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Based on the modified Hermitian and skew-Hermitian splitting (MHSS) and preconditioned MHSS (PMHSS) methods, a
generalized preconditioned MHSS (GPMHSS) method for a class of complex symmetric linear systems is presented. Theoretical
analysis gives an upper bound for the spectral radius of the iteration matrix. From a practical point of view, we have analyzed and
implemented inexact GPMHSS (IGPMHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical
experiments are reported to confirm the efficiency of the proposed methods.

1. Introduction

Consider an iterative solution of the system of linear equa-
tions as follows:

𝐴𝑥 = 𝑏, 𝐴 ∈ C
𝑛×𝑛

, 𝑥, 𝑏 ∈ C
𝑛

, (1)

where 𝐴 ∈ C𝑛×𝑛 is a complex symmetric matrix of the
following form:

𝐴 = 𝑊 + 𝑖𝑇, (2)

with 𝑊 ∈ R𝑛×𝑛 being symmetric positive definite and 𝑇 ∈

R𝑛×𝑛 being symmetric positive semidefinite. Here and in the
sequel, we use 𝑖 = √−1 as the imaginary unit. One can readily
verify that𝐴 is non-Hermitian, that is to say, the linear system
(1) is a non-Hermitian linear system. System such as (1) is
important and arises in a variety of scientific and engineering
applications, including structural dynamics [1–4], diffuse
optical tomography [5, 6], FFT-based solution of certain
time-dependent PDEs [7], lattice quantum chromodynamics
[8], molecular dynamics and fluid dynamics [9], quantum
chemistry, and eddy current problem [10, 11]. One can see
[12, 13] for more examples and additional references. In
order to solve (1) more effectively, many efficient numerical
algorithms have been proposed in the literature, see [14–20].

Based on the specific structure of the coefficientmatrix𝐴,
one can verify that the Hermitian and skew-Hermitian parts
of the coefficient matrix 𝐴, respectively, are

𝐻 =
1

2
(𝐴 + 𝐴

∗

) = 𝑊, 𝑆 =
1

2
(𝐴 − 𝐴

∗

) = 𝑖𝑇. (3)

Obviously, the above Hermitian and skew-Hermitian split-
ting of the coefficient matrix 𝐴 is in line with the real and
imaginary parts splitting of the coefficient matrix 𝐴. Based
on the HSS method [21], Bai et al. [2] skillfully designed
a modified HSS (MHSS) method to solve the complex
symmetric linear system (1) which is described below.

TheMHSSMethod. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial guess.
For 𝑘 = 0, 1, 2, . . ., until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0

converges, compute the next iterate 𝑥(𝑘+1) according to the
following procedure:

(𝛼𝐼 +𝑊) 𝑥
(𝑘+1/2)

= (𝛼𝐼 − 𝑖𝑇) 𝑥
(𝑘)

+ 𝑏,

(𝛼𝐼 + 𝑇) 𝑥
(𝑘+1)

= (𝛼𝐼 + 𝑖𝑊) 𝑥
(𝑘+1/2)

− 𝑖𝑏,

(4)

where𝛼 is a given positive constant and 𝐼 is an identitymatrix.
The potential advantage of the MHSS method over

the HSS method [21] for solving the complex symmetric

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 206821, 9 pages
http://dx.doi.org/10.1155/2014/206821

http://dx.doi.org/10.1155/2014/206821


2 Abstract and Applied Analysis

linear system (1) is that only two linear subsystems with
coefficient matrices 𝛼𝐼 + 𝑊 and 𝛼𝐼 + 𝑇, both being real
and symmetric positive definite, need to be solved at each
step. Therefore, in this case, these two linear subsystems
can be solved efficiently using mostly real arithmetic either
exactly by a sparse Cholesky factorization or inexactly by
conjugated gradient scheme.That is to say, theMHSSmethod
successfully avoids solving a shifted skew-Hermitian linear
subsystem with coefficient matrix 𝛼𝐼 + 𝑖𝑇.

Theoretical analysis in [2] shows that the MHSS method
converges unconditionally to the unique solution of the
complex symmetric linear system (1) when𝑊 ∈ R𝑛×𝑛 is real
symmetric positive definite and 𝑇 ∈ R𝑛×𝑛 is real symmetric
positive semidefinite. The corresponding optimum parame-
ter 𝛼 = √𝜆min(𝑊)𝜆max(𝑊) is obtained to minimize an upper
boundon the spectral radius of the iterationmatrix associated
with (4).

The MHSS method immediately attracted considerable
attention and resulted in many papers devoted to various
aspects of the new algorithms. For instance, preconditioned
modified Hermitian and skew-Hermitian splitting (PMHSS)
iteration in [3], lopsided preconditionedmodified Hermitian
and skew-Hermitian splitting (LPMHSS) iteration in [22],
amongst others. On the other hand, the MHSS method was
successfully extended to the solution of control problems in
[23].

In this paper, based on the splitting (3), we generalize
the MHSS iterative scheme into a new approach, called
generalized preconditioned MHSS (GPMHSS) iteration. By
introducing two symmetric positive definite matrices 𝑃

1
∈

R𝑛×𝑛 and 𝑃
2
∈ R𝑛×𝑛, the GPMHSS iterative scheme works

as follows.
The GPMHSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial
guess. For 𝑘 = 0, 1, 2, . . ., until the sequence of iterates
{𝑥
(𝑘)

}
∞

𝑘=0
converges, compute the next iterate 𝑥(𝑘+1) according

to the following procedure:

(𝛼𝑃
1
+𝑊)𝑥

(𝑘+1/2)

= (𝛼𝑃
1
− 𝑖𝑇) 𝑥

(𝑘)

+ 𝑏,

(𝛽𝑃
2
+ 𝑇) 𝑥

(𝑘+1)

= (𝛽𝑃
2
+ 𝑖𝑊) 𝑥

(𝑘+1/2)

− 𝑖𝑏,

(5)

where𝛼 is a nonnegative constant and𝛽 is a positive constant.
Note that the GPMHSS iteration method can cover

many existing variants of the standard MHSS iteration. For
instance, when 𝛼 = 𝛽 and 𝑃

1
= 𝑃
2
= 𝐼, the GPMHSS

iterationmethod is equivalent to the standardMHSS iteration
method in [2]; when 𝛼 = 𝛽 and 𝑃

1
= 𝑃
2
, the GPMHSS iter-

ation method is equivalent to the standard PMHSS iteration
method in [3]; when𝛼 = 0 and𝑃

2
= 𝐼, it leads to the LPMHSS

iteration method in [22].
Theoretical analysis gives an upper bound about the con-

traction factor of GPMHSS iteration method, which shows
the relations among GPMHSS, MHSS, and other existing
variants. From a practical point of view, we also discuss the
inexact variants of the GPMHSS iteration method and their
implementation. A number of numerical experiments are
presented to illustrate the advantages of the GPMHSS and
IGPMHSS methods.

