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Existence and uniqueness of solutions for « € (2, 3] order fractional differential equations with three-point fractional boundary
and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed.
The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.

1. Introduction

Recently, the theory on existence and uniqueness of solutions
of linear and nonlinear fractional differential equations has
attracted the attention of many authors; see, for example, [1-
19] and references therein. Many of the physical systems can
better be described by integral boundary conditions. Integral
boundary conditions are encountered in various applications
such as population dynamics, blood flow models, chemical
engineering, and cellular systems. Moreover, boundary value
problems with integral boundary conditions constitute a very
interesting and important class of problems. They include
two-point, three-point, multipoint, and nonlocal boundary
value problems as special cases. The existing literature mainly
deals with first order and second order boundary value
problems and there are a few papers on third order problems.
El-Shahed [14] studied existence and nonexistence of
positive solution of nonlinear fractional two-point boundary
value problem:
Dyu)+Aa(t) fw()=0, 0<t<l;2<a<3,

@

where . denotes the Caputo derivative of fractional order
«, A is a positive parameter, and a : (0,1) — [0,00) is
continuous function.

In [8], Ahmad and Ntouyas studied a boundary value
problem of nonlinear fractional differential equations of

order & € (2,3] with antiperiodic type integral boundary
conditions:

Dt (t) = ftu(t); 0<t<T;2<a<3,

T

e 0) - )Lju(j) (T) = p; J g;j(s;u(s)) ds,
0

i=0,1,2,
)

where D, denotes the Caputo derivative of fractional order
o, u'” denotes jth derivative of u, f, go» g1» g : [0, TI xR —
R are given continuous functions, and A;,u; € R (A;#1).
The same problem for fractional differential inclusions is
considered in [9].

Ahmad and Nieto [7] studied existence and unique-
ness results for the following general three-point fractional
boundary value problem involving a nonlinear fractional
differential equation of order « € (m — 1,m]:

D ut) = f (bu (1))

u@©) =u' (0)=-=u"2@) =0,

0<t<T,m=>2,

u(1) =Au(n).
©)

However, very little work has been done on the case when
the nonlinearity f depends on the fractional derivative of
the unknown function. Su and Zhang [17] and Rehman et
al. [16] studied the existence and uniqueness of solutions
for following nonlinear two-point and three-point fractional
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boundary value problem when the nonlinearity f depends on
the fractional derivative of the unknown function.

In this paper, we investigate the existence (and unique-
ness) of solution for nonlinear fractional differential equa-
tions of order a € (2,3] when the nonlinearity f depends
on the fractional derivatives of the unknown function

Dgu(t) = f (Lu®), Du®), Du®);

(4)
0<t<T; 2<a<3
with the three-point and integral boundary conditions
T
agu (0) + byu (T) = A, J 9o (s,u(s)) ds,
0
g g !
@ DF i () + b, D (T) = A, JO g, (s,u(s))ds,
0<pB, <1, 0<ny<T, ®)
T

aD0u(n) +b,Du () = 1, L 9, (5, (s)) ds,

1<B,<2,

where D, denotes the Caputo fractional derivative of order
«, f,g; are continuous functions, and a;,b,,A; € R, fori =
0,1,2.

2. Preliminaries

Let us recall some basic definitions [20-22].

Definition 1. The Riemann Liouville fractional integral of
order « for continuous function f : [0,00) — R is defined
as

() = ﬁ L (t-9" f(s)ds, a>0, (6)

provided the integral exists.
Definition 2. For (n—1)-times absolutely continuous function

f:10,00) — R, the Caputo derivative fractional order « is
defined as

Dy f (t) =

1 ! n-a—1 p(n) .
T o) Jo (t-ys) Y (s)ds;

n-1l<a<mn,

7)

n=[«a] +1,
where [«] denotes the integral part of the real number a.

