
Research Article
Online Learning Discriminative Dictionary with Label
Information for Robust Object Tracking

Baojie Fan,1 Yingkui Du,2 and Yang Cong2

1 College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Correspondence should be addressed to Baojie Fan; jobfbj@gmail.com

Received 7 March 2014; Revised 3 June 2014; Accepted 5 June 2014; Published 24 June 2014

Academic Editor: Caihong Li

Copyright © 2014 Baojie Fan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A supervised approach to online-learn a structured sparse and discriminative representation for object tracking is presented.
Label information from training data is incorporated into the dictionary learning process to construct a robust and discriminative
dictionary. This is accomplished by adding an ideal-code regularization term and classification error term to the total objective
function. By minimizing the total objective function, we learn the high quality dictionary and optimal linear multiclassifier jointly
using iterative reweighed least squares algorithm. Combined with robust sparse coding, the learned classifier is employed directly
to separate the object from background. As the tracking continues, the proposed algorithm alternates between robust sparse coding
and dictionary updating. Experimental evaluations on the challenging sequences show that the proposed algorithm performs
favorably against state-of-the-art methods in terms of effectiveness, accuracy, and robustness.

1. Introduction

Given the initialized position and size of a target in the
first frame (or former frames) of a video, the goal of visual
tracking is to estimate the states of the moving target in the
subsequent frames. This active topic has been extensively
studied in computer vision due to its important role in
many applications such as automated surveillance, robot
navigation, video indexing, traffic monitoring, and human-
computer interaction. Despite the fact thatmuch progress has
beenmade in recent years [1–5], developing a robust tracking
algorithm is still a challenging problem due to numerous
factors: illumination, partial or full occlusions, dynamic
appearance changes, scaling, abrupt motion, background
clutters, pose variation, and shape deformation.

Inspired by the success of sparse representation-based
face recognition [6], Mei and Ling [7] propose a novel L1
tracker that uses a series of target templates and trivial ones
to model the tracked target with the sparse constraints. In
detail, the target templates are used to describe the tracked
object and trivial templates are used to deal with outliers
(such as occlusion). This representative scheme is robust

to a wide range of image corruptions, especially moderate
occlusions. Based on the milestone work, some extensions
[6–20] are developed to improve the L1 tracker in terms of
both speed and accuracy. However, sparse representation-
based approaches have some drawbacks. First, previous
tracking algorithms construct the dictionaries naive. They
directly use the sampled samples from tracked target region
and its background as the dictionary atoms; they are not
selected. This operation makes the dictionary redundant
and ignores the discriminative and structured information
from the initial training data. Second, some methods use
either static dictionaries during tracking process [10] or
heuristic dictionary update. Finally, many sparse coding-
based trackers [6–15] seek to minimize the reconstruction
error with L2 norm to increase the representative power but
ignore the discriminative ability of the learneddictionary.The
data term with L2 norm does not use the robust function in
the data fitting term andmight be vulnerable to large outliers
and makes the tracking unstable.

In this paper, we formulate object tracking in a particle
filter framework as a binary classification problem.The a pri-
ori information from training data is exploited effectively to
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online-learn a discriminative and reconstructive dictionary.
Specifically, the class label information is incorporated into
the dictionary learning process as the classification error term
and idea coding regularization term, respectively. Combined
with the traditional reconstruction error, a total objective
function for dictionary learning is constructed with L1 data
fitting term. By minimizing the total object function, we can
obtain a high quality dictionary and optimal linear classifier
jointly using iterative reweighed least squares algorithm.
With the help of robust sparse coding, the optimal classifier
can separate the tracked object from background effectively.

The main contributions of this paper are the following.

(1) The a priori information from the training samples
is exploited to construct a compact and discrimi-
native dictionary. The learned dictionary deserves
the structure information from training samples and
encourages samples from the same class to have
similar representations. It is a critical factor for the
object tracker-based sparse representation.

(2) Learning a high quality dictionary and optimal linear
classifier are accomplished jointly. All the training
samples from the object and background are involved
in the dictionary learning process simultaneously.

(3) Many existing sparse coding-based trackers do not
use robust function in the data fitting term and
might be vulnerable to large outliers. L1 norm fitting
function is incorporated into the data fitting term
to overcome this problem and make the tracking
reliable.