This paper is organized as follows. In Section 2, we study
the convergence properties of theGPMHSS iterationmethod.
In Section 3, we discuss the implementation of GPMHSS
iteration method and the corresponding inexact GPMHSS
(IPGMHSS) iteration method. Numerical experiments are
reported to confirm the efficiency of the proposedmethods in
Section 4. Finally, we end the paper with concluding remarks
in Section 5.

2. Convergence Analysis for
the GPMHSS Method

In this section, the convergence of the GPMHSS method
is studied and an upper bound for the contraction factor
of the GPMHSS method is derived. The GPMHSS iteration
method can be generalized into a two-step splitting iteration
framework. The following lemma is required to study the
convergence properties of the GPMHSS method.

The spectral radius of thematrix𝐴 is the nonnegative real
number 𝜌(𝐴) = max{|𝜆| : 𝜆 ∈ 𝜎(𝐴)}, where 𝜎(𝐴) denotes the
spectrum of matrix 𝐴. In fact, we have the basic property on
spectral radius of the product of two matrices that 𝜌(𝐴𝐵) =
𝜌(𝐵𝐴), which is used in the proof of the following theorem.

Lemma 1 (see [21]). Let 𝐴 ∈ C𝑛×𝑛, 𝐴 = 𝑀
𝑖
− 𝑁
𝑖
(𝑖 = 1, 2)

be two splittings of 𝐴, and 𝑥(0) ∈ C𝑛 be a given initial vector. If
{𝑥
(𝑘)

} is a two-step iteration sequence defined by

𝑀
1
𝑥
(𝑘+1/2)

= 𝑁
1
𝑥
(𝑘)

+ 𝑏,

𝑀
2
𝑥
(𝑘+1)

= 𝑁
2
𝑥
(𝑘+1/2)

+ 𝑏,

(6)

𝑘 = 0, 1, . . ., then

𝑥
(𝑘+1)

= 𝑀
−1

2
𝑁
2
𝑀
−1

1
𝑁
1
𝑥
(𝑘)

+𝑀
−1

2
(𝐼 + 𝑁

2
𝑀
−1

1
) 𝑏,

𝑘 = 0, 1, . . . .

(7)

Moreover, if the spectral radius 𝜌(𝑀−1
2
𝑁
2
𝑀
−1

1
𝑁
1
) < 1, then

the iterative sequence {𝑥(𝑘)} converges to the unique solution
𝑥
∗
∈ C𝑛 of the system (1) for all initial vectors 𝑥(0) ∈ C𝑛.

Applying this lemma to the GPMHSS method, we get the
convergence property in the following theorem.

Theorem 2. Let 𝑃
1
∈ R𝑛×𝑛 and 𝑃

2
∈ R𝑛×𝑛 be two symmetric

positive definite matrices. Let 𝐴 = 𝑊 + 𝑖𝑇 ∈ C𝑛×n, with
𝑊 ∈ R𝑛×𝑛 and 𝑇 ∈ R𝑛×𝑛 symmetric positive definite and
symmetric positive semidefinite, respectively, and let 𝛼 be a
nonnegative constant and let 𝛽 be a positive constant. Then the
iteration matrix𝑀

𝛼,𝛽
of GPMHSS method is

𝑀
𝛼,𝛽

= (𝛽𝑃
2
+ 𝑇)
−1

(𝛽𝑃
2
+ 𝑖𝑊) (𝛼𝑃

1
+𝑊)
−1

(𝛼𝑃
1
− 𝑖𝑇) .

(8)

Denote 𝛾(𝑃̂𝑃̂𝑇), 𝜆(𝑊̂), and 𝜇(𝑇̂) to be the spectral sets of the
matrices 𝑃̂𝑃̂𝑇, 𝑊̂, and 𝑇̂, respectively, where 𝑃̂ = 𝑃

−1/2

1
𝑃
1/2

2
,

𝑊̂ = 𝑃
−1/2

1
𝑊𝑃
−1/2

1
, and 𝑇̂ = 𝑃

−1/2

2
𝑇𝑃
−1/2

2
. Then,

𝜌 (𝑀
𝛼,𝛽
) ≤ 𝛿 = 𝜅 (𝑃̂) 𝛿

1
𝛿
2
, (9)
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where 𝜅(𝑃̂) denotes the spectral condition number of thematrix
𝑃̂, and

𝛿
1
= (𝛽 max
𝛾𝑖∈𝛾(𝑃̂𝑃̂

𝑇)

󵄨󵄨󵄨󵄨𝛾𝑖 − 1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛽 − 𝛼
󵄨󵄨󵄨󵄨) max
𝜆𝑖∈𝜆(𝑊̂)

1

𝛼 + 𝜆
𝑖

+ max
𝜆𝑖∈𝜆(𝑊̂)

√𝛼2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

,

𝛿
2
= (𝛼 max
𝛾𝑖∈𝜆(𝑃̂𝑃̂

𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝛾
𝑖

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽 − 𝛼

󵄨󵄨󵄨󵄨) max
𝜇𝑖∈𝜇(
̂
𝑇)

1

𝛽 + 𝜇
𝑖

+ 1.

(10)

Proof. Let 𝑀
1
= 𝛼𝑃
1
+ 𝑊, 𝑁

1
= 𝛼𝑃
1
− 𝑖𝑇, 𝑀

2
= 𝛽𝑃
2
+

𝑇, and 𝑁
2
= 𝛽𝑃
2
+ 𝑖𝑊. Obviously, 𝛼𝑃

1
+ 𝑊 and 𝛽𝑃

2
+ 𝑇

are nonsingular for any nonnegative constants 𝛼 and positive
constants 𝛽. So formula (8) is valid.