Lemma 3. Let « > 0. Then, the differential equation
o f(t) = 0 has solutions

f(t) =k +kt+ k2t2 I kn—1tn_1,
(8)
Ig+9g+f (t) = f () + k() + klt + k2t2 Foeeet kn—ltn_1>

wherek; € Randi=1,2,3,...,n-1, n=[a] + 1.
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Caputo fractional derivative of order n — 1 < « < n for ¢”
is given as

T (y + 1) e
o pyeN, y=norye¢N, y>n-1
0, y€{0,1,...,n—1}.
9)
Assume that 8, = 0 and
a +b, #0, alnl_ﬁl + blTl_‘Bl +0,
(10)
ainz_ﬁ" + biTz_ﬁ" #0.
For convenience, we set
‘ulsl — r (3 - ﬁl)
©2(apr P+ b TR
‘ulgz = r(3 - ﬁZ)
2 (ay P+ oy TP
- r (2 ~ ,81) i
an' P+ b TR
Wy = ot
7 ay+by
b,
— B 0
t) = —T-t],
wy ()= <a0 T )
b, T? b, T B B,
w, (t) = ——p - O—vﬁl‘u—ﬁ + vﬁ“u—ﬁt uhr?
ap + bO ag + bO Uk 7
(11)

Lemma 4. For any f,g4, 919, € C([0,T];R), the unique
solution of the fractional boundary value problem

Du)=f(); 0<t<T,2<a<3, (12)

T

agu (0) + byu (T) = A, .[0 go (s)ds,

T
a0 u(n) + b, u () = 1, L g, (s)ds,

0<n<T, 0<pB<l,

T

D0 u(n) + b,D2u(T) = A, L g, (s)ds,

1<B,<2,
(13)
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is given by

u(t) = j(t 9 (5 ds

+ Zw )b JO

s)a Bi-1
Tepg O

2 1 (n—s) P
+ ;wi (t) a; JO W‘f (S) ds

(14)

2 T
S, L g (s) ds.

Proof. By Lemma 3, for 2 < « < 3, the general solution of the
equation Dy, u(t) = f(t) can be written as

1 ¢ a—1 2
—J(t—s) F(&)ds—ky -kt —kts  (15)

“(0 = I['(er) Jo

where k, k,, k, € R are arbitrary constants. Moreover, by the
formula (9), 3, and f3, order derivatives are as follows:

1, 25,
DPut)=1P f(t ! okt :
A o RN )
(16)
() = 1P f () - 2ky— £
u = .
T(3-B,)

Using boundary conditions (13), we get the following alge-
braic system of equations, for kg, k;, k,

—(ag + by) ko = by Tk, - boT2k2

T
= AO JO Y90 (S) ds — bolg+f (T) >

an P b TP at P b TP
re-g) rG-p)

17)

T
=A1j0 gy (&) ds — TP f () - b IR £ (T,

~ aqnz_ﬁz + bZTZ—ﬁz
r-g)

-1, J 9, (s ds — a1 £ () = 1% £ ().

Solving the above system of equations for k, k;, k,, we get the
following:

T

Ky = P I £ (T) + agP TP f () - AopdP J g, (s)ds,
a—f a—f3 T

klzlalvﬁll0+ LF(T) +ayv Wi o f (1) - /\vﬁIJ g, (s)ds

B> B>
_ bzvﬁl %Igi ﬁzf (T) _ azvﬁl %Igi ﬁzf (;1)

B (T
+ szﬁl % L g, (s)ds,

k= I“f(T)—LJT (s) ds
O_a0+b0 0 a 090

+b
—b;f‘:ﬁ;f (T - (’“1—” a0
L bAoAT JTgl o) ds + BT ZvﬁlT v e b £ (1)
a,+b, Jo a, +by yﬁl
+%ﬁﬁl 5P f G )—baA:lZTszj 5
—bfjﬁboT L f ) - °"2“ - 1 ()
%J g, (s)ds.

Inserting ky, k;, k, into (15), we get the desired representation
for the solution of (12)-(13). O

Remark 5. The Green function of the BVP (4)-(5) is defined
by

(t_s)oc—l .
G(tss) = {W +Gy(ts), 0<s<t<T, (19)
GO(t;S))

where

(T — ) At

2
G, (t;s) = () b————
o (559) ;w() T B
2 a=pi-1
(n-s)
+;wi (t)ar(—ﬁl)X(on (S) (20)
s € (a,b),

©=1"
Xap) 8 = 0, s¢(ab).



