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Wireless sensor networks (WSN) are becoming increasingly promising in practice. As the predeployment design and optimization
are usually unpractical in random deployment scenarios, the global optimum of the WSN’s performance is achievable only if the
topology dependent self-organizing process acquires the overview of the WSN, in which the boundary is the most important. The
idea of this paper comes from the fact that contours only break on the geometrical boundary and the WSN are discrete sampling
systems of real environments. By simulating a diffusion process in discrete form, the end point of semi-contours suggests the
boundary nodes of a WSN. The simulation cases show the algorithm is well worked in WSN with average degree higher than 10.
The boundary recognition could be very valuable for other algorithms dedicated to optimize the overall performance of WSN.

1. Introduction

There are some areas where we have interests in what is
happening, but environments are hostile for a man or too
costly to sending aman for the duty.Wireless sensor networks
(WSN), which are usually at low cost and self-organized, are
appropriate for those tasks [1, 2].

Some existed algorithms assume that the sensor fields
are convex in shape [3, 4]. However, such assumption is not
always fulfilled.The situation of a particular interested area is
oftenunknown. It is quite possible that the area contains some
regions with poor accessibility, such as unforeseen obstacles
and/or holes [5]. Thus, applying those protocols may lead
to a degraded performance or suffer a failure result. Thus,
recognizing the geometry of the field should be the first step
of organizing WSN, which is deployed in an unknown field,
to try to achieve better performances. Plotting the boundary
is the most basic measure to describe a geometric shape and
probably the best one. In this paper, we study the problem of
revealing the global geometric feature of the sensor field, in
particular, recognizing the sensor nodes on the boundary.

Our viewpoint is to regard theWSNas a discrete sampling
of the geometric environment. This is inspired by the fact
that the WSN are used for providing intense monitoring

of the environment. So, the boundaries of the sensor field
usually represent the physical boundary of the underlying
environments, such as walls of buildings and changes of
topography. More importantly, newly appeared boundaries,
which means a majority of local sensors are off duty due
to destruction or power deficient, could be an indicator of
emergency. For example, a wild fire in forest damages all
sensors in fire line and also creates new boundary in the
sensor field. An inner boundary is also an important indicator
of the unhealthiness of the network, such as insufficient
connectivity and coverage, revealing the locations where
additional sensor nodes are required.

Furthermore, bottleneck recognition [6, 7], which is vital
for precise schedule over WSN, requires boundary informa-
tion. And, in coverage problem, the coverage intensity near
the network boundary attracts a lot of research interest [8, 9].
So, boundary recognition provides useful information for
other WSN applications.

2. Previous Works and Assumptions

It is always easy to find the boundary when an overview is
offered. For example, in Figure 1, thewhite area represents the
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Figure 1: Sensor nodes deployed in geometric areas.

field and the dots represent the sensor nodes.The task should
be easy if we canhave a glance at one of these pictures, because
the overview is provided for human brain. However, inWSN,
such centralized process of acquiring the overview needs lots
of communications to collect all connection information in
the whole networks.The cost of doing so inWSN is extremely
high in both energy and time. So, decentralized algorithm or
distributed ones are required.

There are some distributed algorithms trying to recognize
the boundary in the literature. They can be classified into
three categories by their basic ideas: geometric-based algo-
rithms, statistical algorithms, and topological-based algo-
rithms.

The geometric-based algorithms assume that a node of
WSN realizes the exact locations of itself and the nodes in
its neighborhood. Fang proposed the algorithm based on
the fact that a data packet can only get stuck in a node
at boundary in a geographical forwarding [10, 11]. So some
boundary nodes are identified. Repeating the process of
such geographical forwarding starting from different beacon
nodes eventually discovers almost the complete boundary
cycles. The idea is nice and clear. However, the information
of location depends on locating algorithm or locating device
such as GPS system. Locating algorithm certainly consumes
some energy and the locating error may lead to boundary
error. While the locating device is usually an energy hunger.
Andmore, sweeping over the whole network again and again
consumes lots of energy. So, the geometric based algorithm
recognizes the boundary at a high cost.

The information of nodes’ location definitely benefits the
boundary recognition. However, the boundary recognition
is also needed in the WSN which do not have the ability
of locating. So statistical algorithms and topological based
algorithms are developed for such WSN.