Let 𝑊̂ = 𝑃
−1/2

1
𝑊𝑃
−1/2

1
, 𝑇̂ = 𝑃

−1/2

2
𝑇𝑃
−1/2

2
, and 𝑃̂ =

𝑃
−1/2

1
𝑃
1/2

2
. Then,

𝛼𝑃
1
+𝑊 = 𝑃

1/2

1
(𝛼𝐼 + 𝑊̂) 𝑃

1/2

1
,

𝛽𝑃
2
+ 𝑖𝑊 = 𝑃

1/2

1
(𝛽𝑃̂𝑃̂

𝑇

+ 𝑖𝑊̂) 𝑃
1/2

1
,

𝛽𝑃
2
+ 𝑇 = 𝑃

1/2

2
(𝛽𝐼 + 𝑇̂) 𝑃

1/2

2
,

𝛼𝑃
1
− 𝑖𝑇 = 𝑃

1/2

2
(𝛼𝑃̂
−1

𝑃̂
−𝑇

− 𝑖𝑇̂) 𝑃
1/2

2
.

(11)

Hence,

(𝛽𝑃
2
+ 𝑖𝑊) (𝛼𝑃

1
+𝑊)
−1

= 𝑃
1/2

1
(𝛽𝑃̂𝑃̂

𝑇

+ 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

𝑃
−1/2

1

= 𝑃
1/2

1
[(𝛽𝑃̂𝑃̂

𝑇

− 𝛼𝐼) (𝛼𝐼 + 𝑊̂)
−1

+ (𝛼𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

] 𝑃
−1/2

1

= 𝑃
1/2

1
[𝛽 (𝑃̂𝑃̂

𝑇

− 𝐼) (𝛼𝐼 + 𝑊̂)
−1

+ (𝛽 − 𝛼) (𝛼𝐼 + 𝑊̂)
−1

+ (𝛼𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

] 𝑃
−1/2

1
,

(𝛼𝑃
1
− 𝑖𝑇) (𝛽𝑃

2
+ 𝑇)
−1

= 𝑃
1/2

2
(𝛼𝑃̂
−1

𝑃̂
−𝑇

− 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)
−1

𝑃
−1/2

2

= 𝑃
1/2

2
[(𝛼𝑃̂
−1

𝑃̂
−𝑇

− 𝛽𝐼) (𝛽𝐼 + 𝑇̂)
−1

+ (𝛽𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)
−1

] 𝑃
−1/2

2

= 𝑃
1/2

2
[𝛼 (𝑃̂

−1

𝑃̂
−𝑇

− 𝐼) (𝛽𝐼 + 𝑇̂)
−1

+ (𝛼 − 𝛽)

× (𝛽𝐼 + 𝑇̂)
−1

+ (𝛽𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)
−1

] 𝑃
−1/2

2
.

(12)

Further, we have

𝜌 (𝑀
𝛼,𝛽
)

= 𝜌 ((𝛽𝑃
2
+ 𝑇)
−1

(𝛽𝑃
2
+ 𝑖𝑊) (𝛼𝑃

1
+𝑊)
−1

(𝛼𝑃
1
− 𝑖𝑇))

= 𝜌 ((𝛽𝑃
2
+ 𝑖𝑊) (𝛼𝑃

1
+𝑊)
−1

(𝛼𝑃
1
− 𝑖𝑇) (𝛽𝑃

2
+ 𝑇)
−1

)

= 𝜌 (𝑃
1/2

1
(𝛽𝑃̂𝑃̂

𝑇

+ 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

× 𝑃̂ (𝛼𝑃̂
−1

𝑃̂
−𝑇

− 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)
−1

𝑃
−1/2

2
)

= 𝜌 ((𝛽𝑃̂𝑃̂
𝑇

+ 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

𝑃̂ (𝛼𝑃̂
−1

𝑃̂
−𝑇

− 𝑖𝑇̂)

× (𝛽𝐼 + 𝑇̂)
−1

𝑃̂
−1

)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛽𝑃̂𝑃̂

𝑇

+ 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

𝑃̂ (𝛼𝑃̂
−1

𝑃̂
−𝑇

− 𝑖𝑇̂)

× (𝛽𝐼 + 𝑇̂)
−1

𝑃̂
−1
󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝜅 (𝑃̂) [𝛽
󵄩󵄩󵄩󵄩󵄩
𝑃̂𝑃̂
𝑇

− 𝐼
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩
(𝛼𝐼 + 𝑊̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
+
󵄨󵄨󵄨󵄨𝛽 − 𝛼

󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛼𝐼 + 𝑊̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛼𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
]

⋅ [𝛼
󵄩󵄩󵄩󵄩󵄩
𝑃̂
−1

𝑃̂
−𝑇

− 𝐼
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 + 𝑇̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
+
󵄨󵄨󵄨󵄨𝛼 − 𝛽

󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 + 𝑇̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
] .

(13)

Through simple calculations, we can get that

󵄩󵄩󵄩󵄩󵄩󵄩
(𝛼𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
≤ max
𝜆𝑖∈𝜆(𝑊̂)

√𝛼2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

,

󵄩󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
≤ max
𝜇𝑖∈𝜇(
̂
𝑇)

√𝛽2 + 𝜇
2

𝑖

𝛽 + 𝜇
𝑖

≤ 1,

󵄩󵄩󵄩󵄩󵄩
𝑃̂𝑃̂
𝑇

− 𝐼
󵄩󵄩󵄩󵄩󵄩2
≤ max
𝛾𝑖∈𝛾(𝑃̂𝑃̂

𝑇
)

󵄨󵄨󵄨󵄨𝛾𝑖 − 1
󵄨󵄨󵄨󵄨 ,

󵄩󵄩󵄩󵄩󵄩
𝑃̂
−1

𝑃̂
−𝑇

− 𝐼
󵄩󵄩󵄩󵄩󵄩2
≤ max
𝛾𝑖∈𝛾(𝑃̂𝑃̂

𝑇
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝛾
𝑖

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(14)

The above inequalities give the upper bound for 𝜌(𝑀
𝛼,𝛽
) in

(9).

