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We develop the framework of natural spaces to study isomorphic embeddings of Banach spaces. We then use it to show that a
sufficient failure of the generalized continuum hypothesis implies that the universality number of Banach spaces of a given density
under a certain kind of positive embedding (very positive embedding) is high. An example of a very positive embedding is a positive
onto embedding between 𝐶(𝐾) and 𝐶 (𝐿) for 0-dimensional 𝐾 and 𝐿 such that the following requirement holds for all ℎ ̸= 0 and
𝑓 ≥ 0 in 𝐶(𝐾): if 0 ≤ 𝑇ℎ ≤ 𝑇𝑓, then there are constants 𝑎 ̸= 0 and 𝑏 with 0 ≤ 𝑎 ⋅ ℎ + 𝑏 ≤ 𝑓 and 𝑎 ⋅ ℎ + 𝑏 ̸= 0.

1. Introduction

In this paper we join a recent trend that has seen a combina-
tion ofmodel theory and set theory address questions coming
from analysis and topology. Examples are the spectacular
proof by Malliaris and Shelah of the p = t in [1] or
more directly connected to this paper, work by Shelah and
Usvyatsov on the isometric universality of Banach spaces [2],
which will be mentioned in more detail below. We are specif-
ically interested in the isomorphic embeddings of Banach
spaces, in particular in the universality number of this class.
This is the minimal number of the Banach spaces of a given
density which isomorphically embed all the other spaces
of the same density, allowing, depending on the context,
the embeddings or the spaces to have extra properties. In
many contexts, for example, when working just with plain
isomorphic embeddings, it suffices to work with spaces of the
form 𝐶(𝐾) and even to assume that 𝐾 is 0-dimensional and
so of the form St(A) whereA is a Boolean algebra and St(A)
its Stone space. This is because every Banach space of a given
density embeds isometrically into one of the form 𝐶(St(A))
with the same density. In the main body of this paper we
concentrate on the spaces of the form 𝐶(St(A)).

The topic of universality of Banach spaces has already
received a significant input from set theory, notably in the
work of Brech and Koszmider [3, 4], which will be reviewed
below. The new element we bring is the study of the topic

not only by set-theoretic methods such as forcing, but also
by the methods coming from classification theory in model
theory and pcf theory. These ideas were explored in the
context of isometric embeddings in [2], but the methods
applicable to isometries do not at all apply in the context of
isomorphic embeddings; hencewehave needed to construct a
new framework. Using this framework we are able to provide
a template (Theorem 16(1)) of results which state that, for
an uncountable cardinal number 𝜆 under certain cardinal
arithmetic assumptions, there is no universal Banach space
of density 𝜆, under certain kinds of isomorphic embeddings.
The general kind of embeddings considered in the template
is called very positive embeddings and it includes many
natural examples of embeddings. One is presented in the
following theorem which easily follows from Theorem 16(1)
(see Section 5.3).

Theorem 1. Suppose that 𝜃 and 𝜆 are two regular cardinals
with

ℵ
2
≤ 𝜃 < 𝜃

+
< 𝜆 < 2

𝜃
, (1)

and that (∀𝜅 < 𝜆)𝜅
ℵ0 < 𝜆.

Then the minimal number of spaces of the form 𝐶(St(A))
of density 𝜆 needed to embed all Banach spaces of the form
𝐶(St(B)) of density 𝜆 by an embeddings 𝑇 satisfying the
following conditions (i)–(iii) is 2𝜃, where
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(i) 𝑇 is positive; that is, 𝑓 ≤ 𝑔 ⇒ 𝑇𝑓 ≤ 𝑇𝑔;

(ii) 𝑇 is onto;

(iii) if 0 ≤ 𝑇ℎ ≤ 𝑇𝑓, ℎ ̸= 0, and 𝑓 ≥ 0, then there are
constants 𝑎 ̸= 0, 𝑏 such that 0 ≤ 𝑎 ⋅ ℎ + 𝑏 ≤ 𝑓 and
𝑎 ⋅ ℎ + 𝑏 ̸= 0.

In particular there is no surjectively universal space
𝐶(St(A)) of density𝜆, under the embeddings satisfying (i)–(iii).

It would of course be desirable to weaken the condition of
very positivity. In recent work, Shelah [5] introduces amodel-
theoretic property called the olive property which generalizes
the model-theoretic tools that can be used to apply the
method of invariants which were used in the context of linear
orders in [6] and which are necessary for [2] and for this
work. The restriction to very positivity in our work basically
comes from the connection of the invariants to linear orders.
Therefore it is a promising direction for future work to find a
Banach space isomorphism context where one could use the
olive property in place of the order.

An additional consideration of the paper is the subject
of the number of pairwise nonisomorphic Banach spaces
of a given density. For example, the celebrated Kaplansky
theorem [7] shows that if 𝐶(𝐾) and 𝐶(𝐿) admit a bijective
isomorphism which also preserves pointwise order, then 𝐾

and 𝐿 are homeomorphic. Coupled with model-theoretic
results which show that for every uncountable 𝜅 there are 2𝜅
pairwise nonisomorphic Boolean algebras of size 𝜅 and with
the Stone representation theorem, this gives that there are 2𝜅
pairwise non-order-isomorphic Banach spaces of density 𝜅.
It follows from our work, as we show in Theorem 16(2), that
the same is true under the weaker assumption of very positive
embeddings (that the assumption of very positivity is strictly
weaker than the assumption of preserving order follows
from our examples in Section 5). A very general model-
theoretic study of the properties which lead to a large number
of pairwise nonisomorphic models in metric structures is
undertaken by Shelah andUsvyatsov in [8] and in the future it
may yield more general results about nonisomorphic Banach
spaces.

We should finish this introduction by mentioning that
for uncountable 𝜆 the successor of a regular it is not difficult
to construct specific models of set theory in which there
are no isomorphically universal Banach spaces of density
𝜆; for example, the classical Cohen model will do (paper
[9] addresses this and finer versions of it). The point of
Theorem 16 is that it is not a result which is true just in
some specifically constructed model; it is a result which
holds as soon as certain cardinal arithmetic assumptions
are fulfilled. Another remark is that on the basis of what
is known in the literature and what we obtain here, no
known result differentiates between the universality number
of Banach spaces of a given density under isometries or
under isomorphisms. Furthermore, it is not known how to
differentiate them from the universality number of Boolean
algebras.

2. Background

For a quasi-ordered class (M, ≤), the universality number is
defined as the smallest size ofN ⊆ M such that for every𝑀 ∈

M there is𝑁 ∈ N such that𝑀 ≤ 𝑁. In Banach space theory
we findmany examples of classes whose universality numbers
have been studied, with respect to isomorphic, isometric, and
other kinds of embeddings. A classical result by Banach [10,
page 185] shows that𝐶([0, 1]) is isometrically universal for all
separable Banach spaces.

For the nonseparable case, the situation is more com-
plex.The cardinal arithmetic assumption GCH automatically
gives one universal model for each uncountable density, as
explained below. Specific models of the failure of GCH were
studied by Brech and Koszmider [3] who considered Banach
spaces of density the continuumandproved that in theCohen
model for ℵ

2
many Cohen reals there is an isomorphically

universal Banach space of density c = ℵ
2
. In [9] there

are negative universality results in Cohen and Cohen-like
models; for example, the isomorphic universality number
for Banach spaces of density ℵ

1
is ℵ

2
in the Cohen model

and moreover one Cohen real adds a w.c.g. Banach space of
densityℵ

1
which does not embed into any Banach space with

a dense set of size ℵ
1
in the ground model. In [4], which

studies w.c.g. Banach spaces, it is stated (page 1268), without
proof, that Koszmider and Thompson noted that a version
of the proof from [3] gives a model where there is no
isomorphically universal Banach space of density ℵ

1
. Let us

briefly explain the known positive universality results in the
context ofGCH.Throughout, 𝜅 stands for an infinite cardinal.

By combining the Stone duality theorem, the fact that any
Banach space𝑋 is isometric to a subspace of𝐶(𝐵

𝑋
∗) and that

𝐵
𝑋
∗ has a totally disconnected continuous preimage, Brech

and Koszmider proved the following.

Fact 1 (see [3], Fact 1.1). (1) The universality number of the
class of Boolean algebras of size 𝜅 is greater or equal to the
universality number of the class of Banach spaces of density 𝜅
with isometric embeddings, which is greater or equal than the
universality number of the class of Banach spaces of density
𝜅 with isomorphic embeddings.

(2) The class of spaces of the form 𝐶(St(A)) for A a
Boolean algebra of size 𝜅 is isometrically universal for the
class of Banach spaces of density 𝜅, and in particular its uni-
versality number with either isometric or isomorphic embed-
dings is the same as the universality number of the whole
class of Banach spaces of density 𝜅.

Fact 1 is only interesting in the context of uncountable
𝜅, since for 𝜅 = ℵ

0
we have a universal Boolean algebra as

well as an isometrically universal Banach space, as explained
above. On the other hand, it is known from the classical
model theory (see [11] for saturated and special models) that
in the presence of GCH there is a universal Boolean algebra at
every uncountable cardinal, so the questions of universality
for the above classes are interesting in the context of the
failure of the relevant instances ofGCH.Negative universality
results for Boolean algebras are known to hold when GCH
fails sufficiently by the work of Kojman and Shelah [6] and
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in Cohen-like extensions by the work of Shelah (see [6]
for a proof). Shelah and Usvyatsov proved in [2] that, in
the models where the negative universality results that were
obtained for Boolean algebras in [6] hold, the same negative
universality results hold for Banach spaces under isometric
embeddings. The smallest cardinal at which these results can
apply isℵ

2
. For example, if 𝜆 is a regular cardinal greater than

ℵ
1
but smaller than 2

ℵ0 (so 2ℵ0 ≥ ℵ
3
), there is no universal

under isometries Banach space of density 𝜆.

Conjecture 2. The universality number of the class of Banach
spaces of density 𝜅 with isomorphic embeddings is the same
as the universality number of the class of Boolean algebras of
size 𝜅.

It follows from the above discussion that Conjecture 2
would improve Fact 1(1) and it would imply the negative
universality results of Shelah and Usvyatsov. For all we know
at this point Conjecture 2 could be a theorem of ZFC; that is,
it is not known to fail at any 𝜅 even consistently. A particular
case of Conjecture 2 is the following Conjecture 3, which
summarizes the most interesting case from the point of view
of Banach space theory.

Conjecture 3. The universality number of the class of Banach
spaces of density 𝜅 with isomorphic embeddings is the same as
the universality number of the class of Banach spaces of density
𝜅 with isometric embeddings.

There is a considerable amount of study of other kinds
of embeddings of Banach spaces, but isometries and isomor-
phisms and our work will fit into that area. Sticking to the
spaces of the form 𝐶(𝐾), among the classically studied iso-
morphic embeddings are those that preserve multiplication
or the ones that preserve the pointwise order of functions. It
is known for either one of them (Gelfand and Kolmogorov
[12] for the former and Kaplansky [7] for the latter) that
if they are onto, they actually characterize the topological
structure of the space; that is, if 𝑇 : 𝐶(𝐾) → 𝐶(𝐿) is an
onto embeddings which either preserves multiplication or
the pointwise order, then 𝐾 and 𝐿 are homeomorphic. We
will show that, in moving from the order preserving onto
assumption just a small bit, we no longer have the preserva-
tion of the homeomorphic structure, but under the assump-
tion that GCH fails sufficiently, we do have a large number
of pairwise nonisomorphic spaces and a large universality
number.

