
Research Article
Certain Spaces of Functions over the Field of
Non-Newtonian Complex Numbers

Ahmet Faruk Çakmak1 and Feyzi BaGar2

1 Department of Mathematical Engineering, Yıldız Technical University, Davutpaşa Campus, Esenler, 80750 Istanbul, Turkey
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This paper is devoted to investigate some characteristic features of complex numbers and functions in terms of non-Newtonian
calculus. Following Grossman and Katz, (Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts, 1972), we construct
the field C∗ of ∗-complex numbers and the concept of ∗-metric. Also, we give the definitions and the basic important properties
of ∗-boundedness and ∗-continuity. Later, we define the space 𝐶

∗
(Ω) of ∗-continuous functions and state that it forms a vector

space with respect to the non-Newtonian addition and scalar multiplication and we prove that 𝐶
∗
(Ω) is a Banach space. Finally,

Multiplicative calculus (MC), which is one of the most popular non-Newtonian calculus and created by the famous exp function,
is applied to complex numbers and functions to investigate some advance inner product properties and give inclusion relationship
between 𝐶

∗
(Ω) and the set of 𝐶



∗
(Ω)∗-differentiable functions.

1. Preliminaries, Background and Notations

As a popular non-Newtonian calculus,multiplicative calculus
was studied by Stanley [1] in a brief overview. Bashirov et al.
[2] have recently emphasized on the multiplicative calculus
and gave the results with applications corresponding to the
well-known properties of derivative and integral in the clas-
sical calculus. Recently, in [3], the multiplicative calculus has
extended to the complex valued functions and interested in
the statements of some fundamental theorems and concepts
of multiplicative complex calculus and demonstrated some
analogies between the multiplicative complex calculus and
classical calculus by theoretical and numerical examples.
Bashirov and Riza [4] have studied on the multiplicative
differentiation for complex valued functions and established
the multiplicative Cauchy-Riemann conditions. Bashirov et
al. [5] have investigated various problems fromdifferent fields
which can be modeled more efficiently using multiplicative
calculus, in place of Newtonian calculus. Quite recently,
Çakmak and Başar [6] have showed that non-Newtonian real
numbers form a field with the binary operations addition and

multiplication. Further, the non-Newtonian exponent, surd,
and absolute value are defined and some of their properties
are given. They also proved that the spaces of all bounded,
convergent, null and absolutely p-summable sequences of
the non-Newtonian real numbers are the complete metric
spaces. Quite recently, Tekin and Başar have [7] proved
that the corresponding classical sequence spaces are Banach
spaces over the non-Newtonian complex field. Quite recently,
Çakir [8] has defined the sets 𝐵(𝐴) and 𝐶(𝐴) of geometric
complex valued bounded and continuous functions and
showed that 𝐵(𝐴) and 𝐶(𝐴) form a vector space with respect
to the addition and scalar multiplication in the sense of
multiplicative calculus and are completemetric spaces, where
𝐴 denotes the compact subset of the complex plane C. Quite
recently, Uzer [9] has investigated the waves near the edge of
a conducting half plane. Firstly, the series is converted into
contour integrals in a complex plane and then some contour
deformations are made. After that, the resultant integrals are
converted back into the series forms, which are seen to be
rapidly convergent near the reflection/shadow boundaries of
the conducting half plane. In the second part, a multiplicative
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calculus is employed for evaluating the relevant integrals,
approximately. By the way, he derives a simple expression,
which can be usedwhenever the series derived in the first part
of the paper is not rapidly convergent.

Non-Newtonian calculus is an alternative to the usual
calculus of Newton and Leibniz. It provides differentiation
and integration tools based on non-Newtonian operations
instead of classical operations. Every property in classical
calculus has an analogue in non-Newtonian calculus. Gen-
erally speaking, non-Newtonian calculus is a methodology
that allows one to have a different look at problems which
can be investigated via calculus. In some cases, for exam-
ple, for wage-rate- (in dollars, euro, etc.) related problems,
the use of bigeometric calculus which is a kind of non-
Newtonian calculus is advocated instead of a traditional
Newtonian one.

Throughout this paper, non-Newtonian calculus is
denoted by (NC), and classical calculus is denoted by (CC).
Also for short we use ∗-continuity for non-Newtonian
continuity. A generator is a one-to-one function whose
domain is R and whose range is a subset of R. Each
generator generates exactly one type of arithmetic, and
conversely each type of arithmetic is generated by exactly
one generator. As a generator, we choose the function exp
from R to the set R+ that is to say that

𝛼 : R → R
+

𝑥 → 𝛼 (𝑥) = 𝑒
𝑥

= 𝑦,

𝛼
−1

: R
+

→ R

𝑦 → 𝛼
−1

(𝑦) = ln𝑦 = 𝑥.

(1)

In the special cases 𝛼 = 𝐼 and 𝛼 = exp, 𝛼 generates
the classical and geometric arithmetic, respectively, where 𝐼

denotes the identity functionwhose inverse is itself.The setR∗
of non-Newtonian real numbers are defined byR∗ := {𝛼(𝑥) :

𝑥 ∈ R}.
Following Bashirov et al. [2] and Uzer [3], the main

purpose of this paper is to construct the space 𝐶
∗
(Ω) of

non-Newtonian complex valued continuous functions which
forms a Banach space with the norm defined on it. Finally,
we give some applications to seek how (NC) can be applied
to the classical Functional Analysis problems such as approx-
imation and inner product properties.

We should know that all concepts in classical
arithmetic have natural counterparts in 𝛼-arithmetic.
For instance, 𝛼-zero and 𝛼-one turn out to be 𝛼(0) and 𝛼(1).
Similarly, the 𝛼-integers turn out to

. . . , 𝛼 (−3) , 𝛼 (−2) , 𝛼 (−1) , 𝛼 (0) , 𝛼 (1) , 𝛼 (2) , 𝛼 (3) , . . .

(2)

Consider any generator 𝛼 with range 𝐴 ⊆ R. By 𝛼-
arithmetic, we mean the arithmetic whose domain is 𝐴 and

the operations are defined as follows: for 𝑥, 𝑦 ∈ 𝐴 and any
generator 𝛼,

𝛼-addition 𝑥+̇𝑦 = 𝛼 [𝛼
−1

(𝑥) + 𝛼
−1

(𝑦)] ,

𝛼-subtraction 𝑥−̇𝑦 = 𝛼 [𝛼
−1

(𝑥) − 𝛼
−1

(𝑦)] ,

𝛼-multiplication 𝑥×̇𝑦 = 𝛼 [𝛼
−1

(𝑥) × 𝛼
−1

(𝑦)] ,

𝛼-division 𝑥
̇

/𝑦 = 𝛼 [𝛼
−1

(𝑥) ÷ 𝛼
−1

(𝑦)] ,

𝛼-order 𝑥<̇𝑦 ⇐⇒ 𝛼
−1

(𝑥) < 𝛼
−1

(𝑦) .

(3)

Particularly, if we choose 𝐼, the identity function, as an
𝛼-generator, then 𝛼(𝑥) = 𝑥 and 𝛼

−1

(𝑥) = 𝑥 for all 𝑥 ∈ 𝐴

and therefore𝛼-arithmetic obviously turns out to the classical
arithmetic. Consider

𝛼-addition 𝑥 ⊕ 𝑦 = 𝛼 [𝛼
−1

(𝑥) + 𝛼
−1

(𝑦)] = 𝛼 (𝑥 + 𝑦)

= 𝑥 + 𝑦 classical addition,

𝛼-subtraction 𝑥 ⊖ 𝑦 = 𝛼 [𝛼
−1

(𝑥) − 𝛼
−1

(𝑦)] = 𝛼 (𝑥 − 𝑦)

= 𝑥 − 𝑦 classical subtraction,

𝛼-multiplication 𝑥 ⊙ 𝑦 = 𝛼 [𝛼
−1

(𝑥) × 𝛼
−1

(𝑦)]

= 𝛼 (𝑥 × 𝑦) = 𝑥 × 𝑦

classical multiplication,

𝛼-division 𝑥 ⊘ 𝑦 = 𝛼 [𝛼
−1

(𝑥) ÷ 𝛼
−1

(𝑦)] = 𝛼 (𝑥 ÷ 𝑦)

= 𝑥 ÷ 𝑦, 𝑦 ̸= 0 classical division.

(4)

If we choose exp as an 𝛼-generator defined by 𝛼(𝑧) = 𝑒
𝑧 for

𝑧 ∈ C, then 𝛼
−1

(𝑧) = ln 𝑧 and 𝛼-arithmetic turns out to
geometric arithmetic. Consider

𝛼-addition 𝑥 ⊕ 𝑦 = 𝛼 [𝛼
−1

(𝑥) + 𝛼
−1

(𝑦)] = 𝑒
(ln 𝑥+ ln𝑦)

= 𝑥 ⋅ 𝑦 geometric addition,

𝛼-subtraction 𝑥 ⊖ 𝑦 = 𝛼 [𝛼
−1

(𝑥) − 𝛼
−1

(𝑦)] = 𝑒
(ln 𝑥− ln𝑦)

= 𝑥 ÷ 𝑦, 𝑦 ̸= 0

geometric subtraction,

𝛼-multiplication 𝑥 ⊙ 𝑦 = 𝛼 [𝛼
−1

(𝑥) × 𝛼
−1

(𝑦)] = 𝑒
(ln 𝑥× ln𝑦)

= 𝑥
ln𝑦

= 𝑦
ln𝑥

geometric multiplication,

𝛼-division 𝑥 ⊘ 𝑦 = 𝛼 [𝛼
−1

(𝑥) ÷ 𝛼
−1

(𝑦)] = 𝑒
(ln 𝑥÷ ln𝑤)

= 𝑥
1/ ln𝑦

, 𝑦 ̸= 1 geometric division.