Statistical algorithm assumes that the nodes are uni-
formly randomly deployed in sensor field. Fekete proposed
an algorithm with such assumption [12]. The idea is inspired
by the law of large number. According to the law, the average
of the results obtained from a large number of trials should be

close to the expected value and will tend to become closer as
more trials are performed. In his algorithm, the deployment
of other nodes is regarded as a “trial,” and the ratio of
neighboring area and the whole sensing area is regarded as
“expected value.” So, if lots of nodes are deployed, the number
of neighbor nodes should be “total trials” × “expected value.”
Thus, a node should have a number of neighbors that is close
to the average degree (the average number of neighboring
nodes in the whole network), unless it is on a boundary.
This is because the neighboring area of a boundary node
is much smaller than an interior node. The algorithm does
not require any location information and gets good result in
WSN with high average degree. However, the requirement of
density is unrealistic: the average degree should be close or
over 100 [13]. In practice, the network is often so sparse that
the number of “trials” is not big enough to make the results
close to “expected value.”

Topological based algorithms assume that a node knows
only which other nodes are connected directly [14–18]. This
assumption is similar to that in this paper; especially we
are inspired by Funke’s approach [17]. In this method, a
group of beacons are randomly selected first. Then, after
flooding, all nodes in WSN are given a “distant,” which is
the hop count to the nearest beacon. In this way, there are
many iso-contours of “distant” in theWSN. Finally, the nodes
where the iso-contours break are marked as boundary nodes.
The simulation of the algorithm shows that some interior
nodes are faultily identified. This is because the value of
“distant” is measured in integer; randomness of deployment
may cause the “distant” of a particular node vary from 𝑥

to 𝑥 + 1 or 𝑥 − 1. Such phenomenon in WSN makes it
possible that interior node is faultily identified, especially in
sparse networks. Wang proposed another topological based
algorithm [13]. It is reported that the complete sequences of
boundary nodes are identified. However, this method can
only be used in the scenario that the WSN have topology
holes in them. The algorithm does not find any boundary
nodes in WSN which is simply connected (without holes).
Furthermore, if there are some nodes faultily recognized
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already (this is never avoided completely), the final process,
which connects distributed boundary nodes to a sequence
in order to decrease the missing identification, could be a
disaster as faulty identification increasesmassively. In a recent
paper, [18] proposes another topological algorithm, which
achieves good hole detection result. But its complexity is
higher than the algorithm proposed in this paper.

This paper proposes a distributed algorithm for recogniz-
ing the boundary ofWSN, using only direct connection infor-
mation. We do not assume that any location information,
distance information, or angular information is collected.

This paper is based on the following assumptions:

(1) the nodes in WSN are provided with limited compu-
tation ability, energy, and memory;

(2) the communication range of a node is much greater
than sensing range; so, the average degree is reason-
able if the sensing field is well covered;

(3) the nodes are uniformly randomly deployed in the
sensing field;

(4) the nodes are deployed in a closed area;
(5) the sensing data are not required; that is, the algo-

rithm does not require any positioning information
about the nodes.

The basic idea of this paper comes from an intense
observation of a gas diffusion process in a closed space. We
are motivated by the fact that some features of concentration
field suggest the boundary of a closed space and then realize
that the boundary of WSN can be recognized by simulating
similar process.

3. An Observation of Mass Diffusion

3.1. The Process of Mass Diffusion. Consider the following
scenario. Bounded space 𝐺 is filled with inactive gas. For
some reasons, another type inactive gas 𝛼 is generated at
constant rate at 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
, which are inside the space 𝐺.

As time goes, gas𝛼 gradually spreads everywhere in the space.
This process is a typical diffusion process. Let us observe that
the concentration 𝐶 of gas 𝛼 varies from time 𝑡 and position
𝑃(𝑥, 𝑦, 𝑧) intensely in this process:

𝐶 = 𝐶 (𝑃, 𝑡) . (1)

Equation (1) is continuous and two-order differentiablemath-
ematically.