We now finish the introduction by giving some back-
ground information for the readers less familiar with Banach
space theory.

Definition 4. A Banach space is a normed vector space com-
plete in themetric induced by the norm.A linear embeddings
𝑇 : 𝑋 → 𝑌 between Banach spaces is an isometry if for every
𝑥 ∈ 𝑋, we have ‖𝑥‖ = ‖𝑇𝑥‖, where we use 𝑇𝑥 to denote
𝑇(𝑥). A linear embeddings 𝑇 : 𝑋 → 𝑌 between Banach
spaces is an isomorphism if there is a constant 𝐷 > 0 such
that, for every 𝑥 ∈ 𝑋, we have (1/𝐷)‖𝑥‖ ≤ ‖𝑇𝑥‖ ≤ 𝐷‖𝑥‖.

Remark 5. Every isometry is an isomorphism. An isomor-
phism is in particular an injective continuous function, and
in fact, a linear map 𝑇 is an isomorphism if and only if both
𝑇 and 𝑇−1 are linear and continuous.

For 𝑇 an isomorphism, we define ‖𝑇‖ def
= sup{‖𝑇(𝑓)‖ :

‖𝑓‖ = 1}.

Throughout the paper letters A and B will be used for
Boolean algebras, 𝜅, 𝜆 for infinite cardinals, and𝐾 and 𝐿 for
compact spaces.The space𝐶(𝐾) is the space of all continuous
real-valued functions on 𝐾 with the topology given by the
supremum norm ‖𝑓‖

def
= sup{𝑓(𝑥) : 𝑥 ∈ 𝐾}. We will write

St(A) for the Stone space of a Boolean algebra A, which is
defined as the space of all ultrafilters 𝑢 onAwith the topology
generated by sets [𝑎] def

= {𝑢 : 𝑎 ∈ 𝑢} as a clopen basis. Let us
note that Fact 1 implies.

Observation 1. The universality number of Banach spaces of
density 𝜅, under any kind of embeddings, is either 1 or ≥ 𝜅

+.

This is so because if for any 𝛼∗ ∈ [1, 𝜅+), we had that {𝑋
𝛼
:

𝛼 < 𝛼
∗
} were a universal family of Banach spaces of density

𝜅, then we could assume that each 𝑋
𝛼
= 𝐶(St(A

𝛼
)) for some

Boolean algebrasA
𝛼
of size 𝜅.Thereforewe could find a single

algebra A of size 𝜅 such that all A
𝛼
embed into it (simply by

freely generating an algebra by a disjoint union of allA
𝛼
) and

hence 𝐶(St(A)) would be a single universal Banach space of
density 𝜅.

3. Natural Spaces of Functions

Our methods will involve a combination of model theory, set
theory, and Banach space theory. In this section we introduce
a simple model-theoretic structure which will be used to
achieve that mixture of methods.

Suppose thatA is a Boolean algebra. We will associate to
it a structure whose role is to represent the space𝐶(𝐾), where
𝐾 is the Stone space of A, 𝐾 = St(A). The idea is as follows.
We are interested in the set of all simple functions with
rational coefficients defined on 𝐾, so functions of the type
Σ
𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]

, where each 𝑞
𝑖
is rational, 𝑎

𝑖
∈ A, and [𝑎

𝑖
] denotes

the basic clopen set in 𝐾 determined by 𝑎
𝑖
. Every element of

𝐶(𝐾) is the limit of a sequence of such functions, since the
limits of such sequences form exactly the class of Lebesgue
integrable functions, which of course includes 𝐶(𝐾). Let us
then consider the vector space freely generated by A over
Q, call it 𝑉 = 𝑉(A) (this vector space figures in [3] with
the notation 𝐶Q(A) and is considered in a different context).
Hence every simple function on 𝐾 with rational coefficients
corresponds uniquely to an element of𝑉, via an identification
of each 𝑎 ∈ A with 𝜒

[𝑎]
. Using coordinatwise addition and

scalar multiplication, the product𝑊 = 𝑉
𝜔 becomes a vector

space. Any function 𝑓 in 𝐶(𝐾) can be identified with an
element of this vector space, namely, a sequence of simple
rational functions whose limit is 𝑓, and hence 𝐶(𝐾) can be
identified with a subset of𝑊.

To encapsulate this discussion we will work with vector
spaces with rational coefficients and with two distinguished
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unary predicates 𝐶, 𝐶
0
satisfying 𝐶

0
⊆ 𝐶. With our

motivation in mind, we will call them function spaces. If such
a space (𝑉, 𝐶, 𝐶

0
) is the space of sequences of simple rational

functions over a Stone space𝐾 = St(A) and𝐶,𝐶
0
correspond,

respectively, to the set of such sequences which converge or
converge to 0, then we call (𝑉, 𝐶, 𝐶

0
) a natural space and we

denote it by𝑁(A). In spaces of the form𝑁(A) for an element
𝑓 of𝐶𝑁(A) we define ‖𝑓‖ as the norm in𝐶(St(A)) of the limit
𝑓 of 𝑓. If 𝜙 is an embeddings between 𝑁(A) and 𝑁(B), we
will say that𝐷 > 0 is a constant of the embeddings if for every
𝑓 of 𝐶𝑁(A), we have that (1/𝐷) ⋅ ‖𝑓‖ ≤ ‖𝜙(𝑓)‖ ≤ 𝐷 ⋅ ‖𝑓‖. Not
every embeddings has such a constant, but we will only work
with the ones which do.

We will mostly be interested in a specific case of the
representation of continuous functions as limits of simple
functions, given by the following observation.

Lemma 6. Suppose that 𝐾 = S𝑡(A) is the Stone space of a
Boolean algebra A and let 𝑓 ≥ 0 be a function in 𝐶(𝐾) with
‖𝑓‖ ≤ 𝐷

∗ for some 𝐷∗
> 0. Then there is a sequence ⟨𝑓

𝑛
: 𝑛 <

𝜔⟩ of simple functions, where each 𝑓
𝑛
is of the form Σ

𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]

,
with each 𝑞

𝑖
rational in (0, 𝐷

∗
] and 𝑎

𝑖
∈ A, such that 𝑓 =

lim𝑓
𝑛
.

Moreover, we can assume that for every 𝑛, 𝑓
𝑛
is the sum of

at most 𝑛 + 1 functions of the form 𝑠 ⋅ 𝜒
[𝑎]
.

Proof. By multiplying by a constant if necessary, we can
assume that 𝐷∗

= 1. Functions of the form Σ
𝑖≤𝑛
𝑟
𝑖
𝜒
[𝑎𝑖]

with
each 𝑟

𝑖
real, contain the constant function 1, form an algebra,

and separate the points of 𝐾; hence by the Stone-Weierstrass
theorem, they form a dense subset of 𝐶(𝐾). Notice that
every function Σ

𝑖≤𝑛
𝑟
𝑖
𝜒
[𝑎𝑖]

can be, by changing the coefficients
and the sets 𝑎

𝑖
if necessary, represented in the form where

all [𝑎
𝑖
]s are pairwise disjoint, so we can without loss of

generality work only with such functions. Given 𝜀 > 0 and
Σ
𝑖≤𝑛
𝑟
𝑖
𝜒
[𝑎𝑖]

with 𝑎
𝑖
s disjoint, we can find for 𝑖 ≤ 𝑛 rational

numbers 𝑞
𝑖
with |𝑞

𝑖
− 𝑟

𝑖
| < 𝜀; hence the function Σ

𝑖≤𝑛
𝑟
𝑖
𝜒
[𝑎𝑖]

is approximated within 𝜀 by Σ
𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]

, showing that also
functions with rational coefficients and disjoint 𝑎

𝑖
s are dense.

Now given 𝑓 ≥ 0 a function in 𝐶(𝐾) with ‖𝑓‖ ≤ 1 and
𝜀 > 0, let Σ

𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]

be a function with rational coefficients
and disjoint 𝑎

𝑖
s satisfying ‖𝑓 − Σ

𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]
‖ < 𝜀, recalling that

the ‖‖ in 𝐶(𝐾) is the supremum norm. Define now

𝑠
𝑖
=

{{

{{

{

𝑞
𝑖
, if 𝑞

𝑖
∈ [0, 1] ,

0, if 𝑞
𝑖
< 0,

1, if 𝑞
𝑖
> 1,

(2)

and consider the function Σ
𝑖≤𝑛
𝑠
𝑖
𝜒
[𝑎𝑖]

. We claim that ‖𝑓 −

Σ
𝑖≤𝑛
𝑠
𝑖
𝜒
[𝑎𝑖]
‖ < 𝜀. By the assumption that 𝑎

𝑖
s are disjoint, for

any 𝑥, there is at most one 𝑖 = 𝑖(𝑥) such that 𝑥 ∈ [𝑎
𝑖
]. If

𝑥 ∉ ⋃
𝑖≤𝑛
[𝑎
𝑖
] or 𝑠

𝑖(𝑥)
= 𝑞

𝑖(𝑥)
, then |𝑓(𝑥) − Σ

𝑖≤𝑛
𝑠
𝑖
𝜒
[𝑎𝑖]
(𝑥)| =

|𝑓(𝑥) − Σ
𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]
(𝑥)| < 𝜀. If 𝑥 ∈ [𝑎

𝑖
] and 𝑞

𝑖
< 0, then

|𝑓(𝑥) − 𝑠
𝑖
| = 𝑓(𝑥) < 𝑓(𝑥) − 𝑞

𝑖
< 𝜀 as 𝑓(𝑥) ≥ 0. If 𝑥 ∈ [𝑎

𝑖
] and

𝑞
𝑖
> 1, then |𝑓(𝑥)−𝑠

𝑖
| = 1−𝑓(𝑥) < 𝑞

𝑖
−𝑓(𝑥) < 𝜀 as 𝑓(𝑥) ≤ 1.

To finish the proof, we observe that given a sequence of
functions ⟨𝑓

𝑛
: 𝑛 < 𝜔⟩ of the above form which converges to

a function 𝑓, we can define by induction on 𝑛, 𝑔
0
= 0, 𝑘(𝑛) =

min{𝑘 : 𝑓
𝑘
∉ {𝑔

0
, . . . , 𝑔

𝑛−1
}} and 𝑔

𝑛
= 𝑓

𝑘(𝑛)
if the number

of coefficients in 𝑓
𝑘(𝑛)

is ≤ 𝑛 + 1, and 𝑔
𝑛
= 𝑔

𝑛−1
otherwise.

Hence ⟨𝑔
𝑛
: 1 ≤ 𝑛 < 𝜔⟩ is the sequence ⟨𝑓

𝑛
: 1 ≤ 𝑛 < 𝜔⟩ with

possible repetitions of each element finitely many times and
so lim

𝑛→∞
𝑔
𝑛
= 𝑓.

Definition 7. Suppose that 𝑓 = ⟨𝑓
𝑛
: 𝑛 > 𝜔⟩ is a sequence in

𝑁(A) and suppose that 𝑓
󸀠

= ⟨𝑓
󸀠

𝑛
: 𝑛 > 𝜔⟩ was obtained by

first replacing each 𝑓
𝑛
with an equivalent function Σ

𝑖≤𝑛
𝑞
𝑖
𝜒
[𝑎𝑖]

with disjoint 𝑎
𝑖
s and then replacing the coefficients 𝑞

𝑖
by 𝑠

𝑖

using the procedure described in the proof of Lemma 6. We
say that 𝑓

󸀠

is a top-up of 𝑓.

