞

𝑧

𝑏󸀠 (𝑠)

𝑒𝑠
𝑑𝑠 = ∫

+∞

𝑧

(1 +
1

𝑠
)

1

𝑒𝑠
𝑑𝑠, 𝑧 ≥ 0, (69)

and 𝐺−1 is the inverse function of 𝐺.
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