Fick’s first law relates the diffusive flux to the concentra-
tion under the assumption of steady state. It postulates that
the flux goes from regions of high concentration to regions of
low concentration, with a magnitude that is proportional to
the concentration gradient (spatial derivative):

⃗𝑗 = −𝐷∇𝐶, (2)

where ⃗𝑗 is the diffusion flux [mol⋅m−2⋅s−1]. ⃗𝑗 measures the
amount of substance that flows through a small area during a
small time interval.𝐷 is the diffusion coefficient or diffusivity
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Figure 2: Inside object 𝐺, interior region 𝑔 bounded by surface 𝑆.

in dimensions [m2⋅s−1]. ∇𝐶 is the concentration gradient
[mol⋅m−4].

Equation (2) is the differential form of Fick’s first law,
which shows howdiffusive flux behaves locally. By integrating
(2) over an infinitesimal surface 𝑆, the integral form of Fick’s
fist law is derived:

𝑑𝐽

𝑑𝑡

= −𝐷∬

𝑆

∇𝐶

→

𝑑𝐴, (3)

where 𝑑𝐽/𝑑𝑡 is the amount of substance transferred per unit
time [mol⋅s−1] and

→

𝑑𝐴 is an oriented surface area element
[m2]. The direction is to the outward normal of the element.

Equation (3) describes how substance transfers through a
surface.

If the surface 𝑆 is a non-self-intersecting continuous
closed surface as shown in Figure 2, Jordan-Brouwer separa-
tion theorem asserts that the surface 𝑆 divides the object 𝐺
(a 3-dimensional bounded closed domain) into an “interior”
region 𝑔, bounded by surface 𝑆, and an “exterior” region𝐺\𝑔,
which consists of all other parts, so that any continuous path
ends in different regions intersects 𝑆 somewhere. Hence, all
substance exchange between interior region 𝑔 and exterior
𝐺 \ 𝑔 flows through 𝑆.

The net amount of substance that flows into 𝐺 in a small
time interval [𝑡

1
, 𝑡
2
] can be derived from (3) by integrating

over 𝑡:

𝐽 = ∫

𝑡
2

𝑡
1

∯

𝑆

𝐷∇𝐶

→

𝑑𝐴𝑑𝑡

= ∫

𝑡
2

𝑡
1

∭

𝑔

[

𝜕

𝜕𝑥

(𝐷

𝜕𝐶

𝜕𝑥

) +

𝜕

𝜕𝑦

(𝐷

𝜕𝐶

𝜕𝑦

)

+

𝜕

𝜕𝑧

(𝐷

𝜕𝐶

𝜕𝑧

)] 𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑡.

(4)

In the scenario we are observing, there are a group of
sources 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
}, which generate gas 𝛼 at constant

rate:

𝐹 (𝑃, 𝑡) = {

constant 𝑃 ∈ 𝑌

0 𝑃 ∉ 𝑌.

(5)
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Thus, the net gain of gas 𝛼 in 𝑔 in time interval [𝑡
1
, 𝑡
2
] is

the sum of the gas that is generated in 𝑔 and that flows into 𝑔:

∫

𝑡
2

𝑡
1

∭

𝑔

[

𝜕

𝜕𝑥

(𝐷

𝜕𝐶

𝜕𝑥

) +

𝜕

𝜕𝑦

(𝐷

𝜕𝐶

𝜕𝑦

)

+

𝜕

𝜕𝑧

(𝐷

𝜕𝐶

𝜕𝑧

) + 𝐹 (𝑥, 𝑦, 𝑧)] 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡.

(6)

Meanwhile, the net gain of gas 𝛼 should also be described
by integrating the concentration change over time and space:

∫

𝑡
2

𝑡
1

∭

𝑔

𝜕𝐶

𝜕𝑡

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡. (7)

By the law of mass conservation, (6) equals (7) for any
space 𝑔 and time interval [𝑡

1
, 𝑡
2
]:

𝜕𝐶

𝜕𝑡

= 𝐷Δ𝐶 + 𝐹, (8)

where Δ is the Laplace operator.

3.2. Analysis in Mathematics. Considering the case intro-
duced above, there is not any gas 𝛼 in𝐺 at the very beginning:

𝐶 = 0 on 𝐺 × {0} . (9)

And, as the space 𝐺 is bounded, gas 𝛼 does not spread
outside 𝐺. Thus, at the boundary of space 𝜕𝐺

𝜕𝐶 (𝑃, 𝑡)

𝜕𝑛

= 0 on 𝜕𝐺 × (0, 𝑡] , (10)

where 𝑛 is the outward normal of 𝜕𝐺.
For the differential equation (8), initial condition and

boundary condition are given as (9) and (10). So, there is a
unique solution for any time and any spot in 𝐺. Therefore,
we can simulate the diffusion process discussed above and
determine the concentration value everywhere at any time.