(5)
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Arithmetic is any system that satisfies the whole of the
ordered field axioms whose domain is a subset of R. There
are infinitely many types of arithmetic, all of which are
isomorphic, that is, structurally equivalent. Nevertheless, the
fact that two systems are isomorphic does not exclude their
separate usage. In [2], it is shown that each ordered pair of
arithmetic give rise to a calculus by a sensible use of the first
arithmetic or function arguments and the second arithmetic
for function values.

Let 𝛼 and 𝛽 be arbitrarily selected generators and
(𝛼-arithmetic, 𝛽-arithmetic) is the ordered pair of arithmetic.
Table 1 may be useful for the notation used in 𝛼-arithmetic
and 𝛽-arithmetic.

Definitions for 𝛼-arithmetic are also valid for 𝛽-arith-
metic. For example, 𝛽-convergence is defined by means of 𝛽-
intervals and their 𝛽-interiors.

In the (NC), 𝛼-arithmetic is used for arguments and
𝛽-arithmetic is used for ranges; in particular, changes
in arguments and ranges are measured by 𝛼-differences
and 𝛽-differences, respectively. The operators of the (NC)
are applied only to functions with arguments in 𝐴 and
values in 𝐵.

The isomorphism from 𝛼-arithmetic to 𝛽-arithmetic is
the unique function 𝜄 (iota) which has the following three
properties:

(i) 𝜄 is one to one;

(ii) 𝜄 is on 𝐴 and onto 𝐵;

(iii) for any numbers 𝑢 and V in 𝐴,

𝜄 (𝑢 +̇ V) = 𝜄 (𝑢) +̈ 𝜄 (V) ,

𝜄 (𝑢 −̇ V) = 𝜄 (𝑢) −̈ 𝜄 (V) ,

𝜄 (𝑢 ×̇ V) = 𝜄 (𝑢) ×̈ 𝜄 (V) ,

𝜄 (𝑢
̇

/V) = 𝜄 (𝑢)
̈

/𝜄 (V) , V ̸= 0̇,

𝑢 ≤̇ V ⇐⇒ 𝜄 (𝑢) ≤̈ 𝜄 (V) .

(6)

It turns out that 𝜄(𝑥) = 𝛽{𝛼
−1

(𝑥)} for all 𝑥 in 𝐴 and that 𝜄( ̇𝑛) =

̈𝑛 for every integer 𝑛.
Since, for example, 𝑢 +̇ V = 𝜄

−1

{𝜄(𝑢) +̈ 𝜄(V)}, it should
be clear that any statement in 𝛼-arithmetic can readily be
transformed into a statement in 𝛽-arithmetic.

Throughout this paper, we define the �̇�-th ∗-exponent 𝑥
�̇�

and the ̇𝑞-th ∗-root ̇𝑞√𝑥 of 𝑥 ∈ R∗ by

𝑥
2̇

= 𝑥 ×̇ 𝑥 = 𝛼 {𝛼
−1

(𝑥) × 𝛼
−1

(𝑥)} = 𝛼 {[𝛼
−1

(𝑥)]

2

}

𝑥
3̇

= 𝑥
2̇

×̇ 𝑥 = 𝛼 {𝛼
−1

{𝛼 [𝛼
−1

(𝑥) × 𝛼
−1

(𝑥)]} × 𝛼
−1

(𝑥)}

Table 1: Notation in 𝛼-arithmetic and 𝛽-arithmetic.

𝛼-arithmetic 𝛽-arithmetic
Realm 𝐴 𝐵

Addition +̇ +̈

Subtraction −̇ −̈

Multiplication ×̇ ×̈

Division ̇
/

̈
/

Ordering ≤̇ ≤̈

= 𝛼 {[𝛼
−1

(𝑥)]

3

}

...

𝑥
�̇�

= 𝑥
�̇�−1

×̇ 𝑥 = 𝛼 {[𝛼
−1

(𝑥)]

𝑝

}

...
(7)

and ̇𝑞

√𝑥 = 𝑦 provided there exists an 𝑦 ∈ R∗ such that𝑦
̇𝑞

= 𝑥.
The 𝛼-absolute value of a number 𝑥 in 𝐴 ⊂ R is defined

as 𝛼(|𝛼
−1

(𝑥)|) and is denoted by ̇
|𝑥

̇
|.

For each 𝛼-nonnegative number 𝑥, the symbol ⋅√𝑥 will
be used to denote 𝛼{√𝛼

−1
(𝑥)} which is the unique 𝛼-non-

negative number 𝑦 whose 𝛼-square is equal to 𝑥. For each
number 𝑥 in 𝐴,

⋅

√
𝑥
2̇

=
̇

|𝑥
̇

| = 𝛼 (






𝛼
−1

(𝑥)






) ,

(8)

where the absolute value ̇
|𝑥

̇
| of 𝑥 ∈ R(𝑁) is defined by

̇
| 𝑥

̇
| =

{
{

{
{

{

𝑥, 𝑥 >̇ 𝛼 (0) ,

𝛼 (0) , 𝑥 = 𝛼 (0) ,

𝛼 (0) −̇ 𝑥, 𝑥 <̇ 𝛼 (0) .

(9)

The ∗-distance between two points 𝑥
1
and 𝑥

2
is defined

by
⋅

|𝑥
1
−̇𝑥
2

⋅

| and has the symmetry property, since

̇
| 𝑥
1
−̇𝑥
2

̇
| = 𝛼 [






𝛼
−1

(𝑥
1
) − 𝛼
−1

(𝑥
2
)






]

= 𝛼 [






𝛼
−1

(𝑥
2
) − 𝛼
−1

(𝑥
1
)






]

=
̇

|𝑥
2

−̇ 𝑥
1

̇
|.

(10)

Let any 𝑧 ∈ R∗ be given. Then, 𝑧 is called a positive
non-Newtonian real number if 𝑧>̇𝛼 (0), 𝑧 is called a non-
Newtonian negative real number if 𝑧<̇𝛼 (0), and, finally, 𝑧 is
called an unsigned non-Newtonian real number if 𝑧 = 𝛼(0).
ByR∗
+
andR∗

−
, we denote the sets of non-Newtonian positive

and negative real numbers, respectively.
In (CC), we have |𝑥𝑦| = |𝑥||𝑦| and |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| for

𝑥, 𝑦 ∈ R. The following lemmas show that the corresponding
results also hold in non-Newtonian calculus.

Lemma 1 ([6, Proposition 2.2]). For any 𝑥, 𝑦 ∈ R∗, ̇
|𝑥 ×̇ 𝑦

̇
| =

̇
|𝑥

̇
| ×̇

̇
|𝑦

̇
|.
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Lemma 2 (∗-Triangle inequality see [6, Lemma 3.1]). Let
𝑥, 𝑦 ∈ R∗. Then,

̇
| 𝑥 +̇ 𝑦

̇
| ≤

̇
| 𝑥

̇
|+̇

̇
| 𝑦

̇
|. (11)

Let (𝑢
𝑛
) be an infinite sequence of the elements in

𝐴. Then, there is at most one element 𝑢 in 𝐴 such that
every𝛼-interval with 𝑢 in its𝛼-interior contains all but finitely
many terms of (𝑢

𝑛
). If there is such a number 𝑢, then (𝑢

𝑛
) is

said to be 𝛼-convergent to 𝑢, which is called the 𝛼-limit of
(𝑢
𝑛
). In other words,

𝑢
𝑛

→ 𝑢 (𝛼-convergent) ⇐⇒ ∀𝜀 >̇ 0̇,

∃𝑛
0

∈ N ∋
̇

|𝑢
𝑛

−̇ 𝑢
̇

|<̇ 𝜀 ∀𝑛 ≥ 𝑛
0
and some 𝑢 ∈ 𝐴.

(12)

The ∗-limit of a function 𝑓 at an element 𝑎 in 𝐴 is, if it
exists, the unique number 𝑏 in 𝐵 such that, for every infinite
sequence (𝑎

𝑛
) of arguments of 𝑓 distinct from 𝑎, if (𝑎

𝑛
)

is 𝛼-convergent to 𝑎, then {𝑓(𝑎
𝑛
)} 𝛽-converges to 𝑏 and is

denoted by ∗-lim
𝑥→𝑎

𝑓(𝑥) = 𝑏. That is,

lim∗
𝑥→𝑎

𝑓 (𝑥) = 𝑏 ⇐⇒ ∀𝜖>̈0̈,

∃𝛿 >̇ 0̇ ∋
̈

|𝑓 (𝑥) −̈ 𝑏
̈

|<̈ 𝜖 ∀𝑥 ∈ 𝐴 with ̇
|𝑥 −̇ 𝑎

̇
| <̇ 𝛿.

(13)

A function 𝑓 is ∗-continuous at a point 𝑎 in 𝐴 if and only
if 𝑎 is an argument of 𝑓 and ∗-lim

𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎). When

𝛼 and 𝛽 are the identity function 𝐼, the concepts of ∗-limit
and∗-continuity are identical with those of classical limit and
classical continuity.

The 𝛽-change of a function 𝑓 over an interval ̇
[𝑎, 𝑏

̇
] is

the number 𝑓(𝑏)−̈𝑓(𝑎). A ∗-uniform function is a function
in 𝐴, is ∗-continuous, and has the same 𝛽-change over any
two 𝛼-interval of equal 𝛼-extent. The ∗-uniform functions
are those expressible in the form 𝜄{(𝑚×̇𝑥)+̇𝑐}, where 𝑚 and
𝑐 are constants in 𝐴 and 𝑥 is unrestricted in 𝐴. By choosing
𝑚 = 1̇ and 𝑐 = 0̇, we see that 𝜄 is ∗-uniform. It is characteristic
of a ∗-uniform function that, for each 𝛼-progression of
arguments, the corresponding sequence of values is a 𝛼-
progression. The ∗-slope of a ∗-uniform function is its 𝛽-
change over any 𝛼 interval of 𝛼-extent 1̇. For example, the
∗-slope of the function 𝜄{(𝑚×̇𝑥)+̇𝑐} turns out to be 𝜄(𝑚). In
particular, the ∗-slope of 𝜄 equals 1̈, and the ∗-slope of a
constant function on 𝐴 equals 0̈.

