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We propose a mathematical model of pine wilt disease (PWD) which is caused by pine sawyer beetles carrying the pinewood
nematode (PWN). We calculate the basic reproduction number 𝑅

0
and investigate the stability of a disease-free and endemic

equilibrium in a given mathematical model. We show that the stability of the equilibrium in the proposed model can be
controlled through the basic reproduction number 𝑅

0
. We then discuss effective optimal control strategies for the proposed

PWD mathematical model. We demonstrate the existence of a control problem, and then we apply both analytical and numerical
techniques to demonstrate effective control methods to prevent the transmission of the PWD. In order to do this, we apply two
control strategies: tree-injection of nematicide and the eradication of adult beetles through aerial pesticide spraying. Optimal
prevention strategies can be determined by solving the corresponding optimality system. Numerical simulations of the optimal
control problem using a set of reasonable parameter values suggest that reducing the number of pine sawyer beetles ismore effective
than the tree-injection strategy for controlling the spread of PWD.

1. Introduction

Pinewilt disease (PWD) is caused by the pinewood nematode
Bursaphelenchus xylophilus. The vector for this parasite is the
Japanese pine sawyer beetle Monochamus alternatus, which
disperses the nematode to healthy trees [1–8]. PWD is lethal
to healthy pine trees such as Pinus densiflora S. et Z., P.
thunbergii Parl., and P. sylvestris L. [9]. The disease (PWD),
caused by the pinewood nematode (PWN), Bursaphelenchus
xylophilus, was first observed in 1905 in Japan [10]. By
the 1980s, the PWD epidemic had spread to other Asian
countries such as China, Taiwan, Hong Kong, and Korea.
It subsequently reached Europe (Portugal) in 1999 [11–13].
Thus, PWD is the most serious global threat to pine forest
ecosystems worldwide.

Pine trees infected by PWD usually die within a few
months. The first observable symptom is the lack of resin
exudation from bark wounds. The foliage then becomes pale
green, then yellow, and finally reddish brown as the tree
succumbs to the disease. It is well known that there are
three transmission pathways of PWD. One occurs during

maturation feeding, when the nematode is transferred from
insect vectors to healthy pine trees via the insect feeding on
wounds [4]. The second occurs during oviposition of the
mature female on dead, dying, or recently cut pine trees
via the oviposition wounds [6]. The third occurs during
mating, that is, as mature males search for females in bark
wounds, such as the oviposition wounds. This is referred to
as horizontal transmission [14].

Vector-borne diseases are infectious diseases caused by
viruses, bacteria, protozoa, or rickettsia. They are primarily
transmitted by disease transmitting biological agents (anthro-
poids), called vectors, who carry the disease without getting
it themselves. For example, the most prevalent vector-borne
disease is malaria, whose vectors are mosquitoes. Numerous
cases of vector-borne disease are known for plants. Among
them, there are some important wilting diseases of trees, such
as PWD and the red ring disease of palms. In recent years,
many mathematical models have been used to investigate
the transmission dynamics of the PWD [15–18]. Mathemat-
ical models have become important tools in analyzing the
spread and control of infectious diseases. Thus, we present
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a mathematical model to describe the vector-host interaction
between the pine trees and nematode-carrying pine sawyers.
The objective of this study is to investigate global dynamics
and control the spread of the PWD based on the proposed
mathematical model.

In this paper, we propose a mathematical model of
PWD using ordinary differential equations, with mass action
incidence, and we consider a controlled PWD transmission
model to prevent the spread of disease using optimal control
strategies. Generally, PWD control has focused on the elimi-
nation of pine sawyer larvae inhabiting pine wilt trees (eradi-
cation of infected host pine trees), either bywinter fumigation
or by controlling the adult sawyers using insecticide over the
summer. We apply two control parameters: the injection of
nematicide to the host pine tree and the aerial spraying of
pesticide to kill adult pine sawyers.

For this, we first introduce control variables representing
the optimal treatment for infected hosts and vectors. We
formulate an optimal system for the mathematical model
of PWD caused by adult pine sawyers carrying pinewood
nematodes.

Furthermore, we show the existence of an optimal control
for this problem and analyze the systemusing optimal control
techniques.

This paper is organized as follows. In Section 2, we
derive the ordinary differential equations that describe the
interactions between the host pine tree and vector forest
beetles populations. In Section 3, the control problem is
formulated. In Section 4, we derive the necessary conditions
for an optimal control and the corresponding states using
Pontryagin’s Maximum Principle. Section 5 presents the
results of numerical simulations, and our conclusions are
given in Section 6.