In previous works, the boundary of the space 𝐺 is always
known. How about if the boundary exists but we do not know
where it is? Shall we find the boundary by observing the
concentration field?

Given time 𝑡, there is a concentration distribution of 𝛼
in 𝐺. Denote 𝐼(V) = {𝑃 | 𝐶(𝑃) = V}, 𝐼less(V) = {𝑃 |

𝐶(𝑃) < V}, and 𝐼more(V) = {𝑃 | 𝐶(𝑃) > V}, where V is
nonextreme concentration value. So, 𝐼(V), 𝐼less(V), and 𝐼more(V)
are all nonempty sets. 𝐼(V) is an iso-contour of concentration
value V. 𝐼less(V) and 𝐼more(V) are two sets of points where
concentration values are less or more than V.

There is at least one point 𝑃V ∈ 𝐼(V) on any path
connecting 𝐼less(V) and 𝐼more(V).

Proof. Let 𝑃
𝑙
∈ 𝐼less(V) and 𝑃𝑚 ∈ 𝐼more(V). Let 𝜑 : [0, 1] →

R3, such that 𝜑(0) = 𝑃
𝑙
, 𝜑(1) = 𝑃

𝑚
, and the restriction of

𝜑 to [0, 1] is injective. That is, 𝜑 is a non-self-intersecting
continuous curved line segment which ends with 𝑃

𝑙
and 𝑃

𝑚
.

Assume, if possible, ∃𝜑, such that 𝐼(V) ∩ 𝜑 = 0.
If so, for all 𝑥 ∈ [0, 1],𝐶(𝜑(𝑥)) ̸= V. As 𝜑 ⊂ 𝐺 and𝐶(𝑃) is a

continuous function on 𝐺, 𝐶(𝜑(𝑥)) is a continuous function

Figure 3: A map with contour [19].

Figure 4: Iso-contours when source is at the center of a circle.

about 𝑥 on [0, 1]. 𝐶(𝜑(0)) = 𝐶(𝑃
𝑙
) < V and 𝐶(𝜑(1)) =

𝐶(𝑃
𝑚
) > V; by the intermediate value theorem, ∃𝑥 ∈ [0, 1]

such that 𝐶(𝜑(𝑥)) = V, contradicting for all 𝑥 ∈ [0, 1],
𝐶(𝜑(𝑥)) ̸= V.

Therefore, for all 𝜑, ∃𝑥 ∈ [0, 1] such that 𝜑(𝑥) ∈ 𝐼(V).

Consequently, iso-contour never breaks in 𝐺; otherwise,
there should have been paths connecting 𝐼less(V) and 𝐼more(V).
Therefore, iso-contour either is closed surface or breaks on
the boundary of space 𝐺. That is, 𝜕𝐼(V) ⊂ 𝜕𝐺. In particular, if
𝐺 is a 2D space, iso-contour either is closed curve or ends
on the boundary of 𝐺. Thus, “𝑃 is the endpoint of an iso-
contour.”⇒ “𝑃 is on the boundary of 𝐺.”

The result is encouraging. However, we should notice that
“𝑃 is on the boundary of 𝐺.”  “𝑃 is the endpoint of an iso-
contour.”

In a map with contour, it is possible that contour is a
tangent curve to the boundary of the map at somewhere, as
the arrow points to in Figure 3. In this case, the union of end
points of all contour is almost equal to the complete boundary
of 𝐺, missing very few isolated points. But in the worst case,
the contour is a tangent curve to the boundary everywhere.
Here is an example. The space 𝐺 is circle or sphere in shape,
and the source of gas 𝛼 is exactly at the center. In this case, the
outmost iso-contour meets the boundary exactly as shown in
Figure 4.
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Figure 5: Subspace 𝑔
𝑖
surrounded by 𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
.

Although the worst case happens in small probability,
we should and can avoid it by generating another type of
inactive gas 𝛼 at different position and observing the iso-
contour 𝐼(V) of 𝛼.This way, the worst case is avoided and the
difference between⋃V(𝜕𝐼(V) ∪ 𝜕𝐼


(V)) and 𝜕𝐺 is even smaller.