The ∗-gradient of a function 𝑓 over ̇
[𝑎, 𝑏

̇
] is the ∗-slope

of the ∗-uniform function containing (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

showed as 𝐺
∗𝑏

𝑎
and turns out to be

𝐺
∗𝑏

𝑎
= [𝑓 (𝑏) −̈ 𝑓 (𝑎)]

̈
/ [𝜄 (𝑏) −̈ 𝜄 (𝑎)] . (14)

If the following ∗-limit exists, the ∗-derivative of
𝑓 [𝐷
∗

𝑓](𝑎) at 𝑎, and say that 𝑓 is ∗-differentiable at 𝑎,

[𝐷
∗

𝑓] (𝑎) = ∗- lim
𝑥→𝑎

{[𝑓 (𝑏) ̈− 𝑓 (𝑎)]
̈

/ [𝜄 (𝑏) −̈𝜄 (𝑎)]} . (15)

If it exists, [𝐷
∗

𝑓](𝑎) is necessarily in 𝐵.
The ∗-derivative 𝐷

∗

𝑓 of 𝑓 is the function that assigns to
each number in 𝐴 the number [𝐷

∗

𝑓](𝑡), if it exists.

The classical derivatives [𝐷𝑓](𝑎) and [𝐷
∗

𝑓](𝑎) do not
necessarily coexist and are seldom equal; however, if the
following exist,

[𝐷 (𝛼
−1

)] (𝑎) , [𝐷𝛼] (𝛼
−1

(𝑎)) ,

[𝐷 (𝛽
−1

)] (𝑓 (𝑎)) , [𝐷𝛽] {𝛽
−1

(𝑓 (𝑎))} ,

(16)

then both [𝐷𝑓](𝑎) and [𝐷
∗

𝑓](𝑎) exist.
Wedenote the sets of∗-bounded functions,∗-continuous

functions and ∗-differentiable functions in the ∗-closed
interval ̇

[𝑎, 𝑏
̇

] by 𝐵
∗

̇
[𝑎, 𝑏

̇
], 𝐶
∗

̇
[𝑎, 𝑏

̇
], and 𝐶



∗

̇
[𝑎, 𝑏

̇
], respectively.

The ∗-average of a ∗-continuous function 𝑓 on ̇
[𝑎, 𝑏

̇
]

is denoted by 𝑀
∗𝑏

𝑎
𝑓 and defined to be the 𝛽-limit of the

𝛽-convergent sequence whose 𝑛th term is the 𝛽-average of
𝑓(𝑎
1
), . . . , 𝑓(𝑎

𝑛
), where 𝑎

1
, . . . , 𝑎

𝑛
is the 𝑛-fold 𝛼-partition of

̇
[𝑎, 𝑏

̇
].The∗-average of a∗-uniform function on ̇

[𝑎, 𝑏
̇

] is equal
to the𝛽-average of its values at 𝑎 and 𝑏 and is equal to its value
at the 𝛼-average of 𝑎 and 𝑏.

The ∗-integral ∫

∗𝑏

𝑎

𝑓(𝑥)𝑑𝑥 of a ∗-continuous function 𝑓

on ̇
[𝑎, 𝑏

̇
], is the following number in 𝐵:

[𝜄 (𝑏) −̈𝜄 (𝑎)] ×̈ 𝑀
∗𝑏

𝑎
𝑓. (17)

It is trivial that

∫

∗𝑎

𝑎

𝑓 (𝑥) 𝑑𝑥 = 0̈. (18)

Since

∫

∗𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑀
∗𝑏

𝑎
{[𝜄 (𝑏) −̈ 𝜄 (𝑎)] ×̈ 𝑓} , (19)

the ∗-integral is a weighted ∗-average.
Furthermore, ∫

∗𝑏

𝑎

𝑓(𝑥)𝑑𝑥 equals to the 𝛽-limit of the
𝛽-convergent sequence whose 𝑛th term is

[𝜄 (𝑘
𝑛
) ×̈𝑓 (𝑎

1
)] +̈ ⋅ ⋅ ⋅ +̈ [𝜄 (𝑘

𝑛
) ×̈ 𝑓 (𝑎

𝑛−1
)] , (20)

where 𝑎
1
, . . . , 𝑎

𝑛
is the 𝑛-fold partition of 𝛼-partition of ̇

[𝑎, 𝑏
̇

]

and 𝑘
𝑛
is the common value of 𝑎

2
−̇𝑎
1
, . . . , 𝑎

𝑛
−̇𝑎
𝑛−1

.
If 𝛼 is classically continuous function and 𝛽 = 𝐼(𝑥) = 𝑥,

then the ∗-integral is a Stieltjes integral.

Theorem 3. The ∗-derivative and ∗-integral are inversely
related in the sense indicated by the following two statements.

(i) If 𝑓 is ∗-continuous on ̇
[𝑎, 𝑏

̇
] and 𝑔(𝑥) = ∫

∗𝑥

𝑎

𝑓(𝑡)𝑑𝑡

for every 𝑥 ∈
̇

[𝑎, 𝑏
̇

], then 𝐷
∗

𝑔 = 𝑓 on ̇
[𝑎, 𝑏

̇
].

(ii) If 𝐷
∗

ℎ is ∗-continuous on ̇
[𝑎, 𝑏

̇
], then ∫

∗𝑏

𝑎

𝐷
∗

ℎ(𝑥)𝑑𝑥 =

ℎ(𝑏)−̈ℎ(𝑎).

It is convenient to indicate the uniform relationships
between the corresponding notions of the ∗-calculus and
classical calculus.

For each number 𝑎 ∈ 𝐴, let ̄𝑎 = 𝛼
−1

(𝑎). Let 𝑓 be
a function from 𝐴 into 𝐵, and set ̄

𝑓(𝑡) = 𝛽{𝑓(𝛼(𝑡))}.
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Then, both ∗-lim
𝑥→𝑎

𝑓(𝑥) and lim
𝑡→ ̄𝑎

̄
𝑓(𝑡) exist and

∗- lim
𝑥→𝑎

𝑓 (𝑥) = 𝛽 [ lim
𝑡→ ̄𝑎

̄
𝑓 (𝑡)] . (21)

Furthermore, 𝑓 is ∗-continuous at 𝑎 if and only if ̄
𝑓 is

classically continuous at ̄𝑎.
If 𝐺
∗𝑏

𝑎
𝑓 is the ∗-gradient of 𝑓 over ̇

[𝑎, 𝑏
̇

], then 𝐺
∗𝑏

𝑎
𝑓 =

𝛽{𝐺

̄
𝑏

̄𝑎
}

̄
𝑓, where 𝐺

̄
𝑏

̄𝑎

̄
𝑓 is the classical gradient of ̄

𝑓 over ̇
[𝑎, 𝑏

̇
].

If both [𝐷
∗

𝑓](𝑎) and 𝐷
̄

𝑓( ̄𝑎) exist, then we have
[𝐷
∗

𝑓](𝑎) = 𝛽[𝐷
̄

𝑓( ̄𝑎)]. If 𝑓 is ∗-continuous on ̇
[𝑎, 𝑏

̇
], then

𝑀
∗𝑏

𝑎
𝑓 = 𝛽{𝑀

̄
𝑏

̄𝑎
}

̄
𝑓 and

∫

∗𝑏

𝑎

𝑓 = 𝛽 (∫

∗
̄
𝑏

̄𝑎

̄
𝑓)

= 𝛽 {∫

𝛼
−1

(𝑏)

𝛼
−1

(𝑎)

𝛽
−1

[𝑓 (𝛼 (𝑥))] 𝑑𝑥} .

(22)

The rest of the paper is organized as follows.
In Section 2, it is shown that the setC∗ of non-Newtonian

complex (∗-complex) numbers forms a field with the binary
operations addition (+̈) andmultiplication (×̈). Further, some
basic properties and inequalities which play the basic role
in ∗-convergence and ∗-continuity are proved. Section 3 is
devoted to the space 𝐶

∗
(Ω) of ∗-continuous functions of

a ∗-complex variable. We prove that 𝐶
∗
(Ω) is a complete

metric space with the natural metric and is a Banach
space with the natural norm and the space 𝐵

∗

(𝐴; 𝐸) of all
∗-bounded mappings from 𝐴 into 𝐸 is a Banach space. As
an application part, in Section 4, we try to create the ∗-inner
product space specifically for (MC) and give an inclusion rela-
tion between 𝐶

∗
(Ω) and the set of ∗-differentiable functions.

In the final section of the paper, we note the significance of
the (NC) and record some further suggestions.

2. ∗-Complex Field and ∗-Inequalities

In this section, following Tekin and Bas,ar [7], we give some
knowledge on the ∗-complex field and some concerning
inequalities.