The paper is organized as follows. In Section 2, we sum-
marize the works most related to ours. Section 3 presents
the L1 tracker and dictionary learning as the background
to facilitate the introduction of our proposed model in
the next section. The detailed description of the proposed
tracking approach is presented in Section 4. Section 5 gives
the detailed experiment setup and results. Finally, Section 6
concludes the paper.

2. Related Work

Much work has been done in object tracking. In this section,
we only briefly review nominal tracking methods and those
that are the most related to our tracker. We focus specifically
on tracking methods that use particle filters, sparse represen-
tation, and general multitask learning methods. For a more
thorough survey of tracking methods, we refer the readers to
[1–5].

Existing tracking algorithms can be roughly categorized
as either generative or discriminative.

2.1. The Generative Trackers. The generative methods repre-
sent the target as an appearancemodel.The tracking problem
is formulated as searching for the regions which are the
most similar to the tracked targets. These methods are based
on either templates or subspace models. Popular generative
trackers include eigentracker [21], mean shift tracker [22],
fragment-based tracker [23], incremental tracker (IVT) [24],

and VTD tracker [25]. Black and Jepson [21] learn a subspace
model offline to represent target at predefined views and
build on the optical flow framework for tracking. The mean
shift tracker [22] is a popular mode-finding method, which
successfully copes with camera motion, partial occlusions,
clutter, and target scale variations. The fragment tracker
[23] aims to solve partial occlusion with a representation
based on histograms of local patches. The tracking task
is carried out by accumulating votes from matching local
patches using a template. But, this template is static, and it
can not handle changes in object appearance. Ross et al. [24]
learn an adaptive linear subspace online for modeling target
appearance and implement tracking with a particle filter.
However, IVT is less effective in handling heavy occlusion
or nonrigid distortion. Kwon and Lee [25] extend the classic
particle filter framework with multipledynamic observation
models to account for appearanceand motion variation.
Nevertheless, due to the adopted generative representation
scheme, this tracker is not equipped to distinguish between
the target and its local background.

2.2. Discriminative Trackers. Discriminative methods cast
the tracking as a classification problem that distinguishes
the tracked targets from their surrounding backgrounds.
The trained classifier is online updated during the tracking
procedure. Discriminative tracking algorithms use the infor-
mation from both the target and the background. Exam-
ples of discriminative methods are ensemble tracking [26],
online boosting (OAB) [27], semionline boosting [28], online
multiple instance learning tracking [29], adaptive metric
differential tracking [30], TLD [31], and CT [32].

In ensemble tracking [13], a set of weak classifiers are
trained and combined for distinguishing the target object
and the background. The features used in [26] may contain
redundant and irrelevant information which affects the clas-
sification performance. To improve the classification perfor-
mance, feature selection is needed. Collins et al. [33] have
demonstrated that online selecting discriminative features
can greatly improve the tracking performance. Inspired by
the advances in face detection [34], many boosting feature
selection methods have been proposed. Grabner et al. [27]
propose an online boosting algorithm to select features for
tracking. However, these trackers [27, 33] only use one
positive sample (i.e., the current tracker location) and a few
negative samples when updating the classifier. As the appear-
ance model is updated with noisy and potentially misaligned
examples, this often leads to the tracking drift problem. To
better handle visual drift, Grabner et al. [28] propose an
online semisupervised tracker which only labels the samples
in the first frame while leaving the samples in the sequent
frames unlabeled. However, this semisupervised approach
discards some useful information which is very helpful in
the problem domain. Babenko et al. [29] introduce multiple
instance learning into online tracking where samples are
considered within positive and negative bags or sets. Within
the multiple instances learning (MIL) framework, several
tracking algorithms have been developed [30, 35–38] in order
to handle location ambiguities of positive samples for object
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tracking or actively select discriminative feature. Besides,
Kalal et al. [31] propose the PN learning algorithm to exploit
the underlying structure of positive and negative samples
to learn effective classifiers for object tracking. Recently,
an efficient tracking algorithm [32] based on compressive
sensing theory [39] is proposed, which demonstrates that the
low dimensional features randomly extracted from the high
dimensional multiscale image feature space can preserve the
discriminative capability, thereby facilitating object tracking.