Remark 6. Fora = 3, 3, = 1, 3, = 2, and = 0, the BVP
(4)-(5) can be written as follows:

u" (1) = f(bu@),u ©),u" (1), 0<t<T,

T
agu (0) + byu (T) = A, Jo go (s,u(s)) ds,
(21)

T
ay’ (0)+ byt (T) = A, L g, (s,u(s)ds,
n n r
au” (0) + by (T) = A, L g, (5,1 (s)) ds.

In this case, the Green function can be written as follows:

(t- )2+G(ts) 0<s<t<T
G(t;s)=1 T(w) 0 I 7))

G, (t;s), 0<t<s<T,
where
_ 2
SR U Y S P
a,+by T(a) ap+bya, +b a, +b
T-5s
X
I'(x—-1)

(b b

ag+bya, +b a,+b
B by b, 2 2b, b, ¢
ay+by2(a, +b) a,+b,2(a, +b)

b t2> !
2(a, +b,) I(a-2)

(23)
Moreover, the case
a, =1, b, =0, a, =0,
(24)
b=1, a=1 b=0

is investigated in [10]. In this case,

(t—s)2+t(T—s)

Gts)= 4 L@ 9 I(a-1) (25)

t —
(T—; 0<t<s<T.
I'(x—-1)

3. Existence and Uniqueness Results

In this section we state and prove an existence and uniqueness
result for the fractional BVP (4)-(5) by using the Banach
fixed-point theorem. We study our problem in the space

Cg ([0, TT5R)
(26)
= {veC((0.T]:R) : DEv, D2v e C([0,T]:R)}
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equipped with the norm

Ivlg = vl + [ D]

||§>ﬁ2 (27)

where | - || is the sup norm in C([0, T]; R).
The following notations, formulae, and estimations will
be used throughout the paper:

ﬁltl_ﬁl
D, (1) = ————,
' r(2-p)
i‘)'gzwl (1) =
B fo 1Py B 2By
glslwz(t) ; H t —2” t ,
11"(2_/51) F(3‘ﬁl)
B2y
D, () = 2
? TG-p)
o = gy =
o |‘10+b0| T

|y (8)] < |Vﬁ1| (lo| [oo| + 1) T = py

ol 6], Teol ] ]

2 1= BT oo+ ol ]
B ﬁz
|yl 'T'sl| Tt W = o
po =0,
1 |v/31|T1*ﬁ1 ~
|$ﬁ an (t)| F(Z ~B) =: Pr»

/32 vﬂ1|T1 B |‘uﬁz TZ—ﬁl ~
el ], | AITGp) TG py P
Po=p1 =0,

| B, TZ—ﬁz
[, (1) <2 o gy P

o—T _ 1-7
Ag = T <1 T)
lo)\a-1

2
T
+ ZPf (Ibil T
i=0

< I_T >1—T
X\ ——F—— >
a-pi-T

ﬂa—ﬁi—‘r
* o r(«x—ﬁ,-))
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1-1

T“‘Bl_‘r 1-1
el
a—fi-t
3l (1 gy ol )
1-1 1-7
8 (“‘ﬁi_'f) ,

Ao rgfzé)(

1-71

1-7
i) Il

_ T Pt *Pt
* PZ"lf“Ur (|b2| I'(a-B,) * el rT(I(X -B) )

Theorem 7. Assume the following.

(28)

(H,) The function f :

continuous.

[0,T] x Rx R xR — R is jointly

(H,) There exists a function lf e LV7([0, TI;R") with T €
(0, min(1, & — 3,)) such that

|f (t, Uy, Uy, Ll3) - f (t’ V1>V V3)|

(29)
0 (|”1 - V1| + |“2 - V2| + |”3 - V3|)7

foreach (t,uy,uy, u3), (£, v, vy, v3) € [0, TIXRXRxR.