Some remarks onTheorem 2 are given below.
(i) When 𝑃

1
= 𝑃
2
, GPMHSS reduces to a two-parameter

PMHSS method. In this case, 𝑃̂ = 𝑃
−1/2

1
𝑃
1/2

2
= 𝐼 and
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𝜅(𝑃̂) = 1. In the meantime, the upper bound in (9) results
in

𝛿 = ( max
𝜆𝑖∈𝜆(𝑊̂)

󵄨󵄨󵄨󵄨𝛽 − 𝛼
󵄨󵄨󵄨󵄨

𝛼 + 𝜆
𝑖

+ max
𝜆𝑖∈𝜆(𝑊̂)

√𝛼2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

)

×( max
𝜇𝑖∈𝜇(̂𝑇)

󵄨󵄨󵄨󵄨𝛽 − 𝛼
󵄨󵄨󵄨󵄨

𝛽 + 𝜇
𝑖

+ 1) ,

(15)

which not only gives the upper bound for the PMHSSmethod
and complements the theoretical results of paper [24], but
also includes the special case in [2] as follows:

𝛿 = max
𝜆𝑖∈𝜆(𝑊̂)

√𝛼2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

, (16)

when 𝛼 = 𝛽.
(ii) Based on (9), it is obvious that the convergence rate

not only depends on the choices of two parameters 𝛼 and
𝛽, but also depends on the choices of two auxiliary matrices
𝑃
1
and 𝑃

2
. Obviously, the efficiency of GPMHSS is best

when one can obtain two iteration parameters and auxiliary
matrices to minimize an upper bound on the spectral radius
of the iteration matrix. That is to say, it is necessary to
discuss the choices of 𝛼, 𝛽, 𝑃

1
, and 𝑃

2
. In fact, under certain

conditions, in theory, some optimal iteration parameters 𝛼
and 𝛽 can be derived. For example, if 𝑃

1
= 0, then the

GPMHSS method reduces to the LPMHSS method and the
corresponding optimal parameter is 𝜆2min/𝜇max, where 𝜆min
and 𝜇max, respectively, denote the smallest eigenvalue of
𝑃
−1

2
𝑊 and the largest eigenvalue of 𝑃−1

2
𝑇 [22]. If 𝑃

1
= 𝑃
2

and 𝛼 = 𝛽, then the GPMHSS method reduces to the
PMHSS method and the corresponding optimal parameter
is √𝜆min𝜆max, where 𝜆min and 𝜆max, respectively, denote the
smallest and largest eigenvalues of 𝑃−1

2
𝑊 [3]. Whereas, if

𝑃
1
= 𝑃
2
and 𝛼 ̸= 𝛽, in theory, one cannot find the optimal

values of the iteration parameters 𝛼 and 𝛽 in general. With
respect to this point, one can see [24] for more details. Based
on this fact, in theory, a conclusion may be obtained, that is,
one cannot find the optimal values of the iteration parameters
𝛼 and 𝛽 for GPMHSS in general. But even so, the optimal
values of the iteration parameters 𝛼 and 𝛽 for GPMHSS may
be obtained experimentally (to see the fourth section). In
practice, to further improve the efficiency of the GPMHSS
method, it is desirable to determine or find a good estimate
of the optimal parameter that minimizes the convergence
factor. In fact, to find the actual optimal estimates 𝛼 and 𝛽
for the GPMHSS method is a hard task because its solution
strongly depends on the particular structures and properties
of the coefficient matrix 𝐴, as well as the splittings matrices
𝑊 and𝑇, and needs further in-depth study, both from theory
and computation point of view. When the optimal parameter
cannot be derived in theory, the value of parameter 𝛼 = 𝛽

with 𝑃
1
= 𝑃
2
is selected by the statement on the choice

of the iteration parameter in [25], that is to say, experience
suggests that in most applications and for an appropriate
scaling of the problem, a “small” value of parameter (usually

between 0.01 and 0.5) may give good results. Whereas
choosing a parameter so as to minimize the spectral radius
of the iteration matrix is not necessarily the best choice
when the algorithm is used as a preconditioner for a Krylov
subspace method. Remarkably, it can be shown that, for
certain problems, the alternating iteration results in an ℎ-
independent preconditioner for GMRES when parameter is
chosen sufficiently small, correspond to a spectral radius very
close to 1. In fact, if we define the optimal value of parameter
as the one that minimizes the total amount of work needed
to compute an approximate solution, this will not necessarily
be the same as the parameter that minimizes the number of
(outer) iterations. Overall, the analytic determination of such
an optimal value for parameter appears to be daunting. With
respect to the choices of two auxiliary matrices 𝑃

1
and 𝑃

2
, 𝑃
1

and 𝑃
2
may have a better degree of freedom. For instance, if

𝑊+𝑇 is positive definite, then 𝑃
1
= 𝑇 and 𝑃

2
= 𝑊with 𝛼 > 0

would be a natural choice for the preconditioners.
(iii) When 𝑃

1
̸= 𝑃
2
and 𝛼 = 𝛽, the upper bound in (9)

results in

𝛿 = ( max
𝛾𝑖∈𝛾(𝑃̂𝑃̂

𝑇)

󵄨󵄨󵄨󵄨𝛾𝑖 − 1
󵄨󵄨󵄨󵄨 max
𝜆𝑖∈𝜆(𝑊̂)

𝛼

𝛼 + 𝜆
𝑖

+ max
𝜆𝑖∈𝜆(𝑊̂)

√𝛼2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

)

⋅ ( max
𝛾𝑖∈𝜆(𝑃̂𝑃̂

𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝛾
𝑖

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

max
𝜇𝑖∈𝜇(̂𝑇)

𝛼

𝛼 + 𝜇
𝑖

+ 1) .

(17)

The approach to minimize the upper bound is very
important in theoretical viewpoint. However, it is not prac-
tical since the corresponding spectral radius of the iteration
matrix 𝑀

𝛼,𝛽
is not optimal. How to choose the suitable

preconditioners and parameters for practical problem is still
a great challenge.

3. The IGPMHSS Iteration

In the GPMHSS method, it is required to solve two systems
of linear equations whose coefficient matrices are 𝛼𝑃

1
+ 𝑊

and 𝛽𝑃
2
+ 𝑇, respectively. However, this may be very costly

and impractical in actual implementations. To overcome this
disadvantage and improve the computational efficiency of
the GPMHSS iteration method, we propose to solve the two
subproblems iteratively [21, 26], which leads to the inexact
GPMHSS (IGPMHSS) iterative scheme. Its convergence can
be shown in a similar way to that of the IHSS iteration
method, usingTheorem 3.1 of [21]. Since 𝛼𝑃

1
+𝑊 and 𝛽𝑃

2
+

𝑇 are symmetric positive definite, there can employ some
Krylov subspace methods (such as CG) to gain its solution
easily. Of course, if good preconditioners formatrices𝛼𝑃

1
+𝑊

and 𝛽𝑃
2
+ 𝑇 are available, we can use the preconditioned

conjugate gradient (PCG) method instead of CG for the two
inner systems, this yields a better performance of IGPMHSS
method. If either 𝛼𝑃

1
+ 𝑊 or 𝛽𝑃

2
+ 𝑇 (or both) is Toeplitz,

we can use fast algorithms for solution of the corresponding
subsystems [27]. Here, just like the IHSS iteration, the
IGPMHSS iterative scheme is presented in Algorithm 1.
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𝑘 = 0;
while (not convergent)
𝑟
(𝑘)