More generally, if there are 𝑛 types of inactive gas generating
in space𝐺 at different positions, the union of end points of all
iso-contours and all types is almost equal to the boundary of
𝐺:

𝜕𝐺 ≈ ⋃

V
⋃

𝑛

𝜕𝐼
𝑛
(V) . (11)

4. Simulation of Diffusion in WSN for
Boundary Recognition

4.1. Discrete Form of Diffusion. A space 𝐺 is uniformly
divided into 𝑀 subspaces. 𝐺 = ⋃

𝑀

𝑖=0
𝑔
𝑖
, 𝑔
𝑖
∩ 𝑔
𝑗
= 0, 𝑖 ̸= 𝑗.

As 𝐺 is uniformly divided, denote 𝐴 as joint area of adjacent
subspace, 𝑥 as distance between them, and 𝑉 as volume of
a subspace. Consider the diffusion process in subspace 𝑔

𝑖
,

which is surrounded by 𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
, (see Figure 5).

Similar to (3), the net gain from adjacent subspace by
diffusion is

𝑑𝐽
𝑖

𝑑𝑡

=

𝑛

∑

𝑗=1

𝐷𝐴(𝐶
𝑗
− 𝐶
𝑖
)

𝑥

. (12)

And the change of concentration is due to diffusion in
adjacent subspace and the source effect:

𝑑𝐶
𝑖

𝑑𝑡

= 𝐹 +

𝑛

∑

𝑗=1

𝐷𝐴(𝐶
𝑗
− 𝐶
𝑖
)

𝑉𝑥

, (13)

where

𝐹 = {

positive constant, if there is source of gas in 𝑔
𝑖

0, otherwise.
(14)

So,

lim
Δ𝑡→0

𝐶
𝑖
(𝑡 + Δ𝑡) − 𝐶

𝑖
(𝑡)

Δ𝑡

= 𝐹 +

𝐷𝐴

𝑉𝑥

𝑛

∑

𝑗=1

(𝐶
𝑗
(𝑡) − 𝐶

𝑖
(𝑡))

lim
Δ𝑡→0

𝐶
𝑖
(𝑡 + Δ𝑡)

= lim
Δ𝑡→0

[

[

𝐹Δ𝑡 +

𝐷𝐴Δ𝑡

𝑉𝑥

𝑛

∑

𝑗=1

𝐶
𝑗
(𝑡) + (1 −

𝑛𝐷𝐴Δ𝑡

𝑉𝑥

)𝐶
𝑖
(𝑡)
]

]

.

(15)

Let 𝐸
𝑖
(𝑡) = (1/𝑛)∑

𝑛

𝑗=1
𝐶
𝑗
(𝑡) as average concentration of

𝑔
𝑖
’s adjacent subspace and 𝑘 = 𝑛𝐷𝐴Δ𝑡/𝑉𝑥. If Δ𝑡 → 0, then

𝑘 ∈ (0, 1) and

𝐶
𝑖
(𝑡 + Δ𝑡) ≈ 𝑘𝐸

𝑖
(𝑡) + (1 − 𝑘) 𝐶

𝑖
(𝑡) + 𝐹Δ𝑡. (16)

The concentration of𝑔
𝑖
after time intervalΔ𝑡 is aweighted

average of current concentration of 𝑔
𝑖
and its surroundings,

plus a positive constant if there is source of gas in it.

4.2. Simulating Diffusion in WSN. In a WSN application,
a lot of sensor nodes are deployed in a sensing area. Our
viewpoint is to regard the WSN as a discrete sampling of the
environment. Every sensor node is a sample of local area. So,
we virtually start a simulation of multigas diffusion process.