(H;) The function g; :
and there exists |

[0,T]xR — R is jointly continuous
4 € LY([0,T], R") such that

|g,- (t,u) — g; (t,v)| Slg,- ®)|lu-vl, i=0,1,2 (30)

for each (t,u), (t,v) € [0,T] xR.

If

(Mg + A, +A,) L

2
1/t + ;)pi |Ai| "lgi“l

(31)

1)

2
+ ;ﬁi I ||lg,~”1 + 5 | |, <

then the problem (4)-(5) has a unique solution on [0, T].

Proof. In order to transform the BVP (4)-(5) into a fixed point
problem, we consider the operator § : C s([0,TER) —
Cﬁ([O, T1; R) which is defined by

(u) (1)

t _ el
_ L % Fsu(s), DPu(s), Du(s)ds

2
+ Z“’i () b;
i=0

T _ a-pi-1
<[ L2
0

r(‘x_/—;i) f(SLl(s) @ ‘u(s), Q) M(S))

2
oL
i1

Xj(n Dl

) fsu(s), Du(s), Dru(s))ds

2 T
~Su ), j g (s,u(s)) ds
=0 0
(32)

and take its 3,th and f3,th fractional derivative to get

D (Fu) (1)

(t—s)* ~pi-1
_L r(; oy (o). DB (s), Du(s)) ds

+Z® Lw; (1) b,

a—B;-1
xj Cinl) iialie \DFiu(s), D (s)) ds
0

NCED) f(su
+Z§) Tw; () a;

a—p;-1
n _
y J (n-5s)

0

T(a-pB,) f(s,u(s) @ wu(s), Q) u(s))

T
—Z@ @O, | g u)ds



D (Fu) (1)

P
_J %f(s,u(s) @ wu(s), @ ”(S))

+ 22w, (1) b,

B
XJ uf(s u(s), Q)ﬁlu(s) Q)ﬁzu(s))
0

I (a=p,)

+ i‘)ﬁ w, () a,

a—B,-1
"(n-s) B B
x| ——f(s,u(s Qlus D 2u(s))ds
| Fagy ! (61920, 2fu0)
T
i‘)ﬁzwz t)A, J g, (s,u(s))ds.

(33)
Clearly, due to f, gy, g,> and g, being jointly continuous, the
expressions (32)-(33) are well defined. It is obvious that the
fixed point of the operator § is a solution of the problem (4)-
(5). To show existence and uniqueness of the solution (12)-

(13), we use the Banach fixed point theorem. To this end, we
show that § is contraction:

[(Fuw) @) — (Fv) (B)]
Et—s)*!
= L '@

x| (5.0, Dhrus (), Db (9))

—f(sv(), D (s), s‘%(s))'

S)Dtﬁ -1

+Z|w (t)||b|J0 TosE

'f s,u(s), @ u(s), ﬁ) u(s))

~f (s.v(9), Dy (), Dhv (9)] ds

2 s a—p;-1
Yol [ 4

x|f (su(9), Dfiuls), Dfpu ()

~f (v (), DEv (), Dhv (9)| ds

2 T
# 3 lo 1] [l (9) - 5. v (oD s
i=0

<ty

- (2ol

On the other hand,

|8 (@) (0 - DB (G )

< Jt (t- 5)“_ﬁ1_1
b F((X— )
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T T /1-1 1-T
1/TF(oc)<oc—‘r) I =vlg

2 T““ﬁi‘f a=pi=T
+ ("lf"m;f’i <|bz| T(@-B) +|a] F’th _ [51))

1-71 -7 2

(=) + okl e
2

o ], -t

(34)

|f s,u(s), @ u(s), @ u(s))

~f(sv(),Dv(s),DF V(S))l
+Z|§)O+ w;(0)|[b)
Xf%'f(s,u(s) DPu(s), Du ()
£ (5v(), Dhiv (), D ()| ds
o3 fotiao]la

1 (n-s) P 1 :
XL WV(S,L{(S) i‘)ﬁu(s) i‘)ﬁu(s))