Let ̇𝑎 ∈ (𝐴, +̇, −̇, ×̇,
̇

/, ≤̇) and ̈
𝑏 ∈ (𝐵, +̈, −̈, ×̈,

̈
/, ≤̈) be

arbitrarily chosen elements from corresponding arithmetic.
Then, the ordered pair ( ̇𝑎,

̈
𝑏) is called as a ∗-point. The set

of all ∗-points is called the set ∗-complex numbers and is
denoted by C∗, that is,

C
∗

:= {𝑧
∗

= ( ̇𝑎,
̈

𝑏) : ̇𝑎 ∈ 𝐴 ⊆ R,
̈

𝑏 ∈ 𝐵 ⊆ R} . (23)

Define the binary operations addition (⊕) and multiplication
(⊙) of ∗-complex numbers 𝑧

∗

1
= ( ̇𝑎
1
,

̈
𝑏
1
) and 𝑧

∗

2
= ( ̇𝑎
2
,

̈
𝑏
2
) as

follows:

⊕ : C
∗

× C
∗

→ C
∗

(𝑧
∗

1
, 𝑧
∗

2
) → 𝑧

∗

1
⊕ 𝑧
∗

2
= ( ̇𝑎
1
+̇ ̇𝑎
2
,

̈
𝑏
1
+̈

̈
𝑏
2
) ,

(24)

⊙ : C
∗

× C
∗

→ C
∗

(𝑧
∗

1
, 𝑧
∗

2
) → 𝑧

∗

1
⊙ 𝑧
∗

2

= (𝛼 ( ̇𝑎
1

̇𝑎
2

−
̈

𝑏
1

̈
𝑏
2
) , 𝛽 ( ̇𝑎

1

̈
𝑏
2

+
̈

𝑏
1

̇𝑎
2
)) ,

(25)

where ̇𝑎
1
, ̇𝑎
2

∈ 𝐴 and ̈
𝑏
1
,

̈
𝑏
2

∈ 𝐵 with

̇𝑎
1

= 𝛼
−1

( ̇𝑎
1
) = 𝛼
−1

(𝛼 (𝑎
1
)) = 𝑎

1
∈ R,

̈
𝑏
1

= 𝛽
−1

(
̈

𝑏
1
) = 𝛽
−1

(𝛽 (𝑏
1
)) = 𝑏

1
∈ R.

(26)

Then, Tekin and Başar [7,Theorem 2.1] proved that (C∗, ⊕, ⊙)

is a field.
The∗-distance 𝑑

∗ between any two elements 𝑧
∗

1
= ( ̇𝑎
1
,

̈
𝑏
1
)

and 𝑧
∗

2
= ( ̇𝑎
2
,

̈
𝑏
2
) of the set C∗ is defined by

𝑑
∗

: C
∗

× C
∗

→
̈

[0̈, ∞̈
̈

) = 𝐵


⊂ 𝐵

(𝑧
∗

1
, 𝑧
∗

2
) → 𝑑

∗

(𝑧
∗

1
, 𝑧
∗

2
)

=

⋅⋅

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
2
)]

2̈

+̈(
̈

𝑏
1
−̈

̈
𝑏
2
)

2̈

= 𝛽 [√(𝑎
1

− 𝑎
2
)

2

+ (𝑏
1

− 𝑏
2
)

2

] .

(27)

Here and after, we know that C∗ is a field and the distance
between two points in C∗ is computed by the relation
𝑑
∗. Now, we will see whether this relation 𝑑

∗ is metric
over C∗ or not, define ∗-norm, and try to obtain some
required inequalities in the sense of non-Newtonian complex
calculus.

𝑑
∗

(𝑧
∗

, 𝜃
∗

) is called ∗-norm of 𝑧
∗

∈ C∗ and is denoted by
̈

|𝑧
∗ ̈
|; that is,

̈
| 𝑧
∗

̈
| = 𝑑
∗

(𝑧
∗

, 𝜃
∗

) =

⋅⋅

√
[𝜄 ( ̇𝑎−̇0̇)]

2̈

+̈(
̈

𝑏−̈0̈)

2̈

= 𝛽 (
√

𝑎
2

+ 𝑏
2
) ,

(28)

where 𝑧
∗

= ( ̇𝑎,
̈

𝑏) and 𝜃
∗

= (0̇, 0̈).

Lemma4 (∗-triangle inequality [7, Lemma2.3]). Let 𝑧
∗

1
, 𝑧
∗

2
∈

C∗. Then,

̈
| 𝑧
∗

1
⊕ 𝑧
∗

2

̈
| ≤̈

̈
| 𝑧
∗

1

̈
| +̈

̈
| 𝑧
∗

2

̈
|. (29)

Lemma5 ([7, Lemma2.4]). Let 𝑧
∗

1
, 𝑧
∗

2
∈ C∗.Then, ̈

|𝑧
∗

1
⊙𝑧
∗

2

̈
| =

̈
|𝑧
∗

1

̈
| ×̈

̈
|𝑧
∗

2

̈
|.
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Lemma6 (∗-Minkowski inequality [7, Lemma 2.5]). Let𝑝≥̈1̈

and 𝑧
∗

𝑘
, 𝑡
∗

𝑘
∈ C∗ for all 𝑘 ∈ {1, 2, 3, . . . , 𝑛}. Then,

(

𝑛
⋅⋅

∑

𝑘=1

̈
| 𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
|

𝑝

)

1
̈
/𝑝

≤̈ (

𝑛
⋅⋅

∑

𝑘=1

̈
| 𝑧
∗

𝑘

̈
|

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
⋅⋅

∑

𝑘=1

̈
| 𝑡
∗

𝑘

̈
|

𝑝

)

1
̈
/𝑝

.

(30)

Theorem 7 (see [7, Theorem 2.6]). (C∗, 𝑑
∗

) is a complete
metric space, where 𝑑

∗ is defined by (27).

In this paper, we mainly focus on the sup metric on the
∗-complex numbers because ∗-continuity always required to
use that metric relation. Therefore, we present the complete-
ness of the set C∗ with respect to the sup metric.

Theorem 8. C∗ is a Banach space with the norm ̈
‖ ⋅

̈
‖ defined

by

̈
‖ 𝑧
∗

̈
‖ =

⋅⋅

√
[𝜄 ( ̇𝑎−̇0̇)]

2̈

+̈(
̈

𝑏−̈0̈)

2̈

,
(31)

where 𝑧
∗

= ( ̇𝑎,
̈

𝑏) and 𝜃
∗

= (0̇, 0̈).

3. Continuous Function Space over
the Field C∗

In this section, we construct the space of continuous func-
tions over the field C∗ and show that this space is a complete
metric space with max metric such that

𝑑
∗

(𝑓, 𝑔) = max
𝑧∈C∗

̈
| 𝑓 (𝑧) −̈𝑔 (𝑧)

̈
|. (32)

It would not be too hard to find out that the space of ∗-
continuous functions creates a normed space with the norm
reduced from the sup metric. Finally, we investigate the
completeness property of the spaces of ∗-bounded and ∗-
continuous functions.

Let Ω ⊂ C∗ be compact. Then, by 𝐶
∗
(Ω), we denote the

space of ∗-continuous functions defined on the set Ω. One
can easily see that the set 𝐶

∗
(Ω) forms a vector space over

C∗ with respect to the algebraic operations addition (+) and
scalar multiplication (×) defined on 𝐶

∗
(Ω) as follows:

+ : 𝐶
∗

(Ω) × 𝐶
∗

(Ω) → 𝐶
∗

(Ω)

(𝑓, 𝑔) → (𝑓 + 𝑔) (𝑧) = 𝑓 (𝑧) +̈𝑔 (𝑧) ,

𝑓 = 𝑓 (𝑧) , 𝑔 = 𝑔 (𝑧) ∈ 𝐶
∗

(Ω) ,

× : C
∗

× 𝐶
∗

(Ω) → 𝐶
∗

(Ω)

(𝛼, 𝑓 (𝑧)) → (𝛼 × 𝑓) (𝑧) = 𝛼 ×̈ 𝑓 (𝑧) ,

𝑧
∗

= (𝑧
∗

𝑘
) ∈ 𝜔
∗

, 𝛼 ∈ C
∗

.

(33)

In order to show that 𝐶
∗
(Ω) is a metric space with the

metric 𝑑
∗ defined by (32), we give the following lemma.

Lemma 9. (𝐶
∗
(Ω), 𝑑

∗

) is a metric space.

Proof. Let 𝛼 and 𝛽 be the generators on the sets of arguments
and values, respectively.

(i) For every 𝑓, 𝑔 ∈ 𝐶
∗
(Ω) and for every 𝑧 ∈ Ω, we have

𝑑
∗

(𝑓, 𝑔)

= max
𝑧∈Ω

̈
| 𝑓 (𝑧) −̈𝑔 (𝑧)

̈
| = max
𝑧∈Ω

𝛽 {






𝛽
−1

[𝑓 (𝑧) −̈𝑔 (𝑧)]






}

= max
𝑧∈Ω

𝛽 {






𝛽
−1

(𝛽 {𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]})






}

= max
𝑧∈Ω

𝛽 {






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]






}

= 0̈ ⇐⇒ 𝑓 = 𝑔;

(34)

that is, (M1) holds.

(ii) One can easily see for every 𝑓, 𝑔 ∈ 𝐶
∗
(Ω) that

𝑑
∗

(𝑓, 𝑔)

= max
𝑧∈Ω

𝛽 {






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]






}

= max
𝑧∈Ω

𝛽 {






𝛽
−1

[𝑔 (𝑧)] − 𝛽
−1

[𝑓 (𝑧)]






}

= max
𝑧∈Ω

̈
| 𝑔 (𝑧) −̈𝑓 (𝑧)

̈
| = 𝑑
∗

(𝑔, 𝑓) ,

(35)

which shows that the symmetry axiom (M2) also
holds.