2.3. Sparse Representation for Object Tracking. Sparse rep-
resentation has been successfully applied to visual tracking
[6]. Its metric is according to finding the best candidate
withminimal reconstruction error using target templates and
trivial ones. Most of these object tracking algorithms are in
the particle filter framework. For each particle, its represen-
tation is computed independently by solving a constrained
L1 minimization problem with nonnegativity constraints, so
hundreds of L1 norm related minimization problems need to
be solved for each frame during the tracking process. Besides,
the solver for the L1 norm minimizations used in [7, 8] is
based on the interior point method which turns out to be
too slow for tracking. A minimal error bounding strategy
is introduced [8] to reduce the number of particles, equal
to the number of the L1 norm minimizations for solving. A
speed-up by four to five times is reported in [8]. In [9], APG-
based solution is used to improve the L1 tracker. Liu et al.
[10] integrate the dynamic group sparsity into the tracking
problem and high dimensional image features are used to
improve tracking robustness. Liu et al. [11] also develop
a tracking algorithm based on local sparse model which
employs histograms of sparse coefficients and the mean shift
algorithm for object tracking. However, this method is based
on a static local sparse dictionary and may fail when there is
a similar object in the scenes. In Li et al. [14], dimensionality
reduction and a customized orthogonal matching pursuit
algorithm are adopted to accelerate the L1 tracker. In [15],
the authors propose a robust object tracking algorithm using
a collaborative model that combines a sparsity-based dis-
criminative classifier (SDC) and a sparsity-based generative
model (SGM), but it adopts the naivemodel updating strategy
and similar metric measure; this will affect the performance
of the tracker. In [16], the authors develop a simple yet
robust tracking method based on the structural local sparse
appearance model. Its representation exploits both partial
information and spatial information of the target based on
a novel alignment-pooling method. In Zhang et al. [17], low-
rank sparse learning is adopted to consider the correlations
among particles for robust tracking. Inspired by these works,
he develops the multitask tracking (MTT) algorithm [18].
However, the dictionary still includes the trivial templates;
they will degrade the efficiency and effectiveness of the
tracker.

3. Background

In this section, we briefly introduce the L1 tracker and
dictionary learning to facilitate the presentation of ourmodel
in the next section.

3.1. L1 Tracker. L1 tracker and most of its extension are in the
particle filter framework. Its metric is according to finding
the best candidate with minimal reconstruction error using
target templates and trivial ones. In each frame, L1 tracker
first generates candidate particles with the current tracking
result. For each particle, its representation is computed inde-
pendently by solving a constrained L1minimization problem
with nonnegativity constraints. To adapt the appearance
changes of an object, the template is updated according to
both the weights assigned to each template and the similarity
between templates and current estimation of target candidate.

L1 tracker can be viewed as a sparse coding process with
the given dictionary (object templates and trivial ones). But
L1 and its extensions ignore the dictionary quality; they only
adopt a simple strategy to construct the dictionary: take the
entire positive (or negative) training set as dictionary. Sparse
coding with a large dictionary is computationally expensive.

3.2. Dictionary Learning. The goal of dictionary learning is
to find the optimized dictionaries that provide the represen-
tation for most statistically representative input signals. Let
𝑌 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
] ∈ 𝑅
𝑛×𝑁 be a set of𝑁 input signals, where

𝑦
𝑖
denotes the 𝑖th input signal with 𝑛 dimensional feature

description. Learning a reconstructive dictionary with size
𝐾 for sparse representation can be obtained by solving the
following minimization problem:
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∗
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∗
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𝐷,𝑋
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where 𝐷 = [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝐾
] ∈ 𝑅
𝑛×𝐾 is the learned dictionary

and 𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
] ∈ 𝑅

𝐾×𝑁are the sparse codes of
input signals. In general, the number of training samples is
larger than the size of 𝐷 (𝑁 ≫ 𝐾), and 𝑥

𝑖
only uses a

few dictionary atoms for its representation under the sparsity
constraint. Usually, the above objective function is iteratively
optimized in a two-stage manner, by alternatively optimizing
with respect to 𝐷 (bases) and 𝑋 (coefficients) while holding
the other fixed. Each stage is convex in 𝐷 (while holding
𝑋 fixed) and in 𝑋 (while holding 𝐷 fixed) but not convex
in both simultaneously. The objective function in (2) only
focuses onminimizing the reconstruction error and does not
consider the discriminative power of a dictionary. Hence,
some supervised approaches [40–47] have been proposed to
improve the discriminative power of dictionary, by integrat-
ing the category label information into the objective function
of dictionary learning.