~f (s v(9), DV (), Dhv (9)| ds

+Z|® w(t)’]){lj |g,(s,u(s)) gl(s,v(s))|ds

T Pt -7 \™
e eyl by ) ol =1

o n“‘ﬁi—‘f
+ZPI ["lf"m( ﬁ) +|aj F(oc—/si))
1- 1-7
x(W;) +lAi|||lgi“1:| = Vg

2
- (b SRR, 1

(35)
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Similarly,
[F @u) () - Df: 3 )
i i
x| £ (su(9), D (s), Dfru )
~f (579, Div (), Dyiv ()| ds
|®0+w2 (t)| |b.|

T (T _ S)“7ﬁ271
<, C(a-B)

|f su(s), Du(s), Dus))
£ (57, Div(s), D ()| ds

]‘Dﬁz w, (t)\ |a, |
(19"
“, (a6 (36)

x|f (5.1 (), Dt (9), D )
—f(s,v(s) i‘)ﬁlv(s) i‘)ﬁzv(s))|

’gﬁz w; (t) | M |

x L |9, (5,1 (5)) = g, (5, v (s))| ds
T BT ( 1-71

INCEY) “‘ﬁ2_7> ||lf|

(o (b e )

1-7 \'7
X(m) |14
x flu = vilg

= (8alislyc + 2o ol I

IA

ol = vl

1/t + ﬁz |)L2| lgz

)

= vl

92

Here, in estimations (34)-(36), we used the Holder inequal-
ity:

L Iy (s) (t =) ds

<([ 60" ’ds>r(j: (-9 (H)ds)l_

T

:”lf”Ll/T<%>l_Tt“_m_r, if 0 < T < min (1, x—m).

(37)
From (34)-(36), it follows that
1) - (Vg
2
<Jeorsr il Sallll,

2
LTI g R] AN L

Consequently, by (31), & is a contraction mapping. As a
consequence of the Banach fixed point theorem, we deduce
that & has a fixed point which is a solution of the problem
(4)-(5). O

Remark 8. In the assumptions (H,),ifl; isa positive constant,
then the condition (31) can be replaced by

lfT“
I'(ax+1)
oa—P;
n
+lePt(|b| /3,+1) l | I (a _ﬁi+l)>
1T h
I S
F(oc - ﬁ] + 1)
2 T Pi Wa_ﬁi
IYARD i
+ %”’(' CEEnME r(a—ﬁi+l>>
r(oc—/32 + 1)
_ ToF o
+lfp2(|b2| Fla— B+ 1) +|az| 1"(06—/32+1))
2 2
+ ;Pi Al "lgi”1 * ;ﬁi [ "lgiul
+ P, l)‘zl ||lyz||1 <l
(39)

4. Existence Results

To prove the existence of solutions for BVP (4)-(5), we recall
the following known nonlinear alternative.

Theorem 9 (nonlinear alternative). Let X be a Banach space;
let B be a closed, convex subset of X; let W be an open subset of
Band 0 € W. Suppose that F : W — B is a continuous and
compact map. Then, either (a) F has a fixed point in W or (b)
there exist an x € OW (the boundary of W) and A € (0, 1) with
x = AF(x).



Theorem 10. Assume that

(H,) functions f : [0, TIXRXRxR — R, g;: [0,T]xR —
R (i =0, 1,2) are jointly continuous;

(Hy) there exist nondecreasing functions ¢ : [0,00) —
[0,00), V; [0,00) — [0,00) and functions
I, € LYV°([0,T],R"), 1, € L'([0,T],R") with T €
(0, min(1, @ — f3,)) such that

|f (tu v, w)| <1p (8) @ (lul + V] + wl),

(40)
|g: (tw)] < 1, () (Jul),
i=0,1,2, forallt € [0,T] and u,v,w € R;
(Hg) there exists a constant K > 0 such that
K <go(K) ], (B8, +2)
(41)

| _
Seraraiunlkl) -
i=0

Then the problem (4)-(5) has at least one solution on
[0,T].