(iii) By a routine verification for every 𝑓, 𝑔, ℎ ∈ 𝐶
∗
(Ω), if

we apply 𝛽
−1 to ̈

|𝑓(𝑧)−̈𝑔(𝑧)
̈

|

𝑑
∗

(𝑓, 𝑔) = max
𝑧∈Ω

̈
| 𝑓 (𝑧) −̈𝑔 (𝑧)

̈
|

= max
𝑧∈Ω

𝛽 {






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]






}

𝑢 =
̈

|𝑓 (𝑧) −̈𝑔 (𝑧)
̈

| = 𝛽 {






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]






} ,

(36)

then we obtain that

𝛽
−1

(𝑢)

=






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]







=






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[ℎ (𝑧)] + 𝛽
−1

[ℎ (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]







≤ (𝛽 ∘ 𝛽
−1

)






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[ℎ (𝑧)]







+ (𝛽 ∘ 𝛽
−1

)






𝛽
−1

[ℎ (𝑧)] − 𝛽
−1

[𝑔 (𝑧)]
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= 𝛽
−1

(𝛽 {






𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[ℎ (𝑧)






})

+ 𝛽
−1

(𝛽 {






𝛽
−1

[ℎ (𝑧)] − 𝛽
−1

[𝑔 (𝑧)






})

= 𝛽
−1

(
̈

|𝑓 (𝑧) −̈ ℎ (𝑧)
̈

|)

+ 𝛽
−1

(
̈

| ℎ (𝑧) −̈𝑔 (𝑧)
̈

|) ,

(37)

which yields by applying 𝛽 that

𝑢 ≤̈ 𝛽 {𝛽
−1

(
̈

|𝑓 (𝑧) −̈ ℎ (𝑧)
̈

|) + 𝛽
−1

(
̈

| ℎ (𝑧) −̈𝑔 (𝑧)
̈

|)}

=
̈

|𝑓 (𝑧) −̈ ℎ (𝑧)
̈

|+̈
̈

| ℎ (𝑧) −̈𝑔 (𝑧)
̈

|.

(38)

Therefore, by taking maximum, one can derive that

𝑑
∗

(𝑓, 𝑔) = max
𝑧∈Ω

̈
| 𝑓 (𝑧) −̈ 𝑔 (𝑧)

̈
|

≤̈max
𝑧∈Ω

̈
| 𝑓 (𝑧) −̈ ℎ (𝑧)

̈
| +̈max
𝑧∈Ω

̈
| ℎ (𝑧) −̈𝑔 (𝑧)

̈
|

= 𝑑
∗

(𝑓, ℎ) +̈ 𝑑
∗

(ℎ, 𝑔) .

(39)

This means that the triangle inequality (M3) also holds.
Therefore, since (i)–(iii) are satisfied, 𝑑

∗ is a metric on
𝐶
∗
(Ω). This completes the proof.

Definition 10. A ∗-norm is a nonnegative ∗-real valued
function on Ω ⊂ C∗ whose value at an 𝑥 ∈ Ω is denoted
by ‖𝑥‖

∗, that is, ‖ ⋅ ‖
∗

: Ω → R, and satisfies the following
conditions:

(N1) ‖𝑥‖
∗

= 0̈ ⇔ 𝑥 = 0̈,
(N2) ‖𝜆 ×̈ 𝑥‖

∗

=
̈

|𝜆
̈

| ×̇ ‖𝑥‖
∗ (absolute homogeneity),

(N3) ‖𝑥+̈𝑦‖
∗

≤̈ ‖𝑥‖
∗

+̈ ‖𝑦‖
∗ (triangle inequality),

for all 𝑥, 𝑦 ∈ Ω and for all scalars 𝜆.

The∗-normon𝐶
∗
(Ω)defines ametric𝑑

∗ on𝐶
∗
(Ω) given

by

𝑑
∗

(𝑓, 𝑔) =





𝑓−̈𝑔






∗

, 𝑓, 𝑔 ∈ 𝐶
∗

(Ω) , (40)

and is called the induced ∗-metric by the ∗-norm.
The definition of space of continuous functions makes

it possible to give a much more intuitive meaning to the
classical notion of uniform convergence. Convergence in the
space of continuous functions space turns into the uniform
convergence. One of the most important results of the
concept of the space of continuous functions is the famous
Stone-Weierstrass approximation theorem which is a very
powerful tool for proof of general results on continuous
functions. Using this theorem, we can prove some results
fits for functions of special type and later extend them
to all continuous functions by a density argument. In this
paper, we show, with the rules of non-Newtonian calculus,
its advantages to Stone-Weierstrass theorem in the space of
𝐶
∗
(Ω), or not. The answer of this question is affirmative

in some cases, but not every time when we want. In [3],
Uzer showed by using multiplicative calculus which is a kind
of non-Newtonian calculus that it is more flexible than the
classical calculus for Bessel functions in a special domain.
We can reproduce more examples for the same situation but
we mainly focused on the theoretical properties of the space
𝐶
∗
(Ω).

Theorem 11. 𝐶
∗
(Ω) is a normed space with the norm given by





𝑓






∗

= max
𝑧∈Ω

̈
| 𝑓 (𝑧)

̈
|; 𝑓 = 𝑓 (𝑧) ∈ 𝐶

∗
(Ω) . (41)

Proof. Let 𝑓, 𝑔 ∈ 𝐶
∗
(Ω) and 𝜆 ∈ C. Then, the following hold.

(i) One can easily show that




𝑓






∗

= 0̈ ⇐⇒ max ̈
| 𝑓 (𝑧)

̈
| = 0̈

⇐⇒
̈

|𝑓 (𝑧)
̈

| = 0̈ ∀𝑧 ∈ Ω

⇐⇒ 𝛽 {






𝛽
−1

[𝑓 (𝑧)]






} = 0̈ ∀𝑧 ∈ Ω

⇐⇒






𝛽
−1

[𝑓 (𝑧)]







= 0 ∀𝑧 ∈ Ω

⇐⇒ 𝛽
−1

[𝑓 (𝑧)] = 0 ∀𝑧 ∈ Ω

⇐⇒ 𝑓 (𝑧) = 0̈ ∀𝑧 ∈ Ω.

(42)

That is to say that the axiom (N1) holds.
(ii) From the property of vector space axioms of the space

𝐶
∗
(Ω), it is immediate that





𝜆 ×̈ 𝑓






∗

= max
𝑧∈Ω

̈
| 𝜆 ×̈ 𝑓 (𝑧)

̈
|

=
̈

| 𝜆
̈

| ×̇max
𝑧∈Ω

̈
| 𝑓 (𝑧)

̈
|

=
̈

| 𝜆
̈

| ×̈





𝑓






∗

.

(43)

Hence, the absolute homogeneity axiom (N2) also
holds.

(iii) It is obtained by the similar way used in the proof of
Lemma 9 that





𝑓+̈𝑔






∗

= max
𝑧∈Ω

̈
| 𝑓 (𝑧) +̈𝑔 (𝑧)

̈
|

≤̈max
𝑧∈Ω

̈
| 𝑓 (𝑧)

̈
|+̈max
𝑧∈Ω

̈
| 𝑔 (𝑧)

̈
|

=





𝑓






∗

+̈





𝑔






∗

.

(44)

Thismeans that the triangle inequality axiom (N3) is satisfied.
Since (i)–(iii) are fulfilled, ‖ ⋅ ‖

∗, defined by (41), is a norm
for the space 𝐶

∗
(Ω).

Definition 12. Let 𝐴 be any set and let 𝐸 ⊂ C∗ be a complex
normed space. Amapping𝑓 from𝐴 into𝐸 is bounded if𝑓(𝐴)

is bounded in 𝐸, or equivalently if max
𝑧∈𝐴

‖𝑓(𝑧)‖
∗ is finite.

The set of all bounded mappings from 𝐴 into 𝐸 is denoted
by𝐵
∗

(𝐴; 𝐸).
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Corollary 13. The set of all bounded mappings from 𝐴 into 𝐸

is denoted by 𝐵
∗

(𝐴; 𝐸) is a complex vector space, since




𝑓+̈𝑔






∗

≤̈




𝑓






∗

+̈




𝑔






∗

; 𝑓, 𝑔 ∈ 𝐵
∗

(𝐴; 𝐸) . (45)

Moreover, on this space,

max
𝑧∈𝐴





𝑓 (𝑧)






∗

, 𝑓 ∈ 𝐵
∗

(𝐴; 𝐸) , (46)

is a norm, as can be easily verified.

Theorem 14. 𝐵
∗

(𝐴; 𝐸) is a Banach space if 𝐸 is a Banach
space.

Proof. Let (𝑓
𝑛
)
∞

𝑛=0
be a Cauchy sequence in 𝐵

∗

(𝐴; 𝐸). Then,
for any 𝜀 >̈ 0̈, there is an 𝑛

0
∈ N such that ‖𝑓

𝑛
−̈𝑓
𝑚

‖
∗

<̈ 𝜀 for
all 𝑚, 𝑛 ≥ 𝑛

0
. From sup norm, it follows for any 𝑧 ∈ 𝐴

that we have ‖𝑓
𝑛
(𝑧) −̈ 𝑓

𝑚
(𝑧)‖
∗

<̈ 𝜀 for 𝑛, 𝑚 ≥ 𝑛
0
. Hence, the

sequence {𝑓
𝑛
(𝑧)}
∞

𝑛=0
converges to an element 𝑓(𝑧) ∈ 𝐸, since

𝐸 is complete. Furthermore, we have ‖𝑓
𝑛
(𝑧) −̈ 𝑓(𝑧)‖

∗

<̈ 𝜀 for
any 𝑧 ∈ 𝐴 and 𝑛 ≥ 𝑛

0
. By the ∗-triangle inequality given by

Lemma 4, we first deduce that ‖𝑓(𝑧)‖
∗

<̈ ‖𝑓
𝑛
(𝑧)‖
∗

+̈ 𝜀 for all
𝑧 ∈ 𝐴; hence𝑓 is bounded.Moreover, we have ‖𝑓

𝑛
−̈𝑓‖
∗

<̈ 𝜀 for
all 𝑛 ≥ 𝑛

0
and this means that the sequence (𝑓

𝑛
)
∞

𝑛=0
converges

to 𝑓 in the space 𝐵
∗

(𝐴; 𝐸).