= 𝑏 − 𝐴𝑥
(𝑘);

approximately solve (𝛼𝑃
1
+𝑊)𝑧

(𝑘)

= 𝑟
(𝑘) by employing CG method,

such that the residual 𝑝(𝑘) = 𝑟(𝑘) − (𝛼𝑃
1
+𝑊)𝑧

(𝑘) of the iteration satisfies
‖𝑝
(𝑘)

‖
2
≤ 𝜂
𝑘
‖𝑟
(𝑘)

‖
2
;

𝑥
(𝑘+1/2)

= 𝑥
(𝑘)

+ 𝑧
(𝑘);

𝑟
(𝑘+1/2)

= 𝑏 + 𝑖𝐴𝑥
(𝑘+1/2);

approximately solve (𝛽𝑃
2
+ 𝑇)𝑧

(𝑘+1/2)

= 𝑟
(𝑘+1/2) by employing CG method,

such that the residual 𝑞(𝑘+1/2) = 𝑟(𝑘+1/2) − (𝛽𝑃
2
+ 𝑇)𝑧

(𝑘+1/2) of the
iteration satisfies ‖𝑞(𝑘+1/2)‖

2
≤ 𝜏
𝑘
‖𝑟
(𝑘+1/2)

‖
2
;

𝑥
(𝑘+1)

= 𝑥
(𝑘+1/2)

+ 𝑧
(𝑘+1/2);

𝑘 = 𝑘 + 1;
end

Algorithm 1

Remark 3. It is not difficult to find the fact that if the inner
systems can be solved exactly with 𝜂

𝑘
= 0 and 𝜏

𝑘
= 0, then

the IGPMHSS iteration reduces to the GPMHSS iteration. In
fact, to guarantee the convergence of the IGPMHSS iteration,
it is not necessary for 𝜂

𝑘
and 𝜏
𝑘
to go to zero when 𝑘 increases.

To derive the convergence properties for IGPMHSS
iteration, the following lemma is required, which is presented
by Bai et al. [21]. Here ‖|𝑥|‖

𝑀
= ‖𝑀𝑥‖ for any 𝑥 ∈ C𝑛, which

immediately induces the matrix norm ‖|𝑋|‖
𝑀
= ‖𝑀𝑋𝑀

−1

‖

for any𝑋 ∈ C𝑛×𝑛.

Lemma 4. Let 𝐴 ∈ C𝑛×𝑛, 𝐴 = 𝑀
𝑖
− 𝑁
𝑖
(𝑖 = 1, 2) be two

splittings of 𝐴. If {𝑥(𝑘)} is an iteration sequence defined as
follows:

𝑥
(𝑘+1/2)

= 𝑥
(𝑘)

+ 𝑧
(𝑘)

𝑤𝑖𝑡ℎ 𝑀
1
𝑧
(𝑘)

= 𝑟
(𝑘)

+ 𝑝
(𝑘)

, (18)

satisfying ‖𝑝(𝑘)‖
2
≤ 𝜂
𝑘
‖𝑟
(𝑘)

‖
2
, where 𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘), and

𝑥
(𝑘+1)

= 𝑥
(𝑘+1/2)

+ 𝑧
(𝑘+1/2)

𝑤𝑖𝑡ℎ 𝑀
2
𝑧
(𝑘+1/2)

= 𝑟
(𝑘+1/2)

+ 𝑞
(𝑘+1/2)

,

(19)

satisfying ‖𝑞(𝑘+1/2)‖
2
≤ 𝜏
𝑘
‖𝑟
(𝑘+1/2)

‖
2
, where 𝑟(𝑘+1/2) = 𝑏 −

𝐴𝑥
(𝑘+1/2), then {𝑥(𝑘)} is of the form

𝑥
(𝑘+1)

= 𝑀
−1

2
𝑁
2
𝑀
−1

1
𝑁
1
𝑥
(𝑘)

+𝑀
−1

2
(𝐼 + 𝑁

2
𝑀
−1

1
) 𝑏

+𝑀
−1

2
(𝑁
2
𝑀
−1

1
𝑝
(𝑘)

+ 𝑞
(𝑘+1/2)

) .

(20)

Moreover, if 𝑥
∗
∈ C𝑛 is the exact solution of the system of linear

equations (1), then we have
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑘+1)

− 𝑥
∗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩𝑀2

≤ (𝜁 + 𝜇𝜃𝜂
𝑘
+ 𝜃 (𝜌 + 𝜃]𝜂

𝑘
) 𝜏
𝑘
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑘)

− 𝑥
∗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩𝑀2
,

𝑘 = 1, 2, . . . ,

(21)

where

𝜁 =
󵄩󵄩󵄩󵄩󵄩
𝑁
2
𝑀
−1

1
𝑁
1
𝑀
−1

2

󵄩󵄩󵄩󵄩󵄩2
, 𝜌 =

󵄩󵄩󵄩󵄩󵄩
𝑀
2
𝑀
−1

1
𝑁
1
𝑀
−1

2

󵄩󵄩󵄩󵄩󵄩2
,

𝜇 =
󵄩󵄩󵄩󵄩󵄩
𝑁
2
𝑀
−1

1

󵄩󵄩󵄩󵄩󵄩2
,

𝜃 =
󵄩󵄩󵄩󵄩󵄩
𝐴𝑀
−1

2

󵄩󵄩󵄩󵄩󵄩2
, ] =

󵄩󵄩󵄩󵄩󵄩
𝑀
2
𝑀
−1

1

󵄩󵄩󵄩󵄩󵄩2
.

(22)

In particular, if

𝜁 + 𝜇𝜃𝜂max + 𝜃 (𝜌 + 𝜃]𝜂max) 𝜏max < 1, (23)

then the iteration sequence {𝑥(𝑘)} converges to 𝑥
∗
∈ C𝑛, where

𝜂max = max
𝑘
{𝜂
𝑘
} and 𝜏max = max

𝑘
{𝜏
𝑘
}.

Applying Lemma 4, the following theorem gives a con-
vergence analysis of the IGPMHSS iteration.

Let

𝛿
𝛼,𝛽

=
󵄩󵄩󵄩󵄩󵄩
(𝛼𝑃
1
− 𝑖𝑇) (𝛼𝑃

1
+𝑊)
−1

(𝛽𝑃
2
+ 𝑖𝑊) (𝛽𝑃

2
+ 𝑇)
−1󵄩󵄩󵄩󵄩󵄩2

.

(24)

Then we have the following result.