2. Model Formulation

In this paper, we consider a four-dimensional model, which
consists of the populations of susceptible host pine trees 𝑆

ℎ
,

infected host pine trees 𝐼
ℎ
, susceptible vector beetles that

do not carry the PWN 𝑆V, and infected vector beetles that
carry the PWN 𝐼V. The total population sizes at time 𝑡 for
the host pine trees and vector beetles are denoted by𝑁

ℎ
and

𝑁V, respectively. In the host pine trees populations, Pine trees
infectedwith the PWDnever recovers froman infected states,
and most infected pine trees die within a year of infection.
Thus we do not consider the number of immune hosts 𝑅

ℎ
in

the model. Thus𝑁
ℎ
= 𝑆
ℎ
+ 𝐼
ℎ
and𝑁V = 𝑆V + 𝐼V. The model is

given by the following system of differential equations:

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
− 𝛼𝜙𝑆

ℎ
𝐼V − 𝛽𝜓𝜃𝑆ℎ𝐼V − 𝜇1𝑆ℎ,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛼𝜙𝑆

ℎ
𝐼V + 𝛽𝜓𝜃𝑆ℎ𝐼V − 𝜇1𝐼ℎ,

𝑑𝑆V

𝑑𝑡
= Λ V − 𝛾𝐼ℎ𝑆V − 𝜇2𝑆V,

𝑑𝐼V

𝑑𝑡
= 𝛾𝐼
ℎ
𝑆V − 𝜇2𝐼V.

(1)

Susceptible host pine trees are recruited at a constant
rate Λ

ℎ
. Parameter 𝛼 represents the transmission rate per

contact with infected vectors during maturation feeding.
Parameter 𝜙 is the average number of contacts per day with
vector adult beetles during the maturation feeding period.
We denote the incidence of new infections via this route by
the mass actions term 𝛼𝜙𝑆

ℎ
𝐼V. The transmission probability

that infected beetles transmit a nematode by oviposition is
denoted by 𝛽, and the average number of contacts per day
when adult beetles oviposit is denoted by 𝜓. The parameter
𝜃 is the probability that susceptible host pine trees cease
oleoresin exudation without being infected by the nematode.
In the model, the rate of transmission through oviposition
is denoted by 𝛽𝜓𝜃, and the incidence of new infections
via this route is given by the mass action term 𝛽𝜓𝜃𝑆

ℎ
𝐼V. A

constant emergence rate of the vector pine sawyer beetle is
denoted by Λ V, and parameter 𝛾 denotes the rate at which
adult beetles carry the PWN when the beetles escape from
dead trees. The incidence terms for vector populations are
given by 𝛾𝐼

ℎ
𝑆V. Finally, 𝜇1, 𝜇2 denote the natural death rate of

the host population and the natural death rate of the vector
population, respectively.

Since the model deals with host pine trees and vector
beetle populations, it can easily be seen that every state
variable will remain nonnegative for nonnegative initial
conditions, that is, for all 𝑡 ≥ 0, 𝑆

ℎ
≥ 0, 𝐼

ℎ
≥ 0, 𝑆V ≥ 0, and

𝐼V ≥ 0. And we make some reasonable technical assumptions
on the parameters of the model, namely, 𝛼 > 0, 𝛽 > 0, 𝛾 > 0,
𝜙 > 0, 𝜃 > 0, Λ

ℎ
> 0, Λ V > 0, 𝜇

1
> 0, and 𝜇

2
> 0.

The above systems for the host population and the vector are
also equipped with initial conditions as follows: 𝑆

ℎ
(0) = 𝑆

0

ℎ
,

𝐸
ℎ
(0) = 𝐸

0

ℎ
, 𝐼
ℎ
(0) = 𝐼

0

ℎ
, 𝑆V(0) = 𝑆

0

V , and 𝐼V(0) = 𝐼
0

V . The total
host population dynamics is given by 𝑑𝑁

ℎ
/𝑑𝑡 = Λ

ℎ
− 𝜇
1
𝑁
ℎ
.

The given initial conditions make sure that 𝑁
ℎ
(0) ≥ 0. The

total dynamics of vector population is 𝑑𝑁V/𝑑𝑡 = Λ V − 𝜇2𝑁V.
We know that𝑁

ℎ
(𝑡) → Λ

ℎ
/𝜇
1
,𝑁V(𝑡) → Λ V/𝜇2.

Obviously,

Ω = {(𝑆
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) ∈ 𝑅

4

+
| 0 ≤ 𝑆

ℎ
+ 𝐼
ℎ
≤
Λ
ℎ

𝜇
1

,

0 ≤ 𝑆V + 𝐼V ≤
Λ V

𝜇
2

}

(2)

is positively invariant, and system (1) is dissipative and the
global attractor is contained in Ω. On Ω, we have 𝑆V =

(Λ V/𝜇2) − 𝐼V. Hence, we will study the following three-
dimensional nonlinear system:

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
− 𝛼𝜙𝑆

ℎ
𝐼V − 𝛽𝜓𝜃𝑆ℎ𝐼V − 𝜇1𝑆ℎ,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛼𝜙𝑆

ℎ
𝐼V + 𝛽𝜓𝜃𝑆ℎ𝐼V − 𝜇1𝐼ℎ,

𝑑𝐼V

𝑑𝑡
= 𝛾𝐼
ℎ
(
Λ V

𝜇
2

− 𝐼V) − 𝜇2𝐼V.

(3)

For system (3), the region Γ = {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ 𝑅

3

+
| 0 ≤

𝑆
ℎ
+ 𝐼
ℎ
≤ Λ
ℎ
/𝜇
1
, 0 ≤ 𝐼V ≤ Λ V/𝜇2} is positively invariant.
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System (3