It is known from Mathematical Analysis that when we
applied to Non-Newtonian calculus if (𝑓

𝑛
)
∞

𝑛=0
is a sequence of

functions from 𝐴 into a metric space 𝐸, we say the sequence
(𝑓
𝑛
)
∞

𝑛=0
is ∗-convergent to a function 𝑓 from 𝐴 into 𝐸 if, for

each 𝑧 ∈ 𝐴, the sequence {𝑓
𝑛
(𝑧)}
∞

𝑛=0
∗-converges in𝐸 to𝑓(𝑧);

we call that (𝑓
𝑛
)
∞

𝑛=0
∗-converges uniformly on 𝐴 to 𝑓 if the

following equality holds:

lim
𝑛→∞

sup
𝑧∈𝐴

̈
| 𝑓
𝑛

(𝑧) −̈𝑓 (𝑧)
̈

| = 0̈. (47)

It is obvious that ∗-uniform convergence implies ∗-simple
convergence; however, the converse is not true. If 𝐸 is a
normed space, then∗-convergence of a sequence of functions
in 𝐵
∗

(𝐴; 𝐸), therefore, corresponds to ∗-uniform conver-
gence of the sequence in 𝐴.

Finally, we give the theorem on the completeness of the
space 𝐶

∗
(Ω) of ∗-continuous functions.

Theorem 15. 𝐶
∗
(Ω) is a Banach space with the norm ‖ ⋅ ‖

∗

defined by (41).

Proof. Let (𝑓
𝑛
)
∞

𝑛=0
be anyCauchy sequence in𝐶

∗
(Ω). For each

𝑧 ∈ Ω, we have

̈
| 𝑓
𝑛
−̈𝑓
𝑚

̈
| ≤̈

̈
|𝑓
𝑛

(𝑧) −̈𝑓
𝑚

(𝑧)
̈

|

∗

⇐⇒






𝛽
−1

[𝑓
𝑛

(𝑧)] − 𝛽
−1

[𝑓
𝑚

(𝑧)]







≤






𝛽
−1

[𝑓
𝑛

(𝑧)] − 𝛽
−1

[𝑓
𝑚

(𝑧)]







,

(48)

and so {𝑓
𝑛
(𝑧)} is a Cauchy sequence of 𝑁-real numbers, and

{𝛽
−1

[𝑓
𝑛
(𝑧)} is a Cauchy sequence of real numbers as well;

hence they are ∗-convergent and convergent, respectively.
Let 𝑓 : Ω → C∗ be defined by 𝑓(𝑧) = lim

𝑛→∞
𝑓
𝑛
(𝑧) or

𝛽
−1

[𝑓(𝑧)] = lim
𝑛→∞

𝛽
−1

[𝑓
𝑛
(𝑧)] for each 𝑧 ∈ Ω. Since, given

any 𝜀 > 0,





𝛽
−1

[𝑓
𝑛

(𝑧)] − 𝛽
−1

[𝑓
𝑚

(𝑧)]







< 𝛽
−1

(𝜀) (49)

by letting 𝑛 → ∞, we obtain independent of 𝑧 that





𝛽
−1

[𝑓 (𝑧)] − 𝛽
−1

[𝑓
𝑚

(𝑧)]







< 𝛽
−1

(𝜀) , (50)

for sufficiently large 𝑚. Hence, 𝛽
−1

[𝑓
𝑛
(𝑧)] → 𝛽

−1

[𝑓(𝑧)]

uniformly in Ω.
Finally, since the limit of a uniformly convergent se-

quence of continuous functions is continuous, then 𝑓 ∈

𝐶
∗
(Ω) and 𝑓

𝑛
→ 𝑓 as 𝑛 → ∞. This completes the proof.

4. Applications

In this section, we study some properties of multiplicative
calculus which is a kind of (NC).This calculusmay be created
by taking 𝛼 = 𝐼, the identity function, and 𝛽 = exp,
the exponential function. Multiplicative calculus, in short
(MC), has many applications in some branch of mathematics
such as financial mathematics and elasticity. In the present
paper, we investigate the complex multiplicative functions
in a complex domain to make rational approximation for
analytic functions. Later, as an application, we mention the
inner product property of (MC).

Let𝑓 be a single-valued function defined on a setΩwhich
is dense itself; that is, every point of Ω is a limit point of
Ω. Then, 𝑓 is said to be locally analytic on Ω if, given any
𝑧
0

∈ Ω, there is a neighborhood ℵ(𝑧
0
) and a power series

∑
∞

𝑛=0
𝑎
𝑛
(𝑧 − 𝑧

0
)
𝑛 such that 𝑓(𝑧

0
) = ∑

∞

𝑛=0
𝑎
𝑛
(𝑧 − 𝑧

0
)
𝑛 for all

𝑧 ∈ ℵ(𝑧
0
) ∩ Ω. The concept of a locally analytic function on

the domain Ω reduces to a single-valued analytic function.
In (NC), particularly in (MC), when we consider single-

valued analytic functions on a domain, we consider the
product, 𝑓(𝑧

0
) = ∏

∞

𝑛=0
𝑎
(𝑧−𝑧
0

)
𝑛

𝑛
, where 𝑎

𝑛
= (𝑓
∗(𝑛)

(𝑧
0
))
1/𝑛! is

the 𝑛th coefficient of the Taylor product of the function 𝑓 at
𝑧 = 𝑧

0
such that 𝑓

∗(𝑛) is the 𝑛th order ∗-derivative of the
function 𝑓.

This is an application to show rational approximation
also applicable for ∗-calculus (Multiplicative calculus). One
question arises that which way of approximation is better,
the classical one or the new one? Uzer made some numerical
solutions for the Bessel differential equations in [3] and
he considered the function 𝐽

5
(𝑥 + 𝑖𝑦) with the modulus

‖𝐽
5
(𝑥 + 𝑖𝑦)‖. It is suggested that if the solution function varies

exponentially along a specific contour, then the method in
the (MC) sense shows a better performance. Otherwise, that
is if the solution function is oscillatory or linearly varying,
the method in the (CC) sense will be better. The solution
𝐽
5
(𝑧) in the given example exhibits exponential variations

everywhere on the complex plane except near the real axis.
The other elements of the family of Bessel functions also
exhibit exponential variations. Indeed, there are many other
functions exhibiting exponential variations on the complex
plane such as the famous sigmoid function 𝜎(𝑧) = (1 + 𝑒

−𝑧

)
−1
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which plays an important role in decision making in Neutral
Networks.

As a second application of (MC), we mention the ∗-inner
product property. A∗-inner product space𝑋 is a vector space
with an inner product ⟨𝑧, 𝑤⟩

∗
defined on it. A ∗-norm ‖ ⋅ ‖

∗

is defined by ‖𝑧‖
∗

=
∗

√⟨𝑧, 𝑧⟩
∗
and if ⟨𝑧, 𝑤⟩

∗
= 0̇ holds,

then 𝑧 and 𝑤 are called ∗-orthogonal vectors. A ∗-Hilbert
space 𝐻 is a complete ∗-inner product space. The spaces to
be considered are defined as follows.

Definition 16. Let 𝑋 be a vector space over the fieldC∗ orR∗.
A ∗-inner product on 𝑋 is a mapping from 𝑋 × 𝑋 into the
scalar field 𝐾 = C∗ (or R∗) of 𝑋; that is, with every pair of
vectors 𝑧 and 𝑤, there is a scalar ⟨𝑧, 𝑤⟩

∗
called the ∗-inner

product of 𝑧 and 𝑤, such that for all vectors 𝑦, 𝑧, 𝑤 and any
scalar 𝛼, the following axioms hold:

(IP1) ⟨𝑦 +̇ 𝑧, 𝑤⟩
∗

= ⟨𝑦, 𝑤⟩
∗
+̇ ⟨𝑧, 𝑤⟩

∗
,

(IP2) ⟨𝛼 ×̇ 𝑧, 𝑤⟩
∗

= 𝛼 ×̇ ⟨𝑧, 𝑤⟩
∗
,

(IP3) ⟨𝑧, 𝑤⟩
∗

= ⟨𝑤, 𝑧⟩
∗
,

(IP4) ⟨𝑧, 𝑧⟩
∗

≥̇ 0̇ and ⟨𝑧, 𝑧⟩
∗

= 0̇ ⇔ 𝑧 = 0̇.

Then, we say that𝑋 is an inner product space provided (IP1)–
(IP4) hold. Here, ⟨𝑤, 𝑧⟩

∗
denotes the complex conjugate of

⟨𝑤, 𝑧⟩
∗
. The conjugate of a ∗-complex number 𝑧 = (�̇�, ̈𝑦)

is �̄� = (�̇�, − ̈𝑦). Note that (IP2) and (IP3) imply that
⟨𝑧, 𝛼 ×̇ 𝑤⟩

∗
= 𝛼 ×̇ ⟨𝑧, 𝑤⟩

∗
.

In (MC), the ∗-inner product properties turn into

(IP(MC)1) ⟨𝑦 +̇ 𝑧, 𝑤⟩
∗

= ⟨𝑦, 𝑤⟩
∗

⋅ ⟨𝑧, 𝑤⟩
∗
,

(IP(MC)2) ⟨𝛼 ×̇ 𝑧, 𝑤⟩
∗

= 𝛼
⟨𝑧,𝑤⟩

∗ ,
(IP(MC)3) ⟨𝑧, 𝑤⟩

∗
= ⟨𝑤, 𝑧⟩

∗
,

(IP(MC)4) ⟨𝑧, 𝑧⟩
∗

≥ 1 and ⟨𝑧, 𝑧⟩
∗

= 1 ⇔ 𝑧 = 1;

then we say that 𝑋 is multiplicative inner product space.