4. The Proposed Tracker

Many existing online dictionary learning methods do not
use the robust function in the data fitting term and might
be vulnerable to large outliers. In robust statistics, L1 fitting
functions are found useful to make estimation reliable.
During the process of object tracking, the challenging factors
such as occlusion, illumination changes, abrupt motion, and
background clutters are usually regarded as the outlier. If
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the L2 norm data fitting is adopted for sparse representation-
based tracker, the drift will be cumulative and result in
tracking failure. However, L1 fitting functions can overcome
the above problem andmake tracking reliable. Inspired by the
abovework [40–47], an approach to online-learn a structured
sparse anddiscriminative representation for object tracking is
presented in this section.

4.1. The Total Object Function. We construct a robust object
function for online dictionary learning and the optimal
classifier. To be concrete, the total objective function for the
proposed tracker is defined as

⟨𝐷
∗
, 𝐴
∗
, 𝑋
∗
⟩ = argmin

𝐷,𝐴,𝑋

‖𝑌 − 𝐷𝑋‖
1

1

+ 𝜆
1‖𝐻 − 𝐴𝑋‖

1

1
+ 𝜆
2‖𝑄 − 𝑋‖

1

1
+ 𝜆
3‖𝑋‖1,

(2)

where parameters 𝜆
1
, 𝜆
2
, 𝜆
3
control the relative weight of

three terms: reconstruction error term, classification error
term, idea coding regularization term and norm regulariza-
tion term.
Reconstruction Error Term ‖𝑌 − 𝐷𝑋‖

1

1
. This data fitting is

robust compared with L2 norm and can handle some outliers
such as part occlusion and background in the train data. We
compute the reconstruction errors of all the particles with the
learned dictionary items at the same time.

Ideal Structured Regularization Term ‖𝑄 − 𝑋‖
1

1
. This term

includes the information from training samples.𝑄 is the idea
representation for 𝑌, 𝑄 = [𝑞

𝑖
, 𝑞
2
, . . . , 𝑞

𝑀
] ∈ 𝑅

𝐾×𝑀.𝑀 is the
number of training samples. We hope that 𝑋 is very close to
𝑄 and force the samples from the same class to have similar
discriminative sparse representation without losing structure
information. 𝑞

𝑖
is the sparse code of an input signal𝑦

𝑖
with the

form 𝑞
𝑖
= [𝑞
1

𝑖
, 𝑞
2

𝑖
, . . . , 𝑞

𝐾

𝑖
]


= [0, . . . , 1, 1, 1, . . .]

∈ 𝑅
𝐾.We cast

the object tracking can be viewed as a binary classification
problem: object (class 𝑇) and background (class 𝐵). If the
training samples are sampled from the tracked object region,
the coefficients in 𝑞

𝑖
for class 𝑇 are all 1 s, while the others are

all 0 s. For example, the training samples 𝑌 = [𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
]

include two classes: 𝑦
1
, 𝑦
2
belong to object 𝑇 and 𝑦

3
, 𝑦
4
are

from background 𝐵; the ideal representation 𝑄 for 𝑌 is as
follows:

𝑄 =

[
[
[

[

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

]
]
]

]

. (3)

Classification Error Term ‖𝐻 − 𝐴𝑋‖
1

1
. The term measures

theclassification error, and it supports learning an optimal
classifier. For object tracking task, we define two classes:
tracked object and background. A simple linear classifier
𝑓(𝐴;𝑋) = 𝐴𝑋 is adopted, where 𝐴 is the classifier
parameters.𝐻 = [ℎ

1
, ℎ
2
, . . . , ℎ

𝑁
] ∈ 𝑅
2×𝑁 is the class labels of

training data 𝑌. ℎ
𝑖
= [1, 0]

𝑡 is the corresponding label vector
of 𝑦
𝑖
, and the nonzero position indicates the class label of 𝑦

𝑖
.

L1 Norm Regularization Term ‖𝑋‖
1
. By adding a sparseness

criterion into the objective function (2), we are able to
learn a sparse and structural representation with the learned
high-quality dictionary 𝐷

𝑡
. The proposed tracker is under

the particle filter framework. The candidate particles are
densely sampled around the current tracking target and their
representations will be sparse and similar with respect to the
given dictionary 𝐷

𝑡
. In other words, a few items in 𝐷

𝑡
are

required to represent all the particles.

4.2. Optimization Procedure. To solve optimization problem
in (2), we rewrite the proposed object function as follows.

Dictionary learning:

⟨𝐷
∗
, 𝐴
∗
⟩ = argmin

𝐷,𝐴

𝑌𝐿1 − 𝐷𝐿1𝑋


1

1

+ 𝜆
2‖𝑄 − 𝑋‖

1

1
+ 𝜆
3‖𝑋‖1,

(4)

where 𝑌
𝐿1
= [𝑌,√𝜆

1
𝐻]
,𝐷
𝐿1
= [𝐷,√𝜆

1
𝐴]
.