Proof. Let B, :={u € Cﬁ([O, TIER): IIuIIﬁ <rh

Step 1. We show that the operator § : Cﬁ([O,T];R) —
Cﬁ([O, T1; R) defined by (32) maps B, into bounded set.
For each u € B,, we have

|(u) ()]

¢ (r) -
r(;)j (£ - i (9)] ds

+<P(f)ZP, L F Py J (T = 9" Pt 1y (9)|ds

ﬁ)

2
o0 Yplal o [/ =9 o) as
i=1

ﬁ)
2 T

DY Y ACI NIACIES
i=0 0

(42)
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By the Hoélder inequality, we have
|(Su) ()]

1-— 1-t
<ol (Fg (525

+Zp, ORE ﬁ'ﬁl)(a_l,;r_f)l_r

1-1

+ZP, ol < ((x_ﬁi_r ) < a—fi-1 >1>

2
+ ;Pi il yi () “lﬂf "1

2
=¢(r) "lf I/TAO + ZP:‘ il i () "lgi “1
i=0

(43)
In a similar manner,

[f @w o)

sz—ﬁl—‘r 1—- 1-t
<¢(r) ||lf||1/r<1"((x_ ﬁl)(a_ﬁlT_T>

¢x— i—T 1-1 1-7
+Zpllb| (a Ao )

1-1

+ZP, ol < ((x_ﬁi_r ) < a—fi-1 >1>

2
+;,s,. PG

2
Db+ Aol

[f (Fu) ()

Ta_ﬁz_‘[ 1 - l_T
<e(r) "lf"ur(r((x— /32)<<x—/32T_T>

PzToc( B ﬁ|i;)| <a _11;21_ T>1—r
1-7

+P :(:2 |b)l ((x -B-T )1_T>

# P el v () [l

n iy

I/TAz AN AG L, I,

(44)
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Thus,

IEwllg <o () 1]

1/T(Ao*'Al +4,)

, (45)
£ Y (i 5+ ) Ml v O 1] -
i=0

Step 2. The families {Fu : u € B,}, {@gﬁr(%u) :u € B}, and

@gj(%u) : u € B,} are equicontinuous.
Because of the continuity of w;(t) and assumption (H;)
we have

|(Fw) (,) — (Fuw) (t,)]

e ILC) MUREAACLE

F o0 | (69 = -9 7)1 0 ds

2
+o(r) Z |w; (£5) — w; (t,)] ]85
i=0

T (T - s)* Pt
x L T@-B) Iy (s)ds (46)

2
+o(r) Z |w; () = w; (t1)] ]a]

i=1

HURDN

XL Fag) O
2

+ Z |w; (,) -
i=0

el lw: 0 g, — 0
ast, — t,.

Therefore, {u : u € B,}is equicontinuous. Similarly, we may
prove that {@gjr(%u) :u € B,}and {@gfr(%u) :u € B,}are
equicontinuous.

Hence, by the Arzela-Ascoli theorem, the sets {Fu : u €
B}, (DL (Fu) : u € B}, and{D2(Fw) : u € B}
are relatlvely compact in C([0, T]; R). Therefore, F(B,) is a
relatively compact subset of C ﬁ([O, T1; R). Consequently, the
operator g is compact.

Step 3. & has a fixed pointin W =
K}.
We let u = A(Zu) for 0 < A < 1. Then, for each t € [0, T],

fu € C([0, T R) : Jlull <

lullg = 1A §w)llg < @ (lullg) |1, (Ao + 2, +4)

) (47)
+3 (o + 7+ 5) el v (1) 1 -

i=0

In other words,

lull <<p(||u||ﬁ) 7], (B0 + 2, +a,)
(48)

5 -1
3 (o4 7+ ) [l i () ||lg,.||1> <1

i=0

According to the assumption (Hg), we know that there exists
K > 0 such that K > IIuIIﬁ and

K<¢(K) ], (88, +2)
(49)

2
RPIOTATTIAN
i=0

In other words, for all u € W, we have u# A(Fu). Since the
operator : W — C ﬁ([O, T1; R) is continuous and compact,
from Theorem 9(a), we can deduce that g has a fixed point in
w. O

Remark 11. Notice that analogues of Theorems 7 and 10 for
the case f(t,u,v,w) = f(t,u) were considered in [9]. Thus,
our results are a generalization of [9] in the special case when
(fractional) differential inclusion is replaced by (fractional)
differential equation.