Corollary 17. It can easily be seen from the equality (24) and
from [10] that

𝑧
∗

1
+̇ 𝑧
∗

2
= (𝑎
1

+̇ 𝑎
2
, 𝑏
1

+̈ 𝑏
2
) = (𝑎

1
+ 𝑎
2
, 𝑏
1

⋅ 𝑏
2
) ,

𝑧
∗

1
×̇ 𝑧
∗

2

= (𝑎
1

⋅ 𝑎
2

− ln 𝑏
1

⋅ ln 𝑏
2
, exp {𝑎

1
⋅ ln 𝑏
2

+ 𝑎
2

⋅ ln 𝑏
1
}) ,

(51)

where 𝑧
1

= (𝑎
1
, 𝑏
1
), 𝑧
2

= (𝑎
2
, 𝑏
2
) and 𝛼 = 𝐼, 𝛽 = exp. For

example, if 𝑧
1

= (1, 𝑒) and 𝑧
2

= (1, 𝑒
2

), then one has

𝑧
∗

1
×̇ 𝑧
∗

2

= (3 ⋅ 1 − ln 𝑒 ⋅ ln 𝑒
2

, exp {3 ⋅ ln 𝑒
2

+ 1 ⋅ ln 𝑒}) = (1, 𝑒
7

) .

(52)

Remark 18. Since the product of (0̇, 1̈) with itself equals
(−̇1, 0̈), we may define 𝑖

∗ to be (0̇, −̈1). Of course, the
product of (0̇, −̈1) with itself also equals (−̇1, 0̈). Therefore, in
(MC),𝑖∗ turns out (0, 𝑒

−1

).

If 𝑧 = (𝑥, 𝑦), then, using again the equalities (24) and
[10, p. 88], we conclude that

𝑧 ×̇ �̄� = (�̇�, ̈𝑦) ×̇ (�̇�, −̈𝑦)

= (𝛽 (𝑥
2

+ 𝑦
2

) , 0̈)

= 𝛽 (𝑥
2

+ 𝑦
2

)

=
̈

| 𝑧
̈

|

2̈

.

(53)

Thus, in (MC), we have 𝑧 ⊙ �̄� = exp(𝑥
2

+ 𝑦
2

).
In a (real or complex) ∗-inner product space 𝑋, two

vectors 𝑦, 𝑧 ∈ 𝑋 are called orthogonal and we write 𝑧 ⊥ 𝑤

provided ⟨𝑧, 𝑤⟩
∗

= 0̇. For a subset 𝐴 ⊆ 𝑋, the set 𝐴
⊥ is

defined by

𝐴
⊥

= {𝑢 ∈ 𝑋 | ⟨𝑢, 𝑧⟩
∗

= 0̇ ∀𝑧 ∈ 𝐴} . (54)

Corollary 19. Amultiplicative inner product space satisfies the
parallelogram equality. Let 𝑧 = (�̇�, ̇𝑦) and 𝑤 = (�̇�, V̇) such that
𝛼
−1

(�̇�) = 𝑥, 𝛼
−1

( ̇𝑦) = 𝑦, 𝛼
−1

(�̇�) = 𝑢, 𝛼
−1

(V̇) = V. Consider

̈
‖𝑧 +̈ 𝑤

̈
‖

2̈

+
̈

‖𝑧 −̈ 𝑤
̈

‖

2̈

=
̈

‖ (�̇� +̇ �̇�, ̈𝑦 +̈ V̈)
̈

‖

2̈

+̈
̈

‖ (�̇� −̇ �̇�, ̈𝑦 −̈ V̈)
̈

‖

2̈

= (𝜄 [�̇� +̇ �̇�])

2̈

, ( ̈𝑦 +̈ V̈)

2̈

+̈(𝜄 [�̇� −̇ �̇�])

2̈

, ( ̈𝑦 −̈ V̈)

2̈

= 𝛽 {(𝑥 + 𝑢)
2

+ (𝑦 + V)

2

}

+̈𝛽 {(𝑥 − 𝑢)
2

+ (𝑦 − V)

2

}

= 𝛽 {𝛽
−1

[𝛽 {(𝑥 + 𝑢)
2

+ (𝑦 + V)

2

}]

+𝛽
−1

[𝛽 {(𝑥 − 𝑢)
2

+ (𝑦 − V)

2

}]}

= 𝛽 {(𝑥 + 𝑢)
2

+ (𝑦 + V)

2

+ (𝑥 − 𝑢)
2

+ (𝑦 − V)

2

}

= 𝛽 [2 (𝑥
2

+ 𝑢
2

+ 𝑦
2

+ V2)]

= 𝛽 {2 [𝛽
−1

(𝛽 (𝑥
2

+ 𝑦
2

)) + 𝛽
−1

(𝛽 (𝑢
2

+ V2))]}

= 𝛽 {𝛽
−1

[𝛽 (2)] 𝛽
−1

(
̈

‖𝑧
̈

‖

2̈

) + 𝛽
−1

(
̈

‖𝑤
̈

‖

2̈

)}

= 𝛽 [𝛽
−1

(2̈) ⋅ 𝛽
−1

(
̈

‖𝑧
̈

‖

2̈

+̈
̈

‖𝑤
̈

‖

2̈

)]

= 2̈×̈ [
̈

‖𝑧
̈

‖

2̈

̈+
̈

‖𝑤
̈

‖

2̈

] .

(55)

Of course, if we take 𝛼 = 𝐼 and 𝛽 = exp, we can easily obtain
these results for (MC).

Definition 20. Let (𝐸, ‖ ⋅ ‖
∗

) be a ∗-normed space. If the cor-
responding metric 𝑑

∗ is complete, we say that (𝐸, ‖ ⋅ ‖
∗

) is a
Banach space. If (𝐸, ⟨⋅, ⋅⟩

∗
) is an ∗-inner product space whose

corresponding metric is complete, we say that (𝐸, ⟨⋅, ⋅⟩
∗
) is a

∗-Hilbert space.
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Theorem 21 (Cauchy-Schwartz inequality). For all 𝑧 =

(�̇�, ̈𝑦), 𝑤 = (�̇�, V̈) ∈ C∗, the following inequality holds:

̈
| ⟨𝑧, 𝑤⟩

∗

̈
|≤̈ ‖𝑧‖

∗

×̈ ‖𝑤‖
∗

, (56)

where 𝛼
−1

(�̇�) = 𝑥, 𝛼
−1

( ̈𝑦) = 𝑦, 𝛼
−1

(�̇�) = 𝑢, and 𝛼
−1

(V̈) = V.

Proof. Let 𝑧 = (�̇�, ̈𝑦), 𝑤 = (�̇�, V̈) ∈ C∗. Then,

⟨𝑧, 𝑤⟩
∗

= ⟨(�̇�, ̈𝑦) , (�̇�, V̈) ⟩
∗

= 𝜄 (�̇� ×̇ �̇�) +̈ ( ̈𝑦 ×̈ V̈)

= 𝛽 {𝛼
−1

(�̇� ×̇ �̇�)}

+̈𝛽 {𝛽
−1

( ̈𝑦) ⋅ 𝛽
−1

(V̈)}

= 𝛽 {𝛼
−1

(𝛼 {𝛼
−1

(�̇�) ⋅ 𝛼
−1

(�̇�)})}

+̈𝛽 {𝛽
−1

( ̈𝑦) ⋅ 𝛽
−1

(V̈)}

= 𝛽 {𝛼
−1

(�̇�) ⋅ 𝛼
−1

(�̇�)}

+̈𝛽 {𝛽
−1

( ̈𝑦) ⋅ 𝛽
−1

(V̈)}

= 𝛽 {𝛼
−1

(𝛼 (𝑥)) ⋅ 𝛼
−1

(𝛼 (𝑢))}

+̈𝛽 {𝛽
−1

(𝛽 (𝑦)) ⋅ 𝛽
−1

(𝛽 (V))}

= 𝛽 {𝑥 ⋅ 𝑢} +̈ 𝛽 {𝑦 ⋅ V}

= 𝛽 {𝛽
−1

(𝛽 {𝑥 ⋅ 𝑢}) + 𝛽
−1

(𝛽 {𝑦 ⋅ V})}

= 𝛽 {𝑥 ⋅ 𝑢 + 𝑦 ⋅ V} = 𝜁.

(57)

If we apply the function of 𝛽
−1 to (57), then we have

𝛽
−1

(𝜁) = 𝑥 ⋅ 𝑢 + 𝑦 ⋅ V

≤ |𝑥 ⋅ 𝑢| +





𝑦 ⋅ V





≤ √𝑥
2
𝑢
2

+ 𝑦
2V2

≤ √𝑥
2
𝑢
2

+ 𝑦
2V2 + 𝑥

2V2 + 𝑦
2
𝑢
2

= √(𝑥
2

+ 𝑦
2
) (𝑢
2

+ V2)

= √𝑥
2

+ 𝑦
2√

𝑢
2

+ V2,

(58)

which gives by applying 𝛽 that

⟨𝑧, 𝑤⟩
∗

≤̈ 𝛽 (√𝑥
2

+ 𝑦
2√

𝑢
2

+ V2)

= 𝛽 {𝛽
−1

[𝛽 (√𝑥
2

+ 𝑦
2
)] ⋅ 𝛽

−1

[𝛽 (
√

𝑢
2

+ V2)]}

= 𝛽 (√𝑥
2

+ 𝑦
2
) ×̈𝛽 (

√
𝑢
2

+ V2)

=




(�̇�, ̈𝑦)






∗

×̈ ‖(�̇�, V̈)‖
∗

= ‖𝑧‖
∗

×̈ ‖ 𝑤‖
∗

,

(59)

which completes the proof.

Theorem 21 gives the following.