Sparse coding:

𝑋
∗
= argmin
𝑋

𝑌𝐿2 − 𝐷𝐿2𝑋


1

1
+ 𝜆
3‖𝑋‖1, (5)

where 𝑌
𝐿2

= [𝑌,√𝜆
1
𝑄,√𝜆

2
𝐻]
 and 𝐷

𝐿2
= [𝐷,√𝜆

1
𝐼,

√𝜆
2
𝐴]
.

As in [27], iterative reweighed least squares algorithm
(IRLS) is used to obtain the optimal solutions of (4) and
(5). It solves the above two problems in each iteration until
convergence.

Given the initial dictionary 𝐷
0
, we can obtain the robust

sparse coding 𝑋∗ by (5). Combining 𝐷
0
and 𝑋∗, (4) can be

regarded as a L1 regression problem.The IRLS algorithm can
be used to solve (4) with the known𝑋∗ and 𝑄:

𝐷
𝐿1
(𝑗, :) = argmin

𝑑𝐿1

1

𝑛

𝑛

∑

𝑖=1

𝑤
𝑗

𝑖
(𝑌
𝐿1
(𝑖, 𝑗) − 𝑑

𝐿1
𝑋
𝑖
)
2

, (6)

where 𝑤𝑗
𝑖
= 1/√(𝑌

𝐿1
(𝑖, 𝑗) − 𝑑

𝐿1
𝑋
𝑖
)
2
+ 𝛿and 𝛿 is a small

positive value. By taking derivatives for (6) and setting them
to zeros, the global optimum can be reached by solving
𝐷
𝐿1
(𝑗, :) in the linear system

𝐶
𝑗
=

𝑛

∑

𝑖=1

𝑤
𝑗

𝑖
𝑌
𝐿1
(𝑖, 𝑗)𝑋

𝑇

𝑖
, (7)

𝑀
𝑗
=

𝑛

∑

𝑖=1

𝑤
𝑗

𝑖
𝑋
𝑖
𝑋
𝑇

𝑖
,

𝐶
𝑗
= 𝐷 (𝑗, :)𝑀

𝑗
.

(8)
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As the trace continues, the dictionary updates with the
coming data, the online versions of 𝐶𝑗,𝑀𝑗 is as follows:

𝐶
𝑗

𝑁
= 𝐶
𝑗

𝑛
+

𝑁

∑

𝑖=𝑛+1

𝑤
𝑗

𝑖
𝑌
𝐿1
(𝑖, 𝑗)𝑋

𝑇

𝑖
, (9)

𝑀
𝑗

𝑁
= 𝑀
𝑗

𝑛
+

𝑁

∑

𝑖=𝑛+1

𝑤
𝑗

𝑖
𝑋
𝑖
𝑋
𝑇

𝑖
, (10)

where 𝐶𝑗
𝑛
and 𝑀𝑗

𝑛
are the former data, the second terms in

both (9) and (10) are the coming data.
We have learned the dictionary 𝐷

𝐿1
= [𝐷,√𝜆

1
𝐴]
.

For all the particles, we first compute their robust sparse
codes 𝑋∗ from (5) and then obtain the classification score
of the particles from the optimal classifier 𝐴. The tracking is
completed by the following equation:

𝑋
𝑖
= argmax
𝑋𝑖

(𝐴𝑋) , (11)

where 𝑥
𝑖
is the sparse coding of each particle with learned

dictionary𝐷. The sparse codings of all the particles form the
matrix𝑋.

4.3. Tracking Algorithm Details. For initialization, we man-
ually choose the foreground object with the bounding box
and then shift it by a few pixels to generate the positive
samples. Besides, we shift the bounding box far away from
the object location to generate the negative samples, which are
without overlap with positive samples.The K-SVD algorithm
is executed on positive and negative samples separately to
learn the initial dictionary. The proposed tracking algorithm
is under the particle filter framework, which recursively
approximates the posterior distribution using a finite set of
weighted samples. It consists of two steps: prediction and
update.