Corollary 8. Suppose that A and B are Boolean algebras,
and let A denote the linear subspace of 𝐶𝑁(A) spanned by
the functions whose rational coefficients are in [0, 1]. Then for
every 𝑓 = ⟨𝑓

𝑛
: 𝑛 < 𝜔⟩ in 𝐶

𝑁(A), there is 𝑔 ∈ A with
lim

𝑛
𝑓
𝑛
= lim

𝑛
𝑔
𝑛
.

Proof. Let 𝑓 = lim
𝑛
𝑓
𝑛
; hence 𝑓 can be written as 𝑓 =

𝑓
+
− 𝑓

− where 𝑓+ = max{𝑓, 0} and 𝑓− = min{𝑓, 0} are both
continuous and positive.Therefore, by the closure ofA under
linear combinations, it suffices to prove the corollary in the
case of𝑓 ≥ 0. Let𝐷∗

= ‖𝑓‖, andwe now apply Lemma 6.

The point of these definitions is the connection between
the embeddability in the class of spaces of the form 𝐶(St(A))
and the class of function spaces. Namely, we have the
following.

Theorem 9. Suppose thatA andB are Boolean algebras, and
letA denote the linear subspace of𝐶𝑁(A) spanned by the family
A󸀠 of sequences ⟨𝑓

𝑛
: 𝑛 < 𝜔⟩ of simple functions whose

coefficients are rationals in [0, 1] and which satisfy that each𝑓
𝑛

has at most 𝑛+1many elements.Then if there is an isomorphic
embeddings 𝑇 from 𝐶(S𝑡(A)) to 𝐶(St(B)), then there is an
isomorphic embeddings 𝜙 from A to 𝑁(B) satisfying that for
every 𝑓 = ⟨𝑓

𝑛
: 𝑛 < 𝜔⟩ in A, if 𝑓 = lim

𝑛∈𝜔
𝑓
𝑛
, then

lim
𝑛∈𝜔

𝜙(𝑓)
𝑛
= 𝑇(𝑓).

Proof. Let 𝑇 : 𝐶(St(A)) → 𝐶(St(B)) be an isomorphic
embeddings, so ‖𝑇‖ < ∞. We intend to define an isomorphic
embeddings 𝜙 fromA to𝑁(B). By linearity it is sufficient to
work with the basisA󸀠 ofA. Let us use the notation𝜋

𝑛
for the

projection on the 𝑛th coordinate. First we define the action of
𝜙 on those 𝑓 ∈ A󸀠 which have the property that there is at
most one 𝑛 such that 𝜋

𝑛
(𝑓) is not the identity zero function,

and then𝜋
𝑛
(𝑓) is a function of the form𝜒

[𝑎]
for some 𝑎 ∈ A. If

there is no such 𝑛 with 𝑎 ̸= 0, then we let 𝜙(𝑓) be the element
of 𝑁(B) whose all projections 𝜋

𝑛
are zero. Otherwise, let 𝑛

be such that 𝜋
𝑛
(𝑓) ̸= 0 and consider 𝑇(𝜋

𝑛
(𝑓)), which is well

defined. We have no reason to believe that 𝑇(𝜋
𝑛
(𝑓)) is a

simple function with rational coefficients. However, there is a
function 𝐹((𝜋

𝑛
(𝑓))) which is a simple function with rational

coefficients and whose distance to 𝑇(𝜋
𝑛
(𝑓)) in 𝐶(St(B)) is

less than 1/2𝑛+1.We define 𝜙(𝑓) to be the unique element 𝑔 of
𝑁(B) such that the only 𝜋

𝑚
(𝑔) which is not identically zero

is 𝜋
𝑛
(𝑔) and 𝜋

𝑛
(𝑔) = 𝐹((𝜋

𝑛
(𝑓))).
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Now suppose that 𝑓 ∈ A󸀠 is such that for exactly one 𝑛,
𝜋
𝑛
(𝑓) is not identity zero, and 𝜋

𝑛
(𝑓) = ∑

𝑚

𝑖=0
𝑞
𝑖
𝜒
[𝑎𝑖]

for some
𝑎
0
, . . . , 𝑎

𝑚
∈ A and some rational 𝑞

0
, . . . , 𝑞

𝑚
in [0, 1]. For

𝑖 ≤ 𝑚, let 𝑓
𝑖
be the element of 𝑁(A) whose 𝑛th projection

is 𝜒
[𝑎𝑖]

and all other projections are identity zero. Hence we
have already defined 𝜙(𝑓

𝑖
), and we let 𝜙(𝑓) = ∑

𝑖≤𝑚
𝑞
𝑖
𝜙(𝑓

𝑖
).

Finally suppose that 𝑓 = ⟨𝑓
𝑛
: 𝑛 < 𝜔⟩ is any element

of A󸀠. Therefore for every 𝑛, we have already defined 𝑔
𝑛
=

𝜙(⟨0, . . . , 𝑓
𝑛
, 0, . . .⟩), where 𝑓

𝑛
is on the 𝑛th coordinate. Let

𝜙(𝑓) = ⟨𝑔
𝑛

: 𝑛 < 𝜔⟩. Hence we have defined a linear
embeddings ofA󸀠 to𝑁(B). We extend this embeddings toA
by linearity.We need to check that this embeddings preserves
𝐶 and 𝐶

0
, and again it suffices to concentrate on the basisA󸀠.

So suppose that 𝑓 = ⟨𝑓
𝑛
: 𝑛 < 𝜔⟩ is in 𝐶

𝑁(A)
∩ A󸀠, and

let 𝑔 = ⟨𝑔
𝑛
: 𝑛 < 𝜔⟩ be its image under 𝜙. We will show

that 𝑔 ∈ 𝐶
𝑁(B) by showing that it is a Cauchy sequence. Let

𝑛,𝑚 < 𝜔; we will consider ‖𝑔
𝑛
− 𝑔

𝑚
‖. Let 𝑓

𝑛
= ∑

𝑖≤𝑘
𝑞
𝑖
⋅ 𝜒

[𝑎𝑖]

and 𝑓
𝑚
= ∑

𝑗≤𝑙
𝑟
𝑗
⋅ 𝜒

[𝑏𝑗]
. We have

󵄩󵄩󵄩󵄩𝑔𝑛 − 𝑔
𝑚

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝜙 (𝑓𝑛) − 𝜙 (𝑓

𝑚
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜙 (𝑓𝑛) − 𝑇 (𝑓

𝑛
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇 (𝑓𝑛) − 𝑇 (𝑓
𝑚
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇 (𝑓𝑚) − 𝜙 (𝑓

𝑚
)
󵄩󵄩󵄩󵄩

≤ ∑

𝑖≤𝑘

󵄨󵄨󵄨󵄨𝑞𝑖
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝜒

[𝑎𝑖]
) − 𝑇 (𝜒

[𝑎𝑖]
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑇 (𝑓𝑛 − 𝑓

𝑚
)
󵄩󵄩󵄩󵄩

+∑

𝑗≤𝑙

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝜙 (𝜒

[𝑏𝑗]
) − 𝑇 (𝜒

[𝑏𝑗]
)
󵄩󵄩󵄩󵄩󵄩󵄩

≤
(𝑘 + 1)

2𝑛+1
+ ‖𝑇‖ ⋅

󵄩󵄩󵄩󵄩𝑓𝑛 − 𝑓
𝑚

󵄩󵄩󵄩󵄩 +
(𝑙 + 1)

2𝑚+1
,

(3)

which goes to 0 as 𝑛,𝑚 → ∞.
At the end suppose that𝑓 = ⟨𝑓

𝑛
: 𝑛 < 𝜔⟩ is in𝐶𝑁(A)

0
∩A󸀠,

and let 𝑔 = ⟨𝑔
𝑛
: 𝑛 < 𝜔⟩ be its image under 𝜙. By the

definition of 𝜙, we have that ‖𝑔
𝑛
‖ ≤ ‖𝑇(𝑓

𝑛
)‖ + (𝑛 + 1)/2

𝑛+1

(this was the point of requiring the members of A󸀠 to be
sequences whose 𝑛th element has ≤ 𝑛 + 1 coefficients). Since
‖𝑇‖ < ∞, we have lim

𝑛→∞
‖𝑇(𝑓

𝑛
)‖ = 0, so in conclusion,

lim
𝑛→∞

‖𝑔
𝑛
‖ = 0.

4. Invariants for the Natural Spaces and
Very Positive Embeddings

We will now adapt the Kojman-Shelah method of invariants
[6], to the natural spaces and a specific kind of isomorphic
embeddings between Banach spaces, which we call very
positive embeddings (see Definition 12). From this point on
we assume that 𝜆 is a regular uncountable cardinal.

Definition 10. (1) Suppose that 𝑀 is a model of size 𝜆. A
filtration of𝑀 is a continuous increasing sequence ⟨𝑀

𝛼
: 𝛼 <

𝜆⟩ of elementary submodels of𝑀, each of size < 𝜆.
(2) For a regular cardinal 𝜃 < 𝜆, we use the notation 𝑆

𝜆

𝜃

for {𝛼 < 𝜆 : cf(𝛼) = 𝜃}.

(3) A club guessing sequence on 𝑆𝜆
𝜃
is a sequence ⟨𝐶

𝛿
: 𝛿 ∈

𝑆
𝜆

𝜃
⟩ such that each 𝐶

𝛿
is a club in 𝛿, and for every club 𝐸 ⊆ 𝜆,

there is 𝛿 such that 𝐶
𝛿
⊆ 𝐸.

Observation 2. Suppose that 𝜃 > ℵ
1
and there is a club

guessing sequence ⟨𝐶
𝛿
: 𝛿 ∈ 𝑆

𝜆

𝜃
⟩.Then there is a club guessing

sequence ⟨𝐷
𝛿
: 𝛿 ∈ 𝑆

𝜆

𝜃
⟩ such that, for all 𝑖 < 𝜃,

cf (𝑖) ̸= 𝜔 󳨐⇒ cf (𝛼𝛿
𝑖
) ̸= 𝜔, (4)

where ⟨𝛼𝛿
𝑖
: 𝑖 < 𝜃⟩ is the increasing enumeration of 𝐷

𝛿
, for

each 𝛿.

Proof. First of all notice that by passing to subsets if necessary
we can without loss of generality assume that each 𝐶

𝛿
has

order type 𝜃. Given 𝛿, let 𝐶󸀠
𝛿
consist of the points of 𝐶

𝛿
of

cofinality > 𝜔, and let 𝐷
𝛿
be the closure of 𝐶󸀠

𝛿
in 𝛿. Since 𝜃 >

ℵ
1
, we have that 𝐶󸀠

𝛿
is unbounded in 𝛿, so it is clear that 𝐷

𝛿

is a club of 𝛿, and since we have 𝐷
𝛿
⊆ 𝐶

𝛿
, we obtain that the

resulting sequence is a club guessing sequence on 𝑆
𝜆

𝜃
. It also

follows that otp(𝐷
𝛿
) = 𝜃, so the increasing enumeration as

claimed exists.