Theorem 5. Let 𝑃
1
∈ R𝑛×𝑛 and 𝑃

2
∈ R𝑛×𝑛 be two symmetric

positive definite matrices. Let 𝐴 = 𝑊 + 𝑖𝑇 ∈ C𝑛×𝑛, with
𝑊 ∈ R𝑛×𝑛 and 𝑇 ∈ R𝑛×𝑛 symmetric positive definite and
symmetric positive semidefinite, respectively, and let 𝛼 be a
nonnegative constant and let 𝛽 be a positive constant. If {𝑥(𝑘)}
is an iteration sequence generated by the IGPMHSS iteration
method (Algorithm 1) and if 𝑥

∗
∈ C𝑛 is the exact solution of

the system of linear equations (1), then it holds that

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑘+1)

− 𝑥
∗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩

≤ (𝛿
𝛼,𝛽

+ 𝜇𝜃𝜂
𝑘
+ 𝜃 (𝜌 + 𝜃𝜐𝜂

𝑘
) 𝜏
𝑘
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑘)

− 𝑥
∗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
,

𝑘 = 1, 2, . . . ,

(25)
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where

𝜌 =
󵄩󵄩󵄩󵄩󵄩
(𝛽𝑃
2
+ 𝑇) (𝛼𝑃

1
+𝑊)
−1

(𝛼𝑃
1
− 𝑖𝑇) (𝛽𝑃

2
+ 𝑇)
−1󵄩󵄩󵄩󵄩󵄩2

,

𝜃 =
󵄩󵄩󵄩󵄩󵄩
𝐴(𝛽𝑃
2
+ 𝑇)
−1󵄩󵄩󵄩󵄩󵄩2

,

𝜇 =
󵄩󵄩󵄩󵄩󵄩
(𝛽𝑃
2
+ 𝑖𝑊) (𝛼𝑃

1
+𝑊)
−1󵄩󵄩󵄩󵄩󵄩2

,

𝜐 =
󵄩󵄩󵄩󵄩󵄩
(𝛽𝑃
2
+ 𝑇) (𝛼𝑃

1
+𝑊)
−1󵄩󵄩󵄩󵄩󵄩2

.

(26)

In particular, if

𝛿
𝛼,𝛽

+ 𝜇𝜃𝜂max + 𝜃 (𝜌 + 𝜃]𝜂max) 𝜏max < 1, (27)

then the iteration sequence {𝑥(𝑘)} converges to 𝑥
∗
, where 𝜂max =

max
𝑘
{𝜂
𝑘
} and 𝜏max = max

𝑘
{𝜏
𝑘
}.

In fact, replacing 𝑀
𝑖
and 𝑁

𝑖
(𝑖 = 1, 2) in Lemma 4 with

𝑀
1
= 𝛼𝑃

1
+ 𝑊, 𝑁

1
= 𝛼𝑃

1
− 𝑖𝑇, 𝑀

2
= 𝛽𝑃

2
+ 𝑇, and

𝑁
2
= 𝛽𝑃

2
+ 𝑖𝑊, we straightforwardly obtain the proof of

Theorem 5.
Theorem 5 shows that the choices of the tolerances 𝜂

𝑘
and

𝜏
𝑘
are to make the IGPMHSS convergent. In fact, as men-

tioned previously, to get the convergence of the IGPMHSS
iteration, the tolerances 𝜂

𝑘
and 𝜏

𝑘
are not required to

approach zero as 𝑘 increases. However, the optimal tolerances
𝜂
𝑘
and 𝜏
𝑘
are not easy to analyze.

4. Numerical Experiments

In this section, we give some numerical experiments
to demonstrate the performance of the GPMHSS and
IGPMHSS methods for solving the linear system (1)-(2).
Numerical comparisons with the MHSS and PMHSS meth-
ods are also presented to show the advantage of the GPMHSS
method.

In our implementations, the initial guess is chosen to be
𝑥
(0)

= 0 and the stopping criteria for outer iterations (when
MHSS, PMHSS, and GPMHSS methods are used as solvers)
are

󵄩󵄩󵄩󵄩󵄩
𝑏 − 𝐴𝑥

(𝑘)
󵄩󵄩󵄩󵄩󵄩2

‖𝑏‖
2

≤ 10
−6

. (28)

The preconditioner 𝑃 used in PMHSS method is chosen
to be 𝑃 = 𝑊. For the sake of comparing, the corresponding
preconditioners 𝑃

1
and 𝑃

2
used in GPMHSS method are

chosen to be 𝑃
1
= 𝑃
2
= 𝑊. Similarly, if the preconditioner

𝑃 used in PMHSS method is chosen to be 𝑃 = 𝑇, then
corresponding preconditioners 𝑃

1
and 𝑃

2
used in GPMHSS

method are chosen to be 𝑃
1
= 𝑃
2
= 𝑇. Since the numerical

results in [2, 3] show that the PMHSS method outperforms
the MHSS and HSS methods when they are employed as
preconditioners for the GMRES method or its restarted
variants [28], we just examine the efficiency of the GPMHSS
method as a solver for solving complex symmetric linear
system (1)-(2) by comparing the iteration numbers (denoted
as IT) and CPU times (in seconds, denoted as CPU) of

Table 1: The experimentally optimal parameters and the spectral
radii for the iteration matrices of MHSS, PMHSS, and GPMHSS
with 𝑃 = 𝑃

1
= 𝑃
2
= 𝑊.

𝑚 8 × 8 16 × 16 24 × 24 32 × 32

MHSS 𝛼
∗

𝑀
3.7 2.1 1.5 1.2

𝜌(𝑀
𝛼
∗

𝑀

) 0.7203 0.7989 0.8407 0.8662

PMHSS 𝛼
∗

𝑃
0.8 0.8 0.8 0.8

𝜌(𝑀
𝛼
∗

𝑃

) 0.6638 0.6672 0.6684 0.6690

GPMHSS
𝛼
∗

𝐺
0.8 0.8 0.8 0.8

𝛽
∗

𝐺
3 2 1.6 1.4

𝜌(𝑀
𝛼
∗

𝐺
,𝛽
∗

𝐺

) 0.4618 0.4851 0.5096 0.5321

the GPMHSS method with those of the MHSS and PMHSS
methods.