At the frame specially, let affine parameters 𝑋 =

(𝑥, 𝑦, 𝑠, 𝑟, 𝜃, 𝜆) represent the target state, where 𝑥 and 𝑦 are
the coordinates, 𝑠 and 𝑟 are the scale and the aspect, 𝜃 is the
rotation angle, and 𝜆 is the skew. 𝑌

1:𝑡−1
= {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑡−1
}

denotes the observation of the target from the first frame to
the frame 𝑡 − 1. Particle filters tracking estimates and propa-
gates the probability by recursively performing prediction,

𝑝 (𝑋
𝑡
| 𝑌
1:𝑡−1

) = ∫𝑝 (𝑋
𝑡
| 𝑋
𝑡−1
) 𝑝 (𝑋

𝑡−1
| 𝑌
1:𝑡−1

) 𝑑𝑋
𝑡−1

(12)

and updating

𝑝 (𝑋
𝑡
| 𝑌
1:𝑡
) =

𝑝 (𝑌
𝑡
| 𝑋
𝑡
) 𝑝 (𝑋

𝑡
| 𝑌
1:𝑡−1

)

𝑝 (𝑌
𝑡
| 𝑌
1:𝑡−1

)
. (13)

The optimal state for the frame 𝑡 is obtained according to
the maximal approximate posterior probability:

𝑋
∗

𝑡
= arg max
𝑋𝑡

𝑝 (𝑋 | 𝑌
1:𝑡
) = argmax (𝐴𝑋) . (14)

Table 1: All the tested image sequences.

Video
sequence

Total
frame Challenging factor

Animal 71 Abrupt motion and background clutter

Car11 393 Illumination variation, background clutter,
and scale and pose change

Girl 501 Occlusion and scale and pose change
Jumping 313 Abrupt motion

Cliffbar 471 Scale change, background clutter, and
abrupt motion

Caviar 500 Occlusion, scale change, and background
clutter

Football 362 Similar object and background clutter
Woman 550 Occlusion, scale change, and similar object

This inference is governed by the model 𝑝(𝑋
𝑡
| 𝑋
𝑡−1
),

which describes the temporal correlation of the tracking
results in consecutive frames, and it is modeled to be
Gaussian with the dimensions of 𝑋

𝑡
assumed independent.

The observation model 𝑝(𝑌
𝑡
| 𝑋
𝑡
) reflects the similarity

between a target candidate and dictionary templates. In this
paper, 𝑝(𝑌

𝑡
| 𝑋
𝑡
) is proportional to the classifier scores.

5. Experiments

In this section, we make a thorough comparison on chal-
lenging image sequences between our proposed trackers and
state-of-the-art tracking methods. Our trackers are evaluated
on 8 challenging tracking sequences (e.g., car11, cliffbar, and
woman sequences) that are publicly available online. Table 1
lists all the evaluated image sequences; these videos are
recorded in indoor and outdoor environments and include
the abovementioned challenging factors in visual tracking.
We evaluate the proposed tracker against ten state-of-the-
art visual tracking algorithms including: ONND [12], LSST
[13], SCM [15], ASLA [16], MTT [18], CT [32], VTD [25],
MIL [29], PN [31], IVT [24], and L1 [6]. These trackers are
implemented using publicly available source codes or binaries
provided by the authors. They are initialized using their
default parameters.

5.1. Parameter Setting. The proposed algorithm is imple-
mented inMATLABR2011b on a Pentium 2.3GHzDual Core
laptop with 2GB memory. For each sequence, the location of
the target object is manually labeled in the first frame. Each
image sample from the target and background is normalized
to a 32 × 32 patch. We set the parameters 𝜆

1
, 𝜆
2
, 𝜆
3
in (5) to

be 2, 4, and 0.01, respectively. The parameter 𝛽 in (10) is set
to 0.01, and 𝜎 = 0.95. The numbers of positive templates and
negative templates are 200 and 600, respectively. The learned
dictionary includes 200 items.

5.2. Quantitative Comparison. For quantitative performance
comparison, two popular evaluation criteria are used, namely,
center location error (CLE) and tracking success rate (TSR).
The CLE is computed as the distance between the predicted
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Table 2: Average center location error (in pixel). The best three results are marked by ∗, †, and ‡.