Assuming that 𝑤 types of gas are spreading in the area,
the local concentration of them at sensor node 𝑁

𝑖
is 𝐶
𝑖
=

[𝐶
1

𝑖
, 𝐶
2

𝑖
, . . . , 𝐶

𝑤

𝑖
]. The nodes that can communicate directly

with𝑁
𝑖
represent the adjacent subspace. Randomly, select 𝑤

groups of nodes as diffusion source of 𝑤 types of gas.
At the very beginning, for all 𝑖, 𝐶

𝑖
(0) = 0. Then the

diffusion process starts.
At time 𝑡, sensor node 𝑁

𝑖
broadcasts its current con-

centration vector 𝐶
𝑖
(𝑡). Its 1-hop neighbors will receive this

data package. Meanwhile,𝑁
𝑖
receives the data packages from

its neighbors 𝐶
1
(𝑡), 𝐶
2
(𝑡), . . . , 𝐶

𝑛
(𝑡). Applying (16) and when

Δ𝑡 = 1,

𝐶
𝑖
(𝑡 + 1) = (1 − 𝑘) 𝐶

𝑖
(𝑡) + 𝑘𝐸

𝑖
(𝑡) + 𝐹, (17)

where

𝐸
𝑖
(𝑡) =

1

𝑛

𝑛

∑

𝑗=1

𝐶
𝑗
(𝑡) . (18)

𝐹 = [0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢−1

, 𝑐, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑤−𝑢

] if 𝑁
𝑖
is selected as source of the

𝑢th type of gas. 𝐹 = 0 if𝑁
𝑖
is not source of any type.

4.3. Semi-Iso-Contours andTheir End Points. After repeating
several times, the diffusion process spreads virtual gas every-
where in the sensor field. Figure 6(a) shows the concentration
distribution of one type of gas in a sensor field. Then,
we can draw semi-iso-contours. The reason why we call it
semi-iso-contour rather than iso-contour is that there are
seldom absolute equalities in such discrete sampling system.
Therefore, approximately equality is employed instead. The
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(a) (b)

(c)

Figure 6: A concentration map and semi-iso-contours. The virtual sources are marked as star. The hotter colour represents higher
concentration value, while the cooler colour represents lower concentration value.

criteriawe used for approximately equality in 1-hopneighbors
are that𝐶𝑢

𝑖
≈ 𝐶
𝑢

𝑗
if and only if |𝐶𝑢

𝑖
−𝐶
𝑢

𝑗
| < 0.3max𝑛

𝑘=0
|𝐶
𝑢

𝑖
−𝐶
𝑢

𝑘
|.

Figure 6(b) shows semi-iso-contours in the sensor field. And
Figure 6(c) displays all end points of semi-iso-contours.

The end points of semi-iso-contours roughly show the
boundary of the sensor field in Figure 6(c). But, there are
both some faulty recognitions and miss recognitions. This
is because the WSN are a discrete sampling system rather
than a continuous physical system. To increase the quality of
boundary recognition, we shall use information from other
types of gas. In our simulation, 𝑤 = 10; that is, 10 types
of virtual gas are spreading simultaneously. Figure 7 show
semi-iso-contours and their end points of the other 9 types
of virtual gas.

4.4. Final Results of Boundary Recognition. Reading Figure 7,
we can conclude that the inner nodes are much less probable
to be the end points of semi-iso-contours than the boundary
nodes. So, if a node is an end point of semi-iso-contour
for multiple times in different types of virtual gas, it is very
possible that it is located at the boundary of the WSN. When

we pick all nodes that are end points at least 3 times out of 10,
the boundary recognition is shown in Figure 8.

4.5. Complexity Analysis. Our approach for boundary recog-
nition consists of 3 steps as follows:

(1) simulating the process of diffusion;
(2) drawing semi-iso-contours;
(3) determining whether to be an end point or not.
The 1st step repeats multiple times of communication in

neighborhood and calculation. In each repeat, every node
should communicate with all its 1-hop neighbors and update
𝑤 dimensional vector𝐶

𝑖
(𝑡) to𝐶

𝑖
(𝑡+1).This is𝑂(𝑛𝑤) in time,

where 𝑛 is the number of 1-hop neighbors.The process should
repeat 𝑂(ℎ) times in order to guarantee that all nodes are
affected by virtual diffusion, where ℎ is the maximum hop
counts between 2 nodes in the sensor field. ℎ is decided by
the range of the sensor field and the communication range of
sensor nodes, which is constant after deployment. So the time
complexity for the first step is 𝑂(𝑛𝑤)𝑂(1) = 𝑂(𝑛𝑤).