Example 6 (see [2, 3]). The complex symmetric linear system
(1)-(2) is of the following form:

𝐴𝑥 ≡ (𝑊 + 𝑖𝑇) 𝑥 = 𝑏, (29)

with

𝑇 = 𝐼 ⊗ 𝑉 + 𝑉 ⊗ 𝐼, (30)

𝑊 = 10 (𝐼 ⊗ 𝑉
𝑐
+ 𝑉
𝑐
⊗ 𝐼) + 9 (𝑒

1
𝑒
𝑇

𝑚
+ 𝑒
𝑚
𝑒
𝑇

1
) ⊗ 𝐼, (31)

where𝑉 = tridag (−1, 2, −1) ∈ R𝑚×𝑚,𝑉
𝑐
= 𝑉− 𝑒

1
𝑒
𝑇

𝑚
− 𝑒
𝑚
𝑒
𝑇

1
∈

R𝑚×𝑚, and 𝑒
1
and 𝑒

𝑚
are the first and the last unit vectors

in R𝑚, respectively. We take the right-hand side vector 𝑏 to
be 𝑏 = (1 + 𝑖)𝐴1, with 1 being the vector of all entries equal
to 1. Here 𝑇 and 𝑊 correspond to the five-point centered
difference matrices approximating the negative Laplacian
operator with homogeneous Dirichlet boundary conditions
and periodic boundary conditions, respectively, on a uniform
mesh in the unit square [0, 1] × [0, 1] with the mesh-size
ℎ = 1/(𝑚 + 1).

As is known, the spectral radius of the iteration matrix
may be decisive for the convergence of the iteration method.
The spectral radius corresponding to the iteration method
is necessary to consider. The comparisons of the spectral
radius of the three different iteration matrices derived by
MHSS, PMHSS, and GPMHSSmethods with different mesh-
sizes are performed in Tables 1 and 2. In Tables 1 and 2, we
use the optimal values of the parameters 𝛼 and 𝛽, denoted
by 𝛼∗
𝑀

for MHSS method, 𝛼∗
𝑃
for PMHSS method, and 𝛼∗

𝐺
,

𝛽
∗

𝐺
for GPMHSS method. These parameters are obtained

experimentally with the least spectral radius for the iteration
matrices of the three methods.

FromTables 1 and 2, one can see thatwith themesh-size𝑚
increasing, the trendof the experimentally optimal parameter
of theMHSSmethod decreases. Whereas, with the mesh-size
𝑚 increasing, the experimentally optimal parameter of the
PMHSS method may be changeless. Fixing the parameter 𝛼
in GPMHSSmethod, the trend of the experimentally optimal
parameter 𝛽 of the MHSSmethod decreases. No matter what
𝑃 = 𝑃

1
= 𝑃
2
= 𝑊 or 𝑃 = 𝑃

1
= 𝑃
2
= 𝑇, we observe
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Table 2: The experimentally optimal parameters and the spectral
radii for the iteration matrices of MHSS, PMHSS, and GPMHSS
with 𝑃 = 𝑃

1
= 𝑃
2
= 𝑇.

𝑚 8 × 8 16 × 16 24 × 24 32 × 32

MHSS 𝛼
∗

𝑀
3.7 2.1 1.5 1.2

𝜌(𝑀
𝛼
∗

𝑀

) 0.7203 0.7989 0.8407 0.8662

PMHSS 𝛼
∗

𝑃
1.2 1.2 1.2 1.2

𝜌(𝑀
𝛼
∗

𝑃

) 0.6636 0.6671 0.6684 0.6690

GPMHSS
𝛼
∗

𝐺
1.2 1.2 1.2 1.2

𝛽
∗

𝐺
6.4 2.2 1.9 1.8

𝜌(𝑀
𝛼
∗

𝐺
,𝛽
∗

𝐺

) 0.3389 0.4814 0.5184 0.5461

Table 3: RES, CPUs, and IT forMHSS, PMHSS, and GPMHSS with
𝑃 = 𝑃

1
= 𝑃
2
= 𝑊.

𝑚 8 × 8 16 × 16 24 × 24 32 × 32

MHSS
RES 9.733𝑒 − 7 9.388𝑒 − 7 9.337𝑒 − 7 9.369𝑒 − 7

CPU(s) 0.015 0.828 7.422 42.328
IT 46 75 99 120

PMHSS

RES 6.585𝑒 − 7 6.530𝑒 − 7 6.473𝑒 − 7 6.429𝑒 − 7

CPU(s) 0.015 0.062 0.141 0.281
IT 31 31 31 31

Speed-up 1 13.35 52.64 150.63

GPMHSS

RES 7.884𝑒 − 7 8.197𝑒 − 7 8.210𝑒 − 7 8.032𝑒 − 7

CPU(s) 0.015 0.032 0.094 0.219
IT 18 19 20 21

Speed-up 1 25.88 78.96 193.28

Table 4: RES, CPUs, and IT forMHSS, PMHSS, and GPMHSS with
𝑃 = 𝑃

1
= 𝑃
2
= 𝑇.

𝑚 8 × 8 16 × 16 24 × 24 32 × 32

MHSS
RES 9.733𝑒 − 7 9.388𝑒 − 7 9.337𝑒 − 7 9.369𝑒 − 7

CPU(s) 0.015 0.828 7.422 42.328
IT 46 75 99 120

PMHSS

RES 7.003𝑒 − 7 6.959𝑒 − 7 6.901𝑒 − 7 6.857𝑒 − 7

CPU(s) 0.015 0.047 0.14 0.25
IT 31 31 31 31

Speed-up 1 17.62 53.01 169.31

GPMHSS

RES 7.340𝑒 − 7 5.868𝑒 − 7 6.583𝑒 − 7 6.623𝑒 − 7

CPU(s) 0.015 0.031 0.078 0.172
IT 14 18 20 21

Speed-up 1 26.71 95.15 246.09

that the optimal spectral radius for the iteration matrices of
the three methods grows with problem size, and the optimal
spectral radius of GPMHSSmethod is still smaller than those
of MHSS and PMHSS methods. In this case, the GPMHSS
methodmay outperform theMHSS and PMHSSmethods. To
this end, we need to examine the efficiencies of the MHSS,
PHSS, and GPMHSS methods for solving the systems of
linear equations 𝐴𝑥 = 𝑏, where 𝐴 is described above.

In Tables 3 and 4, we list the iteration numbers and com-
putational times for MHSS, PMHSS, and GPMHSS iteration

Table 5: Numerical results for GPMHSS with 𝑃
1
= 𝑇 and 𝑃

2
= 𝑊.