Remark 12. Since the number (o — 8, — 1) can be negative,
the function (T — s)* P71 ¢ L%°([0,T],R). That is why
in Theorems 7 and 10 it is assumed that lf e LV' 1 ¢
(0, min(1, & — 3,)).

5. Examples
Example 1. Consider the following boundary value problem

of fractional differential equation:

D u(t)

1 mol |, D]
S\ 1+ u@)]

1+ |D)u )|

>

1
w0 +u() = L (;lfs))z

1 1 (Y euis) 1
@é£2u<10>+®1/2 ():EJO<1+261+E>dS,

(50)



10
Here,
5 1 3
odx=—, = > = >
S Bi=y Bes
1
T=1, =10 ay=by=a,=b =a,=b, =1,
1 1
= —, A :1’ A = -,
n 10 0 175
1
/\2_5’ lgo_lgl_l!]z:l’
f(tuvw)-—l( v oY +tan_1(w)>
T 1\ l+u 14w ’
1
I (t) = —,
£ (1) T
u e'u 1
t’u = t,u =+ -,
9o (1) (1+1)? g1 (bu) 1+2 2
u
t,u) = + —.
g ()= 7 ¥ g

(51)

Since 1.77 < T'(1/2) < 1.78, 0.88 < I'(3/2) < 0.89, 1.32 <
I'(5/2) < 1.33, and 3.32 < I(7/2) < 3.33, with simple
calculations, we show that

Ay =2.34, A, =0.19, A, =0.15,
po = 0.5, p = 1.01, py =12,
(52)
pPo =0, p = 0.76, P, =09,
Po=p =0, p, = 0.51.
Furthermore,

2
(Ag+A;+4,) ”lf”l/r + Z(;pi Mil "l.%'"l
iz

1
<27—+0.75< 1.
1 11

2
+ Zﬁi |’\i| ”lgf "1 + P2 |"2| |Zgz

(53)

Thus, all the assumptions of Theorem 7 are satisfied. Hence,
the problem (50) has a unique solution on [0, 1].

Abstract and Applied Analysis

Example 2. Consider the following boundary value problem
of fractional differential equation:

3 in /2
ofu = WOP SOl 1
9(lu®P +3)  9(]sinDu)|+1) 12
tel0,1],
[t u(s)
u(0)+u(l)= Jo 3(1+s)?
1/2 i 1/2 _l ! 65“(5)
Dy ”(10)+®0* u) =7 Jo A+e)

@3/2u(i)+®3/2u(1)=§r uls) 4

+ + S
0 10 0 0 3(1 +e)?
(54)
where f is given by
ftuv,w) = Jul? + Isinv] + L (55)
U 10(juP +3)  9(sinv+1) 12
We have
3 .
1 11
If (t.u, vow)] < |u3| N I.smvl R
9(|u| +3) 9(lsinv|]+1) 12~ 36
u,v,w € R.
(56)
Thus,
11
|f (t,u, v,w)| < I = lf ®) @ (Jul + |v| + |w]),
1 11 7)
ith I, (¢) = =, t) = —.
wihl (=3, o=
Moreover,
5 3
“ZE’ Bi == ﬁz_z)
1
T=1, =10 ay=by=a,=b=a,=b, =1,
1
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1 1
/\2 = 5’ lgo = 151 = lgz = 5’
Ag=234, A, =019, A,=0.15,
po = 0.5, p = 1.01, py =12,
=0, p =076  p=009,
Po=p =0, p, =051,
u
(t,u)
9o 3(1 +1)>2
t
eu
(t,u)
g 3(1 +ef)?
u
(t,u)
92 3(1 + ef)?

(58)
From the condition
K <<p(K) ||lf||1/T (Ag+A,+A,)
(59)
5 -1
+ Z (pi + P+ A1) [Nl y (KO “lgi||1> > 1,
i=0
we find that
K > 9.8. (60)

Thus, all the conditions of Theorem 10 are satisfied. So, there
exists at least one solution of problem (54) on [0, 1].
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