The main definition we need is the definition of the
invariant. Let us suppose that 𝜃 > ℵ

1
is regular and that

⟨𝐷
𝛿
: 𝛿 ∈ 𝑆

𝜆

𝜃
⟩ is a club guessing sequence with an increasing

enumeration ⟨𝛼
𝛿

𝑖
: 𝑖 < 𝜃⟩ of 𝐷

𝛿
, for each 𝛿 and satisfying

the requirement (4). This sequence will be fixed throughout.
The existence of such a sequence will be discussed at the
end of the section, but for the moment let us say that Shelah
(see Theorem 15) proved that such a sequence exist in many
circumstances, notably for any 𝜆 regular ≥ 𝜃

++.

Definition 11. Suppose that A is a Boolean algebra of size 𝜆,
A = ⟨A

𝛼
: 𝛼 < 𝜆⟩ a filtration of A, that 𝛿 ∈ 𝑆

𝜆

𝜃
and that 𝑓 ∈

𝐶
𝑁(A)

\𝑁(A
𝛿
). An ordinal 𝑖 ∈ 𝑆𝜃

̸= 𝜔
is an element of the invari-

ant inv
A,𝛿

(𝑓) if and only if there is 𝑓
󸀠

∈ 𝐶
𝑁(A
𝛼
𝛿

𝑖+1

) such that,
for every 𝑔 in 𝐶𝑁(A𝛼𝛿𝑖 ), we have

0 ≤ lim
𝑛
𝑔
𝑛
≤
󵄨󵄨󵄨󵄨󵄨󵄨
lim
𝑛
𝑓
𝑛
− lim

𝑛
𝑓
󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
󳨐⇒ 𝑔 ∈ 𝐶

0
. (5)

We will be interested in the kind of embeddings between
Banach spaces which will allow us to define appropri-
ate 𝜙 which preserve the invariants; see the Preservation
Lemma 13. We have succeeded to do this in the case of
a special kind of positive embeddings, as defined in the
following definition.

Definition 12. We say that an isomorphic embeddings 𝑇 :

𝐶(𝐾) → 𝐶(𝐿) is very positive if the following requirements
hold:

(i) 𝑔 ≥ 0 ⇒ 𝑇𝑔 ≥ 0 (positivity),
(ii) for every 𝑔 ∈ 𝐶(𝐿) \ {0} with 0 ≤ 𝑔, there is ℎ with

0 ≤ 𝑇ℎ ≤ 𝑔 and ℎ ̸= 0,
(iii) if 0 ≤ 𝑇ℎ ≤ 𝑇𝑓, ℎ, 𝑓 ̸= 0, and 𝑓 ≥ 0, then there is 𝑠 ̸= 0

definable from ℎ with 0 ≤ 𝑠 ≤ 𝑓.
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We do not know if very positive embeddings was studied
in the literature, but clearly, one kind of embeddings that
is very positive is an order preserving onto embeddings. In
this case we have Kaplansky’s theorem [7] mentioned above,
which shows that in the presence of such an embeddings from
𝐶(𝐾) onto 𝐶(𝐿) we have that 𝐾 and 𝐿 are homeomorphic.
We show in the example in Section 5 that the analogue is not
true for very positive embeddings. In particular the question
of the number of pairwise nonisomorphic by very positive
embeddings spaces of the form 𝐶(St(A)) does not reduce
to the well-studied and understood question of the number
of pairwise nonisomorphic Boolean algebras of a given
cardinality (which for any infinite 𝜅 is always equal to 2𝜅, see
Shelah’s [13]).

Let us now make a further assumption on 𝜆:

𝜅 < 𝜆 󳨐⇒ 𝜅
ℵ0 < 𝜆. (6)

Lemma 13 (Preservation Lemma). Let A and B be Boolean
algebras of size 𝜆 and suppose that 𝑇 : 𝐶(St(A)) → 𝐶(St(B))

is a very positive embeddings. Let A and B be any filtrations
of A and B, respectively, and letA denote the linear subspace
of 𝐶𝑁(A) spanned by the setA󸀠 of sequences of functions whose
rational coefficients are in [0, 1] and that satisfy that the 𝑛th
coordinate has ≤ 𝑛 + 1 nonzero coefficients.

If 𝜙 : A → 𝑁(B) is an isomorphic embeddings satisfying
that lim𝜙(𝑓) = 𝑇(lim(𝑓)) for every 𝑓 ∈ A, then there is a
club 𝐸 of 𝜆 such that, for every 𝛿 with 𝐷

𝛿
⊆ 𝐸 and for every

𝑓 ∈ A󸀠
\ 𝑁(A

𝛿
) with 0 ≤ lim

𝑛
𝑓
𝑛
and ‖lim

𝑛
𝑓
𝑛
‖ = 1, we have

that

𝑖𝑛V
A,𝛿

(𝑓) = 𝑖𝑛V
B,𝛿

(𝜙 (𝑓)) . (7)

Proof. We may assume that the underlying set of A and B
is the ordinal 𝜆. Let us define a model 𝑀 with the universe
two disjoint copies of the𝜔-sequences of the simple functions
on 𝜆 with rational coefficients, interpreted as the elements of
𝑁(A) and 𝑁(B), all the symbols of 𝑁(A) and 𝑁(B) with
interpretations induced from these models, and the symbols
A, A󸀠, and 𝜙. By the assumption (6), there is a club 𝐸 of 𝜆
such that, for every 𝛿 ∈ 𝐸 of cofinality not 𝜔, we have that
𝑀 restricted to the sequences whose ordinal coefficients are
< 𝛿 is an elementary submodel of𝑀 and that it has universe
corresponding to 𝑁(A

𝛿
) ∪ 𝑁(B

𝛿
). Let us denote the latter

model by𝑀 ↾ 𝛿.
Suppose now that𝐷

𝛿
⊆ 𝐸. Choose𝑓 ∈ 𝐶

𝑁(A)
∩A󸀠

\𝑁(A
𝛿
)

with 0 ≤ lim
𝑛
𝑓
𝑛
and ‖lim

𝑛
𝑓
𝑛
‖ = 1. Let 𝑓 = lim𝑓

𝑛
. By the

choice of 𝛿, we have that 𝜙(𝑓) ∈ 𝐶𝑁(B) \𝑁(B
𝛿
). Suppose first

that 𝑖 ∈ inv
A,𝛿

(𝑓) and let 𝑓
󸀠

∈ 𝐶
𝑁(A
𝛼
𝛿

𝑖+1

) demonstrate this. Let

𝑓
󸀠 def
= lim𝑓

󸀠

𝑛
, which is well defined as 𝑓

󸀠

∈ 𝐶
𝑁(A). Notice that

the requirement (5) will hold if we replace 𝑓
󸀠

by any top-up
𝑓
󸀠󸀠

(see Definition 7) as 0 ≤ 𝑓 ≤ 1, and hence for all 𝑥, we
have |𝑓(𝑥) − 𝑓

󸀠󸀠
(𝑥)| ≤ |𝑓(𝑥) − 𝑓

󸀠
(𝑥)|. Since the topping up

procedure is definable in𝑀 ↾ 𝛼
𝛿

𝑖+1
, we may assume that 0 ≤

𝑓
󸀠

𝑛
≤ 1 for all 𝑛 and 0 ≤ 𝑓

󸀠
≤ 1. By Lemma 6 applied within

𝑀
𝛼
𝛿

𝑖+1

, we can assume that 𝑓
󸀠

∈ A. By the choice of 𝜙, we

have that lim𝜙(𝑓
󸀠

) = 𝑇(𝑓
󸀠
) and similarly 0 ≤ lim𝜙(𝑓

󸀠

). By
the fact that 𝐷

𝛿
⊆ 𝐸 and since 𝜙 is an isomorphism, we have

that 𝜙(𝑓
󸀠

) ∈ 𝐶
𝑁(B
𝛼
𝛿

𝑖+1

). We would like to use 𝜙(𝑓
󸀠

) to witness
that 𝑖 ∈ inv

B,𝛿
(𝜙(𝑓)), so let us try.Wehave already established

that lim𝜙(𝑓
󸀠

) = 𝑇(𝑓
󸀠
) and 0 ≤ lim𝜙(𝑓

󸀠

). It remains to check
the property (5) of 𝜙(𝑓

󸀠

).
Suppose for a contradiction that there is 𝑔 ∈ 𝑁(B

𝛼
𝛿

𝑖

) such

that 0 ≤ 𝑔
def
= lim

𝑛
𝑔
𝑛
≤ |𝑇𝑓 − 𝑇𝑓

󸀠
| but that 𝑔 ∉ 𝐶

0
. Applying

(ii) we can find ℎ with 0 ≤ 𝑇ℎ ≤ 𝑔 and ℎ ̸= 0. By Corollary 8,
we can assume that there is ℎ ∈ A with ℎ = lim

𝑛
ℎ
𝑛
, and

hence 𝑇ℎ = lim
𝑛
𝜙(ℎ). Translating the properties guaranteed

by (ii) into the terms of 𝜙 and applying the elementarity of
𝑀 ↾ 𝛼

𝛿

𝑖
, we can assume that ℎ ∈ 𝑁(A

𝛼
𝛿

𝑖

). Now we apply
(iii) to find 𝑠 ≥ 0, 𝑠 ̸= 0 definable from ℎ and satisfying 𝑠 ≤

|𝑓 − 𝑓
󸀠
|. Being definable from ℎ, 𝑠 has an approximation 𝑠

with 𝑠 definable from ℎ; hence 𝑠 ∈ 𝑁(A
𝛼
𝛿

𝑖

). By topping up if
necessary as in Lemma 6 and in the above paragraph, we can
assume that every element 𝑠

𝑛
in 𝑠 satisfies 𝑠

𝑛
≥ 0; therefore 𝑠

contradicts the choice of 𝑓
󸀠

.
Now let us prove the other direction of the desired

equality. Let 𝑖 ∈ inv
B,𝛿

(𝜙(𝑓)) as exemplified by some 𝑔 ∈

𝑁(B
𝛼
𝛿

𝑖+1

). As in the previous paragraphs, we can assume that

0 ≤ 𝑔
def
= lim

𝑛
𝑔
𝑛
, and hence by (ii) we can assume that for

some 𝑓󸀠 which is not 0 we have 0 ≤ 𝑇𝑓
󸀠
≤ 𝑔 and by the

same argument as above we can assume that there is 𝑓
󸀠

=

⟨𝑓
󸀠

𝑛
: 𝑛 < 𝜔⟩ ∈ 𝑁(A

𝛼
𝛿

𝑖+1

) ∩ A such that lim
𝑛
𝑓
󸀠

𝑛
= 𝑓

󸀠.

Now we claim that 𝑓
󸀠

exemplifies that 𝑖 ∈ inv
A,𝛿

(𝑓). Suppose
for a contradiction that ⟨ℎ

𝑛
: 𝑛 ∈ 𝜔⟩ ∈ 𝑁(A

𝛼
𝛿

𝑖

) \ 𝐶
0
and

0 ≤ lim ℎ
𝑛
≤ | lim𝑓

𝑛
− lim𝑓

󸀠

𝑛
|. Let ℎ = lim ℎ

𝑛
. As before,

we can assume that ℎ ∈ A and each ℎ
𝑛
≥ 0. So by the

positivity we have 0 ≤ 𝑇ℎ ≤ 𝑇(|𝑓 − 𝑓
󸀠
|) = |𝑇𝑓 − 𝑇𝑓

󸀠
|, by

the choice of 𝜙 we have that 𝜙(ℎ) = 𝑇ℎ, and by elementarity
we have 𝜙(ℎ) ∈ 𝑁(B

𝛼
𝛿

𝑖

) \ 𝐶
0
. It follows that 𝜙(ℎ) contradicts

𝑖 ∈ inv
B,𝛿

(𝜙(𝑓)).