𝑚 8 × 8 16 × 16 24 × 24 32 × 32

𝛼
∗

𝐺
1.3 1.3 1.3 1.3

𝛽
∗

𝐺
1.7 1.4 1.4 2.2

𝜌(𝑀
𝛼
∗

𝐺
,𝛽
∗

𝐺

) 0.2644 0.2988 0.3044 0.3191
RES 4.7850𝑒 − 7 5.349𝑒 − 7 9.151𝑒 − 7 8.141𝑒 − 7

CPU(s) 0.015 0.031 0.078 0.172
IT 15 18 18 20
Speed-up 1 26.71 95.15 246.09

methods by using the optimal parameters in Tables 1 and 2.
In Tables 3 and 4, “RES” denotes the relative residual error.

From Tables 3 and 4, we see that GPMHSS iteration
method is the best among three methods in terms of the
iteration numbers and computational time, and the PMHSS
scheme requires fewer iteration numbers than the MHSS
scheme. For the MHSS and GPMHSS methods, the number
of iterations grows with the problem size. For the PMHSS
method, its iteration numbers are relatively stable. That
is to say, the PMHSS method does not have any growth
in iterations numbers by increasing grid dimension. The
presented results in Tables 3 and 4 show that in all cases
GPMHSS is superior to another two methods in terms of
the CPU time. That is to say, compared with the MHSS and
PMHSS methods, the GPMHSS method may be given
priority under certain conditions. In fact, the speed-up of
GDMHSS/PMHSS with respect to MHSS is quite noticeable,
where we define it by

speed-up = CPUofHSSmethod
CPUofGPMHSS (or PMHSS)method

. (32)

Obviously, the efficiency of GPMHSS is superior to that of
MHSS and PMHSS.

In particular, here we test the efficiency of the GPMHSS
method when 𝑃

1
= 𝑇 and 𝑃

2
= 𝑊. In this case, some numeri-

cal results are obtained in Table 5. In Table 5, it is not difficult
to find that the spectral radius grows with problem size.
Simultaneously, the number of iterations grows with the
problem size. Numerical results in Table 5 show that, under
certain conditions, the GPMHSS method is feasible and
efficient, compared with the MHSS and PMHSS methods.

As already noted, in the two half steps of the GPMHSS
iteration, it is necessary to solve two systems of linear
equations, whose coefficient matrices are 𝛼𝑃

1
+𝑊 and 𝛽𝑃

2
+

𝑇, respectively. This can be very costly and impractical in
actual implementations. We use the IGPMHSS method to
solve the systems of linear equations (1)-(2) in the actual
implementations. That is, it is necessary to solve two systems
of linear equations with 𝛼𝑃

1
+ 𝑊 and 𝛽𝑃

2
+ 𝑇 by using the

IGPMHSS iteration. It is easy to know that 𝛼𝑃
1
+ 𝑊 and

𝛽𝑃
2
+𝑇 are symmetric positive definite. So, solving the above

two subsystems, there can employ the CG method.
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Table 6: Convergence results for IGPMHSS with 𝑃
1
= 𝑃
2
= 𝑊.

(𝛼
𝐺
, 𝛽
𝐺
) 𝑚

𝜏 = 0.95 𝜏 = 0.9 𝜏 = 0.85

it.s avg1 avg2 it.s avg1 avg2 it.s avg1 avg2
(0.8, 2) 16 55 21.5 22.5 69 26.3 27.1 82 30.4 30.8
(0.8, 1.6) 24 82 32.1 33.1 105 39.4 40.1 125 45.8 46.1
(0.8, 1.4) 32 108 43.4 42.7 139 52.8 52.4 167 61.3 60.8
(0.8, 1.2) 64 160 95.4 54.2 190 96.4 70.2 198 96.9 80.8
(0.8, 1.2) 128 185 95.1 91.7 178 95.2 92.3 184 95.3 91.9

Table 7: Convergence results for IGPMHSS with 𝑃
1
= 𝑃
2
= 𝑇.

(𝛼
𝐺
, 𝛽
𝐺
) 𝑚

𝜏 = 0.95 𝜏 = 0.9 𝜏 = 0.85

it.s avg1 avg2 it.s avg1 avg2 it.s avg1 avg2
(1.2, 2.2) 16 49 21.7 15.6 60 26.7 19.5 71 30.8 22.2
(1.2, 1.9) 24 70 29.7 21.8 91 38.1 28.1 109 45.0 33.0
(1.2, 1.8) 32 90 37.1 27.6 119 48.7 36.8 144 58.4 43.4
(1.2, 1.6) 64 157 92.5 54.2 200 93.2 75.1 200 93.1 88.6
(1.2, 1.6) 128 192 92.3 89.1 192 92.3 90.4 192 92.4 91.6

In our computations, the inner CG iteration is terminated
if the current residual of the inner iterations satisfies

󵄩󵄩󵄩󵄩󵄩
𝑝
(𝑗)
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑟
(𝑘)
󵄩󵄩󵄩󵄩2

≤ 0.1𝜏
(𝑘)

,

󵄩󵄩󵄩󵄩󵄩
𝑞
(𝑗)
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑟
(𝑘)
󵄩󵄩󵄩󵄩2

≤ 0.1𝜏
(𝑘)

, (33)

(cf. Algorithm 1) where 𝑝(𝑗) and 𝑞
(𝑗) are, respectively, the

residuals of the 𝑗th inner CG for 𝛼𝑃
1
+𝑊 and 𝛽𝑃

2
+ 𝑇. 𝑟(𝑘) is

the 𝑘th outer IGPMHSS iteration, and 𝜏 is a tolerance.
Some results are listed in Tables 6 and 7, which are

the numbers of outer IGPMHSS iteration (it.s), the average
numbers (avg1) of inner CG iteration for 𝛼𝑃

1
+ 𝑊, and the

average numbers (avg2) of CG iteration for 𝛽𝑃
2
+ 𝑇.

In our numerical computations, it is easy to find the
fact that the choice of 𝜏 is important to the convergence
rate of the IGPMHSS method. According to Tables 6 and
7, the iteration numbers of the IGPMHSS method generally
increases when 𝜏 decreases. This increase can probably be
eliminated using a suitable preconditioner. It is noted that
no preconditioning is used for these inner iterations in our
numerical computations.

5. Conclusion

In this paper, we have generalized the MHSS method into
the GPMHSS method for a class of complex symmetric
linear systems. Theoretical analysis shows that for any initial
guess the GPMHSSmethod converges to the unique solution
of the linear system for a wide range of the parameters.
Then, an inexact version of GPMHSS (IGPMHSS) has been
presented and implemented for saving the computational
cost. Numerical experiments show that the GPMHSS and
IGPMHSS methods are efficient and competitive.
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