Corollary 22. The space 𝐶
∗
(Ω) is an ∗-inner product space

but is not a Hilbert space with the integral metric defined by

⟨𝑓, 𝑔⟩
∗

= ∫

∗

𝑧∈Ω

𝑓 (𝑧) 𝑔(𝑧)𝑑𝑧, (60)

where 𝑓, 𝑔 ∈ 𝐶
∗
(Ω).

The proof is easily obtained by the appropriate verifi-
cations. Indeed, if we take 𝛼 = 𝐼 = 𝛽, we obtain the
classical calculus (CC) and, in (CC), the results are the same
for Corollary 22. It is an expected situation, because (CC)
is a kind of (NC) and we cannot generalize the assertion of
Corollary 22 differently.

Let us consider the space 𝐶[−1, 1] with the inner product

⟨𝑓, 𝑔⟩ = ∫

1

0

𝑓 (𝑧) 𝑔 (𝑧)𝑑𝑧, (61)

which gives the associated norm ‖𝑓‖ = √∫

1

0

|𝑓(𝑧)|
2

𝑑𝑧. The
inner product space is not complete; the space of Riemannian
integrable functions on the interval [−1; 1] that are square-
integrable, that is,





𝑓






2

= ∫

1

−1





𝑓 (𝑧)






2

𝑑𝑧 < ∞, (62)

is not complete.
As a final application, we give an inclusion relation

between the spaces 𝐶
∗
(Ω) and 𝐶



∗
(Ω), the space of first-order

∗-differentiable functions in Ω.

Theorem 23. 𝐶


∗
(Ω) ⊂ 𝐶

∗
(Ω) and the inclusion is strict.

Proof. In [10], if 𝑓 is a ∗-continuous function in a given
point 𝑎, then from the definition we have ∗-lim

𝑥→𝑎
𝑓(𝑥) =

𝑏 = 𝑓(𝑎) if and only if {𝑓(𝑎
𝑛
)}
∞

𝑛=0
is 𝛽-convergent to 𝑓(𝑎)

whenever any sequence (𝑎
𝑛
)
∞

𝑛=0
of arguments is 𝛼-convergent

to 𝑎.
Now, suppose that 𝑓 is a ∗-differentiable function in a

given point 𝑎 ∈ Ω. Then, the following limit

∗- lim
𝑥→𝑎

{[𝑓 (𝑥) −̈𝑓 (𝑎)]
̈

/ [𝜄 (𝑥) −̈ 𝜄 (𝑎)]} (63)
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exists and is equal to the unique number [𝐷
∗

𝑓](𝑎). There-
fore for every infinite sequence (𝑎

𝑛
)
∞

𝑛=0
of arguments of

distinct from 𝑎, is 𝛼-convergent to 𝑎 which implies that
[𝑓(𝑎
𝑛
)−̈𝑓(𝑎)]

̈
/[𝜄(𝑎
𝑛
)−̈𝜄(𝑎)] is 𝛽-convergent to [𝐷

∗

𝑓](𝑎) as
𝑛 → ∞. It can be written as

[𝐷
∗

𝑓] (𝑎) = ∗- lim
𝑛→∞

{[𝑓 (𝑎
𝑛
) −̈𝑓 (𝑎)]

̈
/ [𝜄 (𝑎
𝑛
) −̈𝜄 (𝑎)]}

= ∗- lim
𝑛→∞

= 𝛽 {

𝛽
−1

[𝑓 (𝑎
𝑛
)] − 𝛽

−1

[𝑓 (𝑎)]

𝛽
−1

[𝜄 (𝑎
𝑛
)] − 𝛽

−1
[𝜄 (𝑎)]

} .

(64)

If we apply 𝛽
−1 to (64) and consider the iota function 𝜄 = 𝛽 ∘

𝛼
−1, we obtain that

𝛽
−1

([𝐷
∗

𝑓] (𝑎))

= lim
𝑛→∞

𝛽
−1

[𝑓 (𝑎
𝑛
)] − 𝛽

−1

[𝑓 (𝑎)]

𝛽
−1

[𝜄 (𝑎
𝑛
)] − 𝛽

−1
[𝜄 (𝑎)]

⇒ (𝛽
−1

[𝜄 (𝑎
𝑛
)] − 𝛽

−1

[𝜄 (𝑎)]) 𝛽
−1

{[𝐷
∗

𝑓] (𝑎)}

= lim
𝑛→∞

{𝛽
−1

[𝑓 (𝑎
𝑛
)] − 𝛽

−1

[𝑓 (𝑎)]}

⇒ lim
𝑛→∞

[𝛼
−1

(𝑎
𝑛
) − 𝛼
−1

(𝑎)] 𝛽
−1

[𝐷
∗

𝑓 (𝑎)]

= lim
𝑛→∞

{𝛽
−1

[𝑓 (𝑎
𝑛
)] − 𝛽

−1

[𝑓 (𝑎)]} .

(65)

Since (𝑎
𝑛
) is 𝛼-convergent to 𝑎, the difference of 𝛼

−1

(𝑎
𝑛
) −

𝛼
−1

(𝑎) converges to 0. Therefore, we conclude that

0 = lim
𝑛→∞

{𝛽
−1

[𝑓 (𝑎
𝑛
)] − 𝛽

−1

[𝑓 (𝑎)]} . (66)

Now, we have by applying 𝛽 to (66) that

𝛽 (0) = 0̈ = ∗- lim
𝑛→∞

𝛽 {𝛽
−1

[𝑓 (𝑎
𝑛
)] − 𝛽

−1

[𝑓 (𝑎)]}

= ∗- lim
𝑛→∞

[𝑓 (𝑎
𝑛
) −̈𝑓 (𝑎)] ,

(67)

which means that ∗-lim
𝑛→∞

𝑓(𝑎
𝑛
) = 𝑓(𝑎) and this step

concludes the proof.
Following Wen [11], we give a counterexample such

that there is a nowhere differentiable continuous function
constructed by infinite products. Suppose 0 < 𝑎

𝑛
< 1 and 𝑝

𝑛

is an even integer for each 𝑛, and ∑
∞

𝑛=1
𝑎
𝑛
is convergent and

set 𝑏
𝑛

= ∏
𝑛

𝑘=1
𝑝
𝑘
. If 2
𝑛

/(𝑎
𝑛
𝑝
𝑛
) → 0 as 𝑛 → ∞, then

𝑓 (𝑥) =

∞

∏

𝑛=1

(1 + 𝑎
𝑛
sin 𝑏
𝑛
𝜋𝑥) (68)

is a continuous nowhere differentiable function.

Now, let us consider that the Non-Newtonian ∗-calculus
is multiplicative calculus, which means that the generator
functions 𝛼 and 𝛽 are equal to 𝐼(𝑥) = 𝑥 and exp(𝑥) = 𝑒

𝑥,
respectively. Then, the function 𝑓 defined by Wen [11] as in
(68) is

𝑓 (𝑥) =

∞∗
⋅⋅

∑

𝑛=1

(1 + 𝑎
𝑛
sin 𝑏
𝑛
𝜋𝑥) . (69)

The ∗-continuity of 𝑓 given by (69) is obtained from
uniform convergence of the function 𝑒

𝑥. Besides, as we
already know from [10], and so forth, multiplicative differen-
tiation has a relationship between the classical differentiation
such as

𝑓
∗

(𝑥) = exp [ln𝑓 (𝑥)]



= 𝑒
𝑓


(𝑥)/𝑓(𝑥)

. (70)

Therefore, this formula does not allow ∗-differentiability to
the function (69), too.

5. Conclusion

One of the purposes of this work is to extend the classical
calculus to the non-Newtonian real calculus for dealing with
complex valued functions. Some of the analogies between
(CC) and the (NC) are demonstrated by theoretical examples.
We derive classical continuous function space in the sense
of non-Newtonian calculus and try to understand their
structure of being non-Newtonian vector space. Generally,
we work on the vector spaces which concern physics and
computing. There are lots of techniques that have been
developed in the sense of (CC). If (NC) is employed together
with (CC) in the formulations, then many of the complicated
phenomena in physics or engineering may be analyzed more
easily. Even some biological and finance problems can be
solved by exponential calculus, which is just a sort of non-
Newtonian calculus.

Quite recently, Talo and Bas,ar have studied the certain
sets of sequences of fuzzy numbers and introduced the classi-
cal sets ℓ

∞
(𝐹), 𝑐(𝐹), 𝑐

0
(𝐹), and ℓ

𝑝
(𝐹) consisting of bounded,

convergent, null, and absolutely 𝑝-summable sequences of
fuzzy numbers in [12]. Next, they have defined the 𝛼-, 𝛽-
, and 𝛾-duals of a set of sequences of fuzzy numbers and
gave the duals of the classical sets of sequences of fuzzy
numbers together with the characterization of the classes of
infinite matrices of fuzzy numbers transforming one of the
classical set into another one. Following Bashirov et al. [2]
and Uzer [3], we have given the corresponding results for
non-Newtonian calculus to the results obtained for fuzzy
valued sequences in Talo and Başar [12], as a beginning. As
a natural continuation of this paper, we should record that it
is meaningful to define the 𝛼-, 𝛽-, and 𝛾-duals of a space of
sequences of non-Newtonian real elements and to determine
the duals of classical spaces ℓ

∗

∞
, 𝑐
∗, 𝑐
∗

0
, and ℓ

∗

�̈�
together with

the characterization of matrix transformations between the
classical sequence spaces over the non-Newtonian complex
field C∗. Further, one can obtain the similar results by
using another type of calculus instead of non-Newtonian
calculus.

Non-Newtonian calculus is a new area in mathematics
and has very pristine subjects to discuss. We just begin with
the space of continuous and bounded functions which would
step us to investigate more complicated theoretical structures
and properties of (NC). We are trying to develop something
valuable about non-Newtonian Functional Analysis, but only
the mathematical authorities can decide that.
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