Animal Car11 Girl Jumping Cliffbar Caviar Football Woman
IVT 127.5 2.1058 48.4739 36.8024 24.8112 65.9575 13.61 173.28
L1 171.4 33.252 62.4351 92.3931 49.6003 65.6717 18.17 130.615
PN 25.65 25.113 23.1583 3.5891

∗ 11.2504 44.4463 13.54 17.9335
VTD 11.92 27.055 21.4425 62.9881 34.5553 58.2016 4.300‡ 118.49
MIL 66.46 43.465 32.2088 9.8941 13.3477 100.186 13.66 124.51
Frag 92.09 63.922 18.0463 58.4481 48.6741 116.06 17.21 100.41
MTT 15.86 2.8024 23.8883 34.4735 46.1711 64.9936 9.842 134.02
SCM 10.02 2.5200 10.0169

∗ 4.0973‡ 7.7062‡ 2.8980† 3.899† 143.59
ASLA 7.284

∗ 1.7824‡ 16.1827‡ 4.2797 5.6058† 5.5937 14.94 2.42
∗

CT 19.85 8.3523 32.9341 42.9961 23.4202 35.7958 8.138 114.83
LSST 10.05 1.8700 73.1139 4.7716 23.3066 3.0729‡ 7.574† 116.43
ONND 8.443‡ 1.5816† 27.8825 36.6116 29.6067 63.3374 20.37 7.1114†

Ours 8.021† 1.3649
∗ 10.3670† 4.0786† 2.6542

∗
2.4861

∗
3.845

∗ 7.9432‡

Table 3: Average tracking success rate. The best three results are marked by ∗, †, and ‡.

Animal Car11 Girl Jumping Cliffbar Caviar Football Woman
IVT 0.2166 0.8077 0.4262 0.2826 0.5648 0.1435 0.5573 0.0777
L1 0.0386 0.4353 0.3263 0.0927 0.1993 0.1387 0.5732 0.1262
PN 0.4118 0.3761 0.5770 0.6904 0.3798 0.1632 0.5049 0.4616
VTD 0.5771 0.4320 0.5125 0.0797 0.3292 0.1519 0.6165 0.1181
MIL 0.2129 0.1745 0.5197 0.5267 0.4622 0.1330 0.5760 0.1290
Frag 0.0764 0.0857 0.6887† 0.1383 0.1337 0.1334 0.5210 0.1270
MTT 0.5185 0.7537 0.6338 0.2318 0.3073 0.1420 0.6643 0.1251
SCM 0.6081 0.6949 0.6791‡ 0.7174† 0.6533† 0.8332‡ 0.8296† 0.1728
ASLA 0.6198

∗ 0.7930 0.6491 0.7121‡ 0.6197‡ 0.6721 0.6362 0.7929
∗

CT 0.5250 0.5306 0.5108 0.1531 0.3852 0.1727 0.6994‡ 0.1202
LSST 0.5750 0.8106‡ 0.1199 0.6540 0.5648 0.8510† 0.6888 0.1622
ONND 0.6095‡ 0.8425

∗ 0.4205 0.1357 0.3483 0.0519 0.4076 0.6731†

Ours 0.6124† 0.8376† 0.6908
∗

0.7201
∗

0.7986
∗

0.8540
∗

0.8308
∗ 0.6593‡

center position and the ground truth center position. Clearly,
we hope the CLE is small. Figure 1 presents the relative
position errors (in pixels) between the ground truth center
and the tracking results. Table 2 summarizes the average
center location errors in pixels.

The TSR is computed as the ratio of the number of frames
the target is successfully tracked to the number of frames
in the sequence. To define whether the target is successfully
tracked at a frame, we use the score in the PASCAL VOC
challenge [48], which can be computed as

score =
area (𝑅

𝑇
∩ 𝑅
𝐺
)

area (𝑅
𝑇
∪ 𝑅
𝐺
)
, (15)

where 𝑅
𝑇
is the current tracking result and 𝑅

𝐺
is the ground

truth. Table 3 and Figure 2 give the average tracking success
rates and relative tracking success rates, respectively. Overall,
the proposed tracker performs well against the other state-of-
the-art algorithms.

5.3. Qualitative Comparison. There are blurred images in
animal sequence, which is difficult for most trackers to solve

this situation. From Figure 3, we can see that the head of the
fawn becomes blurred at the frame 25 or 42; the appearance
of the tracked object is indistinguishable. Most tracking
algorithms fail to follow the target, such asMIL, PN, and Frag.
The proposed algorithm successfully tracks the target object
throughout the sequence. Its located accuracy and overlap
rate are better than SCM, LSST, and ONND and less than
ASLA.