The next task is to construct lots of Boolean algebras
A with different invariants for 𝑁(A) and then to us the
Preservation Lemma to show that no fixed𝑁(B) can embed
them all.

Lemma 14 (Construction Lemma). Suppose that 𝜃+ < 𝜆.
Then the club guessing sequence ⟨𝐷

𝛿
: 𝛿 ∈ 𝑆

𝜆

𝜃
⟩ can be chosen so

that for any 𝐴 ⊆ 𝜃 which is a closed set of limit ordinals, there
is a Boolean algebraA = A[𝐴], a filtrationA ofA and a club
𝐸 of 𝜆 such that for every 𝛿 ∈ 𝐸 there is 𝑓 ∈ A󸀠

\ 𝑁(A
𝛿
) with

inv
A,𝛿

(𝑓) = 𝐴 ∩ 𝑆
𝜃

̸= 𝜔
and ‖ lim𝑓

𝑛
‖ = 1.

The proof of this lemma is presented in Section 6. The
following theorem of Shelah will be used in the proof of the
Construction Lemma as well as in the proof of Theorem 16.
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Theorem 15 (Shelah, [14, Claim 1.4]). Let 𝜃 < 𝜆 be two regular
cardinals with 𝜃+ < 𝜆.Then there is a stationary set 𝑆 ⊆ 𝑆

𝜆

𝜃
and

sequences ⟨𝑐
𝛿
: 𝛿 ∈ 𝑆⟩, ⟨P

𝛼
: 𝛼 < 𝜆⟩ such that

(i) otp(𝑐
𝛿
) = 𝜃 and sup(𝑐

𝛿
) = 𝛿;

(ii) for every club 𝐸 of 𝜆, there is 𝛿 ∈ 𝑆 with 𝑐
𝛿
⊆ 𝐸;

(iii) P
𝛼
⊆ P(𝛼) and |P

𝛼
| < 𝜆;

(iv) if 𝛼 is a nonaccumulation point of 𝑐
𝛿
, then 𝑐

𝛿
∩ 𝛼 ∈

⋃
𝛼
󸀠
<𝛼

P󸀠

𝛼
;

(v) the nonaccumulation points of every 𝑐
𝛿
are successor

ordinals.

Claim 1.4. in [14] does not state property (c) explicitly, but
it follows from the first line of the proof of that Claim.

Now we present the main theorem of the paper.

Theorem 16. Suppose that 𝜃 and 𝜆 are two regular cardinals
with ℵ

2
≤ 𝜃 < 𝜃

+
< 𝜆 < 2

𝜃 and that (∀𝜅 < 𝜆) 𝜅
ℵ0 < 𝜆.

Then

(1) the minimal number of spaces of the form 𝐶(St(A)) of
density𝜆 needed to embed all Banach spaces of the form
𝐶(St(B)) of density 𝜆 very positively is 2𝜃. In particular
there is no very-positively universal space 𝐶(St(A)) of
density 𝜆;

(2) there are at least cf(2𝜃) pairwise non-very positively
isomorphic Banach spaces 𝐶(𝐾) of density 𝜆.

Proof. Fix sequences ⟨𝑐
𝛿
: 𝛿 ∈ 𝑆 ⊆ 𝑆

𝜆

𝜃
⟩ and ⟨P

𝛼
: 𝛼 < 𝜆⟩ as

guaranteed by Theorem 15. Notice that ⟨𝑐
𝛿
: 𝛿 ∈ 𝑆⟩ satisfies

that, with ⟨𝛼𝛿
𝑖
: 𝑖 < 𝜃⟩ being the increasing enumeration of 𝑐

𝛿
,

we have that cf(𝑖) ̸= 𝜔 ⇒ cf(𝛼𝛿
𝑖
) ̸= 𝜔. Hence letting𝐷

𝛿
= 𝑐

𝛿
for

𝛿 ∈ 𝑆 and 𝐷
𝛿
an arbitrary club of 𝛿 of order type 𝜃 satisfying

cf(𝑖) ̸= 𝜔 ⇒ cf(𝛼𝛿
𝑖
) ̸= 𝜔 for 𝛿 ∈ 𝑆

𝜆

𝜃
\ 𝑆, the sequence can be

used in the context of the Preservation Lemma 13. It can also
be used in the context of the Construction Lemma 14. Let us
therefore find the Boolean algebras A[𝐴] as described in the
statement of the Construction Lemma. Notice that there are
2
𝜃 many different choices for 𝐴 ∩ 𝑆

𝜃

̸= 𝜔
.

(1) Suppose for a contradiction that there is a family
{𝐶(St(A

𝛼
)) : 𝛼 < 𝛼

∗
} for some 𝛼∗ < 2

𝜃 for some algebrasA
𝛼

of size 𝜆which is very positively universal for all𝐶(St(A)) for
Boolean algebrasA of size 𝜆. Notice that the assumptions we
havemade on 𝜆 imply that 𝜆ℵ0 = 𝜆, so the size of each𝑁(A

𝛼
)

is 𝜆. Let F be the family of all subsets of 𝜃 that appear as
invariants of elements of⋃

𝛼<𝛼
∗ 𝑁(A

𝛼
); hence the size ofF is

< 2
𝜃 (since we have assumed 𝜆 < 2

𝜃), and in particular there
is 𝐴 ⊆ 𝜃 a closed set of limit ordinals such that 𝐴∩ 𝑆

𝜃

̸= 𝜔
∉ F.

LetA = A[𝐴]. Suppose that 𝑇 is a very positive embeddings
of𝐶(St(A)) into some𝐶(St(A

𝛼
)), and let 𝜙 be an embeddings

of𝑁(A) into𝑁(A
𝛼
) satisfying that for every 𝑓 ∈ A ∩ 𝐶

𝑁(A),
we have 𝜙(𝑓) = 𝑇(𝑓), which exists by Theorem 9. Let 𝐸

0
be

a club of 𝜆 as guaranteed by the Preservation Lemma, let 𝐸
1

be a club of 𝜆 as guaranteed by the Construction Lemma, let
𝐸 = 𝐸

0
∩ 𝐸

1
, and suppose that 𝛿 is such that𝐷

𝛿
⊆ 𝐸. Then by

the choice of𝐸
0
there is𝑓 in𝑁(A)whose invariant is𝐴∩𝑆𝜃

̸= 𝜔
,

but then 𝜙(𝑓) also has invariant𝐴∩𝑆
𝜃

̸= 𝜔
, by the choice of 𝐸

1
,

and hence we have a contradiction with the choice of 𝐴.
(2) Consider the family G = {𝐶(St(A[𝐴])) :

𝐴 a closed set of limit ordinals in 𝜃}. By the argument in 1
for every 𝐴, the set {𝐵 a closed set of limit ordinals in 𝜃 :

𝐶(St(A[𝐵])) that embeds very positively into 𝐶(St(A[𝐴]))}
has size < 2

𝜃, so clearly every 𝐶(St(A[𝐴])) is very posi-
tively isomorphic with < 2

𝜃 many 𝐶(St(A[𝐵])). Hence we
can choose cf(2𝜃) pairwise non-very positively isomorphic
elements ofG by a simple induction.

5. Examples

5.1. Cardinal Arithmetic. An example of circumstances when
Theorem 16 applies is when

𝜃 = ℵ
2
, 𝜆 = ℵ

4
, 2

ℵ0 = ℵ
1

but 2ℵ1 ≥ ℵ
5
. (8)

5.2. Very Positive Embeddings onto Do Not Give Rise to
Homeomorphism. We give an example of two 0-dimensional
spaces𝐾 and 𝐿which are not homeomorphic; yet they admit
a very-positive isomorphism onto. The example itself was
constructed by Plebanek in [15, Example 5.3], when consid-
ering positive onto isomorphisms.

Let 𝐾 consist of two disjoint convergent sequences ⟨𝑥
𝑛
:

𝑛 < 𝜔⟩with lim
𝑛
𝑥
𝑛
= 𝑥 and ⟨𝑦

𝑛
: 𝑛 < 𝜔⟩with lim

𝑛
𝑦
𝑛
= 𝑦 ̸= 𝑥,

and let 𝐿 consist of a single convergent sequence ⟨𝑧
𝑛
: 𝑛 < 𝜔⟩

with lim
𝑛
𝑧
𝑛
= 𝑧. Define 𝑇 : 𝐶(𝐾) → 𝐶(𝐿) by letting for all 𝑛

𝑇𝑓 (𝑧
0
) = 𝑓 (𝑦) ,

𝑇𝑓 (𝑧
2𝑛−1

) =
𝑓 (𝑥

𝑛
) + 𝑓 (𝑦)

2
,

𝑇𝑓 (𝑧
2𝑛+2

) =
𝑓 (𝑥) + 𝑓 (𝑦

𝑛
)

2
.

(9)

Plebanek shows that 𝑇 is a positive isomorphism onto 𝐶(𝐿)
andmoreover he calculates the inverse 𝑆 = 𝑇

−1 which is given
by

𝑆ℎ (𝑦) = ℎ (𝑧
0
) , 𝑆ℎ (𝑥) = 2ℎ (𝑧) − ℎ (𝑧

0
) ,

𝑆ℎ (𝑥
𝑛
) = 2ℎ (𝑧

2𝑛−1
) − ℎ (𝑧

0
) ,

𝑆ℎ (𝑦
𝑛
) = 2ℎ (𝑧

2𝑛
) − 2ℎ (𝑧) + ℎ (𝑧

0
)

for 𝑛 ≥ 1.

(10)

We will show that 𝑇 is a very positive embeddings. Consider-
ing property (ii) of Definition 12, suppose that 𝑔 ∈ 𝐶(𝐿) \ {0}

with 0 ≤ 𝑔; we need to find ℎ with 0 ≤ 𝑇ℎ ≤ 𝑔 and ℎ ̸= 0.
Since 𝑇 is onto, there is ℎ such that 𝑇ℎ = 𝑔 and since 𝑇 is an
isomorphism and 𝑔 ̸= 0, we also have ℎ ̸= 0.

For the property (iii), we will have an existential proof
of the existence of the 𝑠 as required, given ℎ and 𝑓 as in the
assumptions. First let us deal with the case that ℎ ≥ 0. Let S
be the family of all non-negative functions in 𝐶(𝐾) for which
there is exactly one point with non-zero value, and on that
point the value is equal to that of ℎ. Each element of S is
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clearly definable from ℎ. We claim that some 𝑠 ∈ S can be
chosen to demonstrate (iii). Namely, since we do not have
𝑇𝑓 ≤ 𝑇ℎ, we cannot have 𝑓 ≤ ℎ by positivity. Hence there
is some value 𝑤 with ℎ(𝑤) < 𝑓(𝑤), and by the continuity of
the functions ℎ and 𝑓, there must be some such 𝑤 ∈ {𝑥

𝑛
, 𝑦

𝑛
:

𝑛 ∈ 𝜔}. Then letting 𝑠(𝑤) = ℎ(𝑤) and 𝑠(V) = 0 for V ̸= 𝑤 gives
a function in S, and we have 0 ≤ 𝑠 ≤ 𝑓 and 0 ̸= 𝑠. Let us now
deal with the general case.