The 2nd step requires a comparison in neighborhood.
That is 𝑂(𝑛𝑤) in time.
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(a) (b)

(c) (d)

(e)

Figure 7: Semi-iso-contours and their end points of the other 9 types of virtual gas.

Figure 8: Final result of boundary recognition.

The 3rd step requires a count over 𝑤 types. That is 𝑂(𝑤)
in time.

So, the overall complexity in time is 𝑂(𝑛𝑤).
In all three steps, the nodes record current concentration

value of adjacent nodes and itself. All historical data are
discarded. So the overall complexity in memory is 𝑂(𝑛𝑤).

A recent paper proposes a topological based algorithm
[18], which achieves good hole detection result. In this
paper, Dijkstra’s shortest path algorithm is used to construct
manifold, so the total complexity is at least 𝑂(𝑁2), where 𝑁
is the number of all sensors in the field. In comparison, the
algorithm we proposed is much less complex.

5. Case Study

The algorithm discussed above is applied in different sensor
fields. The results are shown in Figure 9.

In all these cases, the nodes that are recognized as
boundary nodes generally cover the geometrical boundary of
the sensor fields. A few inner nodes, which are at least 1-hop
range away from actual geometrical boundary, are faultily
identified. Table 1 is a statistic of faulty recognition.

It is predictable that the result of boundary recognition
is better if the average degree is higher, because when 𝑛 →

∞, the discrete sampling system tends to continuous system.
In the other hand, the sparseness of WSN challenges the
algorithm proposed in this paper. The result in a same area
as case (a) in Figure 9 with lower average degree is shown in
Figure 10. And the relation between faulty rate and average
degree is shown in Figure 11 faulty rate versus average degree.

When faulty rate increases up to 5% or higher
(Figure 10(b)), the recognition result is worthless. Thus,
the algorithm proposed in this paper should be only applied
in the WSN with average degree higher than 10. Funke tests
the algorithm in sparse WSN [17]. The testing area is a circle
hole in square. The comparison shown in Figure 12 indicates
that the result of our algorithm at average degree of 10 is
comparable with Funke’s result at average of 18 and is much
better than Funke’s result at average degree of 10.

6. Conclusion

In this paper, a distributed algorithm for boundary recogni-
tion in WSN is proposed. The idea comes from the facts that
iso-contours only break on the geometrical boundary and the
WSN is a discrete sampling systemof real environment.Then,
we virtually start a diffusion process to create concentration
gradient field in WSN, and finally the nodes that are often
identified as end points of semi-iso-contours are regarded
as boundary nodes. The simulation results show that the
algorithm works well for the WSN with average degree
over 10. Further, as diffusion in 3D space is well studied,
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(a1) (a2)

(b1)

(c1) (c2)

(d1) (d2)

(b2)

Figure 9: Continued.
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(e1) (e2)

(f1) (f2)

(g1) (g2)

Figure 9: Boundary recognition in multiple cases. (a) 3023 nodes with average degree 13.1; (b) 2094 nodes with average degree 12.6; (c) 2381
nodes with average degree 13.0; (d) 2115 nodes with average degree 12.5; (e) 2024 nodes with average degree 13.4; (f) 1311 nodes with average
degree 13.2; (g) 6811 nodes with average degree 13.3.

(a) (b)

Figure 10: Boundary recognition in sparse WSN. (a) 10.9 in average degree and (b) 8.9 in average degree.

Table 1: Statistics of faulty recognition.

Figure 9(a) Figure 9(b) Figure 9(c) Figure 9(d) Figure 9(e) Figure 9(f) Figure 9(g)
Number of nodes 3023 2094 2381 2115 2024 1311 6811
Inner nodes 2468 1402 1866 1448 1738 1065 5618
Faulty recognition 9 25 2 18 13 9 2
Faulty rate (%) 0.36 1.78 0.08 1.24 0.7 0.85 0.04
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Figure 11: Faulty rate versus average degree.

(a) (b) (c) (d)

(e) (f)

Figure 12: A comparison between algorithms. (a–d) Funke’s algorithm with average degree at 5 in (a), 10 in (b), 18 in (c), and 39 in (d). The
black dots are identified as boundary nodes, while gray ones are inner nodes. (e)–(f) Our algorithm with average degree at 10.

our algorithm is potentially to be improved to recognize
boundary of a 3D WSN, which is also a hot research topic
[8, 20].
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