5.4. Quantitative Comparison. In the car11 sequence, a car is
driven into a very dark environment. The contrast between
the tracked target and its surrounding background is low, and
the ambient light changes significantly. Furthermore, the low
image resolution of the target object makes tracking difficult.
The tracking results are illustrated in Figure 3. Due to changes
in lighting, Frag and MIL algorithms start to drift around
frame 60. L1 method starts to fail in frame 250. IVT, SCM,
ASLA, LSST, MTT, and ONND algorithms perform well as
our tracker in the whole sequence. However, the accuracy
and robustness of these methods are less than our proposed
algorithm. However, the other methods drift away when
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Figure 1: Central-pixel error. This figure shows central-pixel error for ten tested video clips. Our algorithm is compared with ten state-of-
the-art methods.
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Figure 2: Overlap rate evaluation.This figure shows overlap rates for ten tested video clips. Our algorithm is compared with ten state-of-the-
art methods.
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Figure 3: Comparison of 13 trackers on 8 video sequences in terms of bounding box reported.

drastic illumination variation occurs (e.g., #0200 and #0250)
or when similar objects appear in the scene (e.g., #0305),
especially the car makes a turn at about frame 260.

The tracking object in the girl sequence undergoes occlu-
sion (complete occlusion of the girl’s face as she swivels

in the chair), large pose change, and scale variation with
in-plane and out-of-plane rotations (from large to small
and from small to large). The tracking results are shown
in Figure 3. The experimental results demonstrate that our
method achieves the best performance in this sequence.
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Other trackers experience drift at different instances: Frag at
frame 248, IVT at frame 436, and VTD at frame 477.

There is abrupt motion in jumping sequences, so it is
difficult to predict the location of tracked target in the blurry
images. Furthermore, it is rather challenging to account
for drastic appearance change caused by motion blur and
properly update these appearance models. Figure 3 shows
that most tracking algorithms fail to follow the target right
at the beginning of this sequence (e.g., #13 and 25). The
proposed algorithms SCM, ASLA, LSST, and PN successfully
track the target object throughout the sequence.

In the cliffbar video, the background has similar texture
to the target. Moreover, the target undergoes scale variance,
in-plane rotation, and abrupt motion as shown in Figure 3.
The Frag, L1, IVT, CT,MIL, LSST, ONND, and SCMmethods
drift to the cluttered background, while our proposed tracker
has the best performance on this sequence; it can adapt to
the scale and rotation change of the target and overcome the
influence of similar background and motion blur.

In the caviar sequence, the target is occluded by two
people at times and one of them is similar in color and
shape to the target. Numerous methods fail to track the
target because there are similar objects around it when heavy
occlusion occurs. In contrast, our tracker achieves stable
performance in the entire sequence when there is a large scale
change with heavy occlusion at frame 442.

The football sequence is challenging due to the cluttered
background, because there are many football players with
the similar helmets in appearance to the tracked object in
this scene.When the tracked target approaches other football
players, some trackers are not robust and begin to drift, as
shown in frames 76, 113, and 150 in Figure 3.When the two
football players collide at frame 290, most tracking methods
especially cannot locate the target correctly. Only our tracker,
CT, VTD, and ONND overcome this problem and success-
fully locate the correct object in the whole sequence. The
accuracy of our method is the highest.

In the woman sequence, the walking woman undergoes
pose variation together with long-time partial occlusion.The
difficulty lies in the fact that the woman is greatly occluded
by the parked cars. Most trackers fail and lock on a car with
similar color to the trousers when the legs of the woman are
heavily occluded from frame 110 to 130. Only ONNDL, our
tracker, and ASLA can overcome this difficulty and follow the
target accurately. Although PN tracker can find the tracked
target again after the trace fails, it is vulnerable for occlusion
and always loses the target as shown in Figure 3.

6. Conclusions

In this paper, we present a supervised approach to learn
and update a structured, sparse, and discriminative represen-
tation for object tracking. Label information from training
data is incorporated into the dictionary learning process
to construct a discriminative structured dictionary. This is
accomplished by adding an ideal-code regularization term
and classification error term to the total objective function.
By minimizing the objective function, we can obtain a high

quality dictionary and optimal linear classifier simultane-
ously.This approach exploits the strength of label information
and encourages images from the same class to have similar
representations. Experimental results on challenging image
sequences demonstrate that our tracking algorithm performs
favorably against several state-of-the-art algorithms. Possible
future work includes online and robust discriminative dic-
tionary learning and structured low-rank representations for
real-time object tracking.
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