Since 0 ≤ 𝑇ℎ ≤ 𝑇𝑓, it follows that ℎ(𝑦) ≥ 0. Suppose
first that ℎ(𝑦) > 0; hence certainly 𝑓(𝑦) > 0. Let 𝜀 > 0 be
such that 𝜀 ⋅ ℎ(𝑦) < 𝑓(𝑦) (so we can take 𝜀 = 1 if ℎ(𝑦) < 𝑓(𝑦)

and 𝜀 = 1/2 if ℎ(𝑦) = 𝑓(𝑦)).We are going to define a function
𝑠
𝑛
∈ 𝐶(𝐾) for 𝑛 < 𝜔 by letting 𝑠

𝑛
(𝑦) = 𝜀ℎ(𝑦), 𝑠

𝑛
(𝑦
𝑚
) = 𝜀ℎ(𝑦

𝑚
)

for 𝑚 ≥ 𝑛 and 𝑠
𝑛
= 0 otherwise. Since ℎ is continuous and

ℎ(𝑦) > 0, we have, that for large enough 𝑛, ℎ(𝑦
𝑛
) ≥ 0, and

hence 𝑠
𝑛
≥ 0 and 𝑠

𝑛
̸= 0. Since 𝜀 ⋅ ℎ(𝑦) < 𝑓(𝑦) and both ℎ and

𝑓 are continuous, we must have that, for large enough 𝑛,
𝜀ℎ(𝑦

𝑛
) < 𝑓(𝑦

𝑛
), and therefore for large enough 𝑛 we have

𝑠
𝑛
≤ 𝑓. So, some 𝑠

𝑛
will work to exemplify (iii).

Suppose now that ℎ(𝑦) = 0. If ℎ(𝑥) > 0, by continuity
ℎ(𝑥

𝑛
) is eventually > 0. If 𝑓(𝑥) > 0, we can choose 𝜀 as in the

previous paragraph, so we are done by a similar argument.
Otherwise we have that 𝑓(𝑥) = 0 so by looking at 𝑇ℎ(𝑧

2𝑛+2
)

and 𝑇𝑓(𝑧
2𝑛+2

), we obtain ℎ(𝑥) ≤ 𝑓(𝑦). Also we have that
ℎ(𝑥

𝑛
) is eventually > 0. Choose 𝜀 > 0 such that 𝜀 ⋅ℎ(𝑥) < 𝑓(𝑦)

and define 𝑠
𝑛
by letting 𝜀 ⋅ 𝑠

𝑛
(𝑦) = ℎ(𝑥) and for 𝑚 ≥ 𝑛,

𝑠
𝑛
(𝑦
𝑚
) = 𝜀⋅ℎ(𝑥

𝑚
), we see that for large enough 𝑛, we have that

0 ≤ 𝑠
𝑛
≤ 𝑓.

If ℎ(𝑥) < 0 then eventually 𝑇ℎ(𝑧
2𝑛+2

) < 0, which is a con-
tradiction and so ℎ(𝑥) ≥ 0. If ℎ(𝑥) = 0 then we conclude from
the definition of 𝑇ℎ that, for every 𝑛, ℎ(𝑥

𝑛
) = 2 ⋅ 𝑇ℎ(𝑧

2𝑛−1
) ≥

0 and similarly ℎ(𝑦
𝑛
) = 2 ⋅ 𝑇ℎ(𝑧

2𝑛+2
) ≥ 0, therefore

ℎ ≥ 0, and we can use the very first argument.

5.3. Specific Very Positive Embeddings

Theorem 17. Theorem 16(1) implies Theorem 1.

Proof. We just need to show that the assumptions of
Theorem 1 imply those of Theorem 16(1). The cardinal arith-
metic assumption and the requirement of positivity are the
same in both theorems, so we proceed to show that any 𝑇

as in the assumptions ofTheorem 1 satisfies the requirements
(ii) and (iii) of the definition of very positivity. Requirement
(ii) follows easily by the surjectivity of 𝑇. Finally (iii), letting
𝑎, 𝑏 be as given by (iii) in Theorem 1 and 𝑠 = 𝑎 ⋅ ℎ + 𝑏 suffices
for (iii) of the very positivity.

5.4. Not Every Positive onto Embeddings Satisfies the Require-
ments of Theorem 1. Note that it is a consequence of the
assumptions of Theorem 1 that if 𝑇ℎ ≤ 𝑇𝑓, then for every 𝑥,
𝑓(𝑥) = 0 ⇒ ℎ(𝑥) ≤ −𝑏/𝑎.

6. Proof of the Construction Lemma

We present a proof of Lemma 14. Let 𝑆 ⊆ 𝑆
𝜆

𝜃
and sequences

⟨𝑐
𝛿
: 𝛿 ∈ 𝑆⟩, ⟨P

𝛼
: 𝛼 < 𝜆⟩ be as in the statement of

Theorem 15, while ⟨𝐷
𝛿
: 𝛿 ∈ 𝑆

𝜆

𝜃
⟩ is such that 𝐷

𝛿
= 𝑐

𝛿
for

𝛿 ∈ 𝑆. For all the definitions of invariants we use here, the
value of the invariant is the same with respect to ⟨𝑐

𝛿
: 𝛿 ∈ 𝑆⟩

as it is with respect to ⟨𝐷
𝛿
: 𝛿 ∈ 𝑆

𝜆

𝜃
⟩, so we will not make

a difference between the two. We start with a construction
lemma for a certain family of linear orders, as obtained by
Kojman and Shelah in [6]. Let us give their definition of the
invariants of linear orders.

Definition 18. Suppose that 𝐿 is a linear order with the
universe 𝜆 and L = ⟨𝐿

𝛿
: 𝛿 < 𝜆⟩ is a filtration of 𝐿. Then

for every 𝛿 ∈ 𝑆 such that the universe of 𝐿
𝛿
is 𝛿, we define

invL,𝛿 (𝛿)
def
= {𝑖 < 𝜃 :(∃𝛿

󸀠
∈(𝛼

𝛿

𝑖
, 𝛼

𝛿

𝑖+1
]) (∀𝑥 ∈ 𝐿

𝛼
𝛿

𝑖

) 𝑥 ≤
𝐿
𝛿

⇐⇒ 𝑥≤
𝐿
𝛿
󸀠
} .

(11)

Lemma 3.7 in [6] proves that, under the assumptions we have
stated, for every closed set 𝐴 of limit ordinals in 𝜃, there is
a linear order 𝐿[𝐴] with universe 𝜆 and a filtration L[𝐴] =
⟨𝐿

𝛿
[𝐴] : 𝛿 < 𝜆⟩ of 𝐿[𝐴] such that for every 𝛿 ∈ 𝑆 with

𝐿
𝛿
[𝐴] = 𝛿 we have invL[𝐴],𝛿(𝛿) = 𝐴 (Lemma 3.7 in [6] also

states the assumption 2𝜃 < 𝜆, but this assumption is not used
in the proof of the lemma, only in the proof of the final result).

The idea of our proof is to transform the Kojman-Shelah
construction first into a construction of a family of Boolean
algebras of size 𝜆 and then to use these Boolean algebras to
define natural spaces of functionswith appropriate invariants.

Definition 19. Suppose that A is a Boolean algebra with the
set of generators {𝑎

𝛼
: 𝛼 < 𝜆} and A = ⟨A

𝛿
: 𝛿 < 𝜆⟩ is a

filtration of A, while 𝛿 ∈ 𝑆 is such that A
𝛿
is generated by

{𝑎
𝛼
: 𝛼 < 𝛿}. We define

inv
A,𝛿

(𝑎
𝛿
)
def
= {𝑖 < 𝜃 : (∃𝛿

󸀠
∈ (𝛼

𝛿

𝑖
, 𝛼

𝛿

𝑖+1
]) (∀𝛼 < 𝛼

𝛿

𝑖
)

𝑎
𝛼
∩ 𝑎

𝛿
= 𝑎

𝛼
∩ 𝑎

󸀠

𝛿
mod A

𝛼
𝛿

𝑖

,

𝑎
𝑐

𝛼
∩ 𝑎

𝛿
= 𝑎

𝑐

𝛼
∩ 𝑎

󸀠

𝛿
mod A

𝛼
𝛿

𝑖

} ,

(12)

where 𝑎 = 𝑏 mod A
𝛼
𝛿

𝑖

means that for any element 𝑤 ofA
𝛼
𝛿

𝑖

we have 𝑤 ≤ 𝑎 if and only if 𝑤 ≤ 𝑏.

Definition 20. Suppose that 𝐿 is a linear order with universe
𝜆. We define a Boolean algebra A[𝐿] as being generated by
{𝑎
𝛼
: 𝛼 < 𝜆} freely except for the equations

𝑎
𝛿
≤ 𝑎

𝜀
⇐⇒ 𝛿≤

𝐿
𝜀. (13)

Since the equations in (13) are finitely consistent with the
axioms of a Boolean algebra, it follows from the compactness
theorem that the algebra A[𝐿] is well defined. Now we will
see a translation between the calculation of the invariants of
the linear orders and the associated Boolean algebras.

Sublemma 14.1. Let 𝐿 be a linear order on 𝜆, and let A[𝐿] be
the algebra associated to 𝐿 as per Definition 20. Let 𝐿 andA be
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any filtrations of 𝐿 and A[𝐿], respectively. Then there is a club
𝐸 such that for every 𝛿 ∈ 𝑆 ∩ 𝐸 one has

𝑖𝑛V
𝐿,𝛿

(𝛿) = 𝑖𝑛V
A,𝛿

(𝑎
𝛿
) (14)

and moreover, for any 𝑖 ∈ 𝑖𝑛V
𝐿,𝛿
(𝛿), this is exemplified by 𝛿󸀠 if

and only if 𝑖 ∈ 𝑖𝑛V
A,𝛿

(𝑎
𝛿
) is exemplified by 𝑎

𝛿
󸀠 .

Proof. Let 𝐸 be the club of 𝛿 such that the universe of 𝐿
𝛿
is

𝛿, 𝐿
𝛿
is an elementary submodel of 𝐿, andA[𝐿]

𝛿
is generated

by {𝑎
𝛼
: 𝛼 < 𝛿} and is an elementary submodel ofA. Suppose

that 𝛿 ∈ 𝐸 ∩ 𝑆.
First suppose that 𝑖 ∈ invL,𝛿(𝛿) as exemplified by 𝛿󸀠. Let

𝛼 < 𝛼
𝛿

𝑖
, we need to prove 𝑎

𝛼
∩𝑎

𝛿
= 𝑎

𝛼
∩𝑎

󸀠

𝛿
mod A

𝛼
𝛿

𝑖

and 𝑎
𝑐

𝛼
∩

𝑎
𝛿
= 𝑎

𝑐

𝛼
∩ 𝑎

󸀠

𝛿
mod A

𝛼
𝛿

𝑖

.

Case 1 (𝛼<
𝐿
𝛿). Hence by the choice of 𝛿󸀠, we have 𝛼<

𝐿
𝛿
󸀠 and

𝑎
𝛼
≤ 𝑎

𝛿
, 𝑎

𝛼
≤ 𝑎

󸀠

𝛿
. Therefore 𝑎

𝛼
∩ 𝑎

𝛿
= 𝑎

𝛼
∩ 𝑎

󸀠

𝛿
= 𝑎

𝛼
.

Suppose that 𝑧 > 0 is in A
𝛼
𝛿

𝑖

and satisfies 𝑧 ≤ 𝑎
𝑐

𝛼
∩ 𝑎

𝛿
. By

the Disjunctive Normal Form for Boolean algebras, we can
assume that 𝑧 = ⋁

𝑖≤𝑛
⋀
𝑗≤𝑘𝑖

𝑎
𝑙(𝑖,𝑗)

𝛽(𝑖,𝑗)
for some 𝑙(𝑖, 𝑗) ∈ {0, 1}

and 𝛽(𝑖, 𝑗) < 𝛼
𝛿

𝑖
. It suffices to prove that for every 𝑖 we have

⋀
𝑗≤𝑘𝑖

𝑎
𝑙(𝑖,𝑗)

𝛽(𝑖,𝑗)
≤ 𝑎

𝑐

𝛼
∩ 𝑎

󸀠

𝛿
. Fix an 𝑖 and without loss of generality

assume that ⋀
𝑗≤𝑘𝑖

𝑎
𝑙(𝑖,𝑗)

𝛽(𝑖,𝑗)
> 0, as otherwise the conclusion is

trivial.
Let 𝐴

𝑙
= {𝑗 ≤ 𝑘

𝑖
: 𝛽(𝑖, 𝑗) = 𝑙}, for 𝑙 ∈ {0, 1}. For

simplicity assume that both of these sets are nonempty, as
otherwise the proof is easier. Let𝛽

1
be the 𝐿-minimal element

of 𝐴
1
; hence ⋀

𝑗∈𝐴1
𝑎
𝑙(𝑖,𝑗)

𝛽(𝑖,𝑗)
= 𝑎

𝛽1
. Let 𝛽

0
be the 𝐿-maximal

element of 𝐴
0
; hence⋀

𝑗∈𝐴0
𝑎
𝑐

𝛽(𝑖,𝑗)
= (⋁

𝑗∈𝐴0
𝑎
𝛽(𝑖,𝑗)

)
𝑐
= 𝑎

𝑐

𝛽0
. In

conclusion, ⋀
𝑗≤𝑘𝑖

𝑎
𝑙(𝑖,𝑗)

𝛽(𝑖,𝑗)
= 𝑎

𝑐

𝛽0
∩ 𝑎

𝛽1
. Since we have assumed

that ⋀
𝑗≤𝑘𝑖

𝑎
𝑙(𝑖,𝑗)

𝛽(𝑖,𝑗)
> 0, we cannot have 𝑎

𝛽1
≤ 𝑎

𝛽0
, equivalently

𝛽
1
≤
𝐿
𝛽
0
. Hence we have 𝛽

0
<
𝐿
𝛽
1
. Similarly, since 𝑎

𝛽1
∩𝑎

𝑐

𝛼
> 0

we can conclude that 𝛼 <
𝐿
𝛽
1
. Finally, if we had 𝛽

0
>
𝐿
𝛿, then

we would obtain 𝑎
𝑐

𝛽0
≤ 𝑎

𝑐

𝛿
, in contradiction with 0 < 𝑎

𝛽
𝑐

0

∩

𝑎
𝛽1
≤ 𝑎

𝛿
, and therefore 𝛽

0
<
𝐿
𝛿.

Suppose now that 𝛿 <
𝐿
𝛽
1
. Therefore 𝑎

𝛽1
∩ 𝑎

𝑐

𝛿
̸= 0. On the

other hand, 𝑎𝑐
𝛽0
∩𝑎

𝛽1
∩𝑎

𝑐

𝛿
≤ 𝑎

𝛿
∩𝑎

𝛼
𝑐∩𝑎

𝛿
𝑐 = 0, andhencewemust

have 𝑎
𝛽0
∩ 𝑎

𝛽1
∩ 𝑎

𝑐

𝛿
> 0, which, taking into account 𝛽

0
<
𝐿
𝛽
1
,

gives that 𝑎
𝛽0
∩ 𝑎

𝑐

𝛿
> 0, and hence 𝛿 <

𝐿
𝛽
0
, a contradiction.

Hence we have 𝛽
1
<
𝐿
𝛿. By the choice of 𝛿󸀠, we have 𝛽

1
<
𝐿
𝛿
󸀠,

and hence 𝑎
𝛽1

≤ 𝑎
𝛿
󸀠 and in particular 𝑎𝑐

𝛽0
∩ 𝑎

𝛽1
≤ 𝑎

𝛿
󸀠 ,

as required. Since the roles of 𝛿 and 𝛿
󸀠 in this proof were

symmetric, we can prove in the same way that for any 𝑧 > 0

inA
𝛼
𝛿

𝑖

which satisfies 𝑧 ≤ 𝑎
𝑐

𝛼
∩ 𝑎

󸀠

𝛿
we also have 𝑧 ≤ 𝑎

𝑐

𝛼
∩ 𝑎

𝛿
.

Case 2 (𝛼>
𝐿
𝛿, so 𝛼>

𝐿
𝛿
󸀠 by the choice of 𝛿󸀠). We have 𝑎𝑐

𝛿
≥

𝑎
𝑐

𝛼
, so 𝑎𝑐

𝛼
∩ 𝑎

𝛿
= 0, and similarly 𝑎𝑐

𝛼
∩ 𝑎

󸀠

𝛿
= 0. We also have

𝑎
𝛼
∩ 𝑎

𝛿
= 𝑎

𝛿
and similarly for 𝛿󸀠; hence we need to prove that

𝑎
𝛿
= 𝑎

𝛿
󸀠 mod A

𝛼
𝛿

𝑖

. As in Case 1, it suffices to show that, for
every 𝛽

0
, 𝛽

1
< 𝛼

𝛿

𝑖
with 0 < 𝑎

𝑐

𝛽0
∩ 𝑎

𝛽1
< 𝑎

𝛿
, we have 𝑎𝑐

𝛽0
∩

𝑎
𝛽1

≤ 𝑎
󸀠

𝛿
(the equality cannot occur), and vice versa. Let us

start with the forward direction. As before, from 0 < 𝑎
𝑐

𝛽0
∩𝑎

𝛽1
,

we conclude 𝛽
0
<
𝐿
𝛽
1
. Also, if 𝛽

0
>
𝐿
𝛿, then we have 𝑎𝑐

𝛽0
≤ 𝑎

𝑐

𝛿
,

contradicting that 𝑎𝑐
𝛽0
∩ 𝑎

𝛿
> 0. Hence 𝛽

0
<
𝐿
𝛿.

If𝛽
1
<
𝐿
𝛿, then𝛽

1
<
𝐿
𝛿
󸀠, so 𝑎

𝛽1
≤ 𝑎

󸀠

𝛿
, and hence 𝑎𝑐

𝛽0
∩𝑎

𝛽1
≤

𝑎
󸀠

𝛿
, as required. So assume that 𝛿 <

𝐿
𝛽
1
. Hence 𝑎

𝛽1
> 𝑎

𝛿
and so

𝑎
𝑐

𝛽0
∩𝑎

𝛽1
> 𝑎

𝑐

𝛽0
∩𝑎

𝛿
≥ 𝑎

𝑐

𝛽0
∩𝑎

𝛽1
, a contradiction.This finishes the

proof of the forward direction, and the other direction follows
from the symmetry of the roles of 𝛿 and 𝛿󸀠 in the proof.

Now suppose that 𝑖 ∈ inv
A,𝛿

(𝑎
𝛿
) as exemplified by 𝑎

󸀠

𝛿
.

Let 𝛼 < 𝛼
𝛿

𝑖
; we need to prove 𝛼<

𝐿
𝛿 ⇔ 𝛼<

𝐿
𝛿
󸀠. If 𝛼<

𝐿
𝛿,

then 𝑎
𝛼
< 𝑎

𝛿
, hence 𝑎

𝛼
< 𝑎

𝛿
󸀠 by the assumption, and hence

𝛼<
𝐿
𝛿
󸀠 by the definition ofA[𝐿]. The other direction follows

by symmetry.

The next step is going from the invariants of Boolean
algebras to the invariants of natural spaces.

Sublemma 14.2. Let A[𝐿] be one of the algebras described in
the above, and let A be its filtration. Then there is a club 𝐸 of
𝜆 such that, for every 𝛿 ∈ 𝑆 with𝐷

𝛿
⊆ 𝐸, one has that

𝑖𝑛V
A,𝛿

(𝜒
[𝑎𝛿]

) = 𝑖𝑛V
A,𝛿

(𝑎
𝛿
) (15)

and moreover, for any 𝑖 ∈ 𝑖𝑛V
A,𝛿

(𝜒
[𝑎𝛿]

), this is exemplified by
𝜒
[𝑎
󸀠

𝛿
]
if and only if 𝑖 ∈ 𝑖𝑛V

A,𝛿
(𝑎
𝛿
) is exemplified by 𝑎

𝛿
󸀠 . Here,

the invariant on the left refers to the invariant in the natural
space 𝑁(A) and the invariant on the right to the invariant
in the algebra A. The notation 𝜒

[𝑎]
is used for the sequence

⟨𝜒
[𝑎]
, 𝜒

[𝑎]
, 𝜒

[𝑎]
, . . .⟩ in 𝐶𝑁(A).

Proof. Let M∗ be a model consisting of 𝐿, A, two disjoint
copies of the 𝜔-sequences of the simple functions on 𝜆 with
rational coefficients, interpreted as the elements of𝑁(A) and
all the symbols of𝑁(A)with induced interpretations induced
from these models. Recall the assumption that for all 𝜅 < 𝜆,
we have 𝜅ℵ0 < 𝜆 and notice that it implies that there is a club
𝐸
0
of 𝜆 such that, for every 𝛿 ∈ 𝐸

0
of cofinality > ℵ

0
, the

model M∗
↾ 𝛿 is ℵ

1
-saturated in M∗; that is, it realizes all

the types with countably many parameters inM∗
↾ 𝛿 which

are realized inM∗. Let 𝐿 be any filtration of 𝐿, let 𝐸 ⊆ 𝐸
0
be

a club witnessing Sublemma 14.1, and let 𝛿 ∈ 𝑆 be such that
𝐷
𝛿
⊆ 𝐸.
Suppose 𝑖 ∈ inv

A,𝛿
(𝑎
𝛿
) as exemplified by 𝑎

𝛿
󸀠 but 𝑔 ≥ 0

with 𝑔 ∈ 𝐶
𝑁(A
𝛼
𝛿

𝑖

)

\ 𝐶
0
and the limit 𝑔 of 𝑔 satisfies 𝑔 ≤

|𝜒
[𝑎𝛿]

− 𝜒
[𝑎
󸀠

𝛿
]
| = 𝜒

[𝑎𝛿Δ𝑎𝛿󸀠
]
. By topping up if necessary (see

Definition 7), we may assume that each 𝑔
𝑛

≥ 0, and by
throwing away unnecessary elements of 𝑔, we may assume
that every 𝑔

𝑛
̸= 0. We can then assume that for each 𝑛 there

are pairwise disjoint {𝑏𝑛
0
, . . . , 𝑏

𝑘𝑛

𝑛
} ∈ A

𝛼
𝛿

𝑖

and 𝑞
𝑛

𝑖
(𝑖 ≤ 𝑘

𝑛
) ∈

Q+ such that 𝑔
𝑛
= Σ

𝑖≤𝑘𝑛
𝑞
𝑛

𝑖
𝜒
[𝑏
𝑛

𝑖
]
. Since ‖𝑔

𝑛
− 𝜒

[𝑎𝛿Δ𝑎𝛿󸀠
]
‖ →

0, there has to be a [𝑏
𝑛

𝑖
] with a nonempty intersection

with [𝑎
𝛿
Δ𝑎

𝛿
󸀠]. By applying the Disjunctive Normal Form,

we can assume that 𝑏𝑛
𝑖

= ⋁
𝑗≤𝑚

⋀
𝑜≤𝑜𝑚

𝑎
𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
for some

𝑙(𝑚, 𝑜) ∈ {0, 1} and 𝛽(𝑚, 𝑜) < 𝛼
𝛿

𝑖
. Therefore there is 𝑗 ≤ 𝑚

such that ⋀
𝑜≤𝑜𝑚

[𝑎
𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
] ∩ [𝑎

𝛿
Δ𝑎

𝛿
󸀠] ̸= 0. Then we have that

⋀
𝑜≤𝑜𝑚

[𝑎
𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
] ∩ [𝑎

𝛿
] ̸=⋀

𝑜≤𝑜𝑚
[𝑎
𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
] ∩ [𝑎

󸀠

𝛿
], and hence there
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has to be 𝑜 ≤ 𝑝
𝑚
such that [𝑎𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
] ∩ [𝑎

𝛿
] ̸= [𝑎

𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
] ∩ [𝑎

󸀠

𝛿
].

It follows that [𝑎1−𝑙(𝑚,𝑜)
𝛽(𝑚,𝑜)

] ∩ [𝑎
𝛿
] ̸= [𝑎

1−𝑙(𝑚,𝑜)

𝛽(𝑚,𝑜)
] ∩ [𝑎

󸀠

𝛿
]. Let 𝛽 =

𝛽(𝑚, 0). From the choice of 𝐸, using Sublemma 14.1, we have
that for 𝑅 ∈ {<

𝐿
, >

𝐿
}, 𝛽𝑅𝛿 if and only if 𝛽𝑅𝛿󸀠. We go through

a case analysis like in the proof of Sublemma 14.1. If 𝛽<
𝐿
𝛿,

then we have 𝛽<
𝐿
𝛿
󸀠, so [𝑎

𝛽
] ∩ [𝑎

𝛿
] = [𝑎

𝛽
] = [𝑎

𝛽
] ∩ [𝑎

𝛿
󸀠], a

contradiction. If 𝛽>
𝐿
𝛿, then [𝑎𝑐

𝛽
] ∩ [𝑎

𝛿
] = 0 = [𝑎

𝑐

𝛽
] ∩ [𝑎

𝛿
󸀠], a

contradiction. Therefore, 𝑖 ∈ inv
A,𝛿

(𝜒
[𝑎𝛿]

).

Claim 1. Suppose that 𝑖 ∈ inv
A,𝛿

(𝜒
[𝑎𝛿]

) as exemplified by some
𝑓. Without loss of generality, we can assume that𝑓 = 𝜒

[𝑎
󸀠

𝛿
]
for

some 𝛿󸀠.

Proof of the Claim. First let us notice that if 𝑓 = lim
𝑛
𝑓
𝑛
, then

for 𝑓󸀠 = min{𝑓, 1}, we have |𝜒
[𝑎𝛿]

−𝑓
󸀠
| ≤ |𝜒

[𝑎𝛿]
−𝑓|, so we can

without loss of generality assume that𝑓 ≤ 1. Similarly we can
assume that 𝑓 ≥ 0, and then by applying a similar logic, we
can also assume that 0 ≤ 𝑓

𝑛
≤ 1 for all 𝑛 and that 𝑓

𝑛
̸= 0 for

all 𝑛. Each 𝑓
𝑛
is a simple function with rational coefficients

defined on (without loss of generality) disjoint basic clopen
sets of the form [𝑎

𝑙𝛽

𝛽
] where 𝛽 < 𝛼

𝛿

𝑖+1
and 𝑙

𝛽
< 2. Let {𝛽

𝑛
: 𝑛 <

𝜔} enumerate all the relevant 𝛽. For each 𝑛 and 𝑅 ∈ {<
𝐿
, >

𝐿
},

let 𝑗𝑛
𝑅
be the truth value of “𝑎

𝛽𝑛
𝑅𝑎

𝛿
.” Consider the following

sentence with parameters 𝑓, 𝛼𝛿
𝑖
and the elements of {𝛽

𝑛
: 𝑛 <

𝜔}; there is 𝛽 such that
(i) for all 𝑔 ∈ 𝑁(A

𝛼
𝛿

𝑖

) if 0 ≤ lim
𝑛
𝑔
𝑛
≤ | lim𝑓

𝑛
− 𝜒

[𝑎𝛽]
|, we

have 𝑔 ∈ 𝐶
0;

(ii) for all 𝑛 and 𝑅 ∈ {<
𝐿
, >

𝐿
}, we have 𝑎

𝛽𝑛
𝑅𝑎

𝛽
if and only

if 𝑗𝑛
𝑅
= 1.

This sentence is true as exemplified by 𝛿, so by the choice
of 𝐸

0
, it is true inM∗

↾ 𝛼
𝛿

𝑖+1
; say as exemplified by 𝛿󸀠. Let us

note that in 𝐿, we have 𝛿 <
𝐿
𝛿
󸀠 or 𝛿󸀠 <

𝐿
𝛿, and let us assume

that 𝛿󸀠 <
𝐿
𝛿, as the other case is symmetric. We claim that

𝜒
[𝑎
󸀠

𝛿
]
exemplifies that 𝑖 ∈ inv

A,𝛿
(𝜒
[𝑎𝛿]

). If not, we can find

𝑔 ∈ 𝐶
𝑁(A
𝛼
𝛿

𝑖

)

\𝐶
0 with 0 ≤ 𝑔 and 𝑔 def

= lim
𝑛
𝑔
𝑛
≤ |𝜒

[𝑎𝛿]
−𝜒

[𝑎
󸀠

𝛿
]
| =

𝜒
[𝑎𝛿Δ𝑎

󸀠

𝛿
]
≤ 1. By the triangle inequality it follows that

𝑔 ≤
󵄨󵄨󵄨󵄨󵄨
𝜒
[𝑎𝛿]

− 𝑓
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑓 − 𝜒

[𝑎
󸀠

𝛿
]

󵄨󵄨󵄨󵄨󵄨
. (16)

We have that for every 𝑥 both |𝜒
[𝑎𝛿]

−𝑓|(𝑥) and |𝜒
[𝑎𝛿]

−𝑓
󸀠
|(𝑥)

are equal to 𝑓(𝑥) if 𝑥 ∈ [𝑎
𝑐

𝛿
] and 1 − 𝑓(𝑥) if 𝑥 ∈ [𝑎

𝛿
󸀠]. The

possible difference is on [𝑎
𝛿
\ 𝑎

𝛿
󸀠], where the former function

is equal to 1 − 𝑓(𝑥) and the latter to 𝑓(𝑥). We now claim that
𝑓 is constant on [𝑎

𝛿
\ 𝑎

𝛿
󸀠].

Clearly, it suffices to show that each𝑓
𝑛
is constant on [𝑎

𝛿
\

𝑎
𝛿
󸀠], and by the choice of {𝛽

𝑛
: 𝑛 < 𝜔}, it suffices to show that,

for each 𝑙 < 2 and each 𝑛,𝜒
[𝑎
𝑙

𝛽𝑛
]
is constant on [𝑎

𝛿
\𝑎
𝛿
󸀠]. Let𝛽 =

𝛽
𝑛
for some 𝑛. If 𝛽≤

𝐿
𝛿
󸀠, then 𝑎

𝛽
≤ 𝑎

𝛿
󸀠 so 𝜒

[𝑎𝛽]
is constantly 0

on [𝑎
𝛿
\ 𝑎

𝛿
󸀠]. In addition, we have 𝑎𝑐

𝛽
≥ 𝑎

𝑐

𝛿
󸀠 ≥ (𝑎

𝛿
\ 𝑎

󸀠

𝛿
), so 𝜒

[𝑎
𝑐

𝛽
]

is constantly 1 on [𝑎
𝛿
\𝑎

𝛿
󸀠]. If 𝛽≥

𝐿
𝛿
󸀠, then 𝛽≥

𝐿
𝛿 by the choice

of 𝛿󸀠, so 𝑎
𝛽
≥ 𝑎

𝛿
, and hence 𝜒

[𝑎𝛽]
is constantly 1 on [𝑎

𝛿
\ 𝑎

𝛿
󸀠].

In addition, 𝑎𝑐
𝛽
≤ 𝑎

𝑐

𝛿
so 𝜒

[𝑎
𝑐

𝛽
]
is constantly 0 on [𝑎

𝛿
\ 𝑎

𝛿
󸀠], and

the statement is proved.

Let 𝜀 ∈ [0, 1] be such that𝑓 is constantly 𝜀 on [𝑎
𝛿
\𝑎

𝛿
󸀠]. Say

𝜀 ≤ 1/2 as the other case is symmetric. Hence max{𝑓, 1 − 𝑓}

on 𝑎
𝛿
\ 𝑎

𝛿
󸀠 is 1 − 𝑓, in particular we have

0 ≤ 𝑔 ≤
󵄨󵄨󵄨󵄨󵄨
𝜒
[𝑎𝛿]

− 𝑓
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑓 − 𝜒

[𝑎
󸀠

𝛿
]

󵄨󵄨󵄨󵄨󵄨
≤ 2 ⋅

󵄨󵄨󵄨󵄨󵄨
𝜒
[𝑎𝛿]

− 𝑓
󵄨󵄨󵄨󵄨󵄨

(17)

and hence 1/2 ⋅ 𝑔 is a function which contradicts that 𝑓
exemplifies that 𝑖 ∈ inv

A,𝛿
(𝜒
[𝑎𝛿]

). A contradiction and hence
𝜒
[𝑎
󸀠

𝛿
]
exemplifies that 𝑖 ∈ inv

A,𝛿
(𝜒
[𝑎𝛿]

) as required.

Now suppose that 𝑖 ∈ inv
A,𝛿

(𝜒
[𝑎𝛿]

) and assume without
loss of generality by Claim 1 that 𝑓 = 𝜒

[𝑎
󸀠

𝛿
]
for some 𝛿󸀠. We

need to prove that 𝑖 ∈ inv
A,𝛿

(𝑎
𝛿
) as exemplified by 𝑎

𝛿
󸀠 . But

indeed, if for some𝛽 < 𝛼
𝛿

𝑖
and 𝑙 < 2, we have that 𝑎𝑙

𝛽
∩𝑎

𝛿
̸= 𝑎
𝛽
∩

𝑎
𝛿
󸀠 mod A𝛼

𝛿

𝑖 , then there is 𝑤 > 0 in A𝛼
𝛿

𝑖 with 𝑤 ≤ 𝑎
𝛿
Δ𝑎

𝛿
󸀠

and then clearly the sequence ⟨𝜒
[𝑤]
, 𝜒

[𝑤]
, . . .⟩ is not in 𝐶0 and

is below ⟨𝜒
[𝑎𝛿Δ𝑎𝛿󸀠

]
, 𝜒

[𝑎𝛿Δ𝑎𝛿󸀠
]
, . . .⟩, a contradiction.

With this, putting together all the sublemmas and the
Kojman-Shelah result, we finish the proof of theConstruction
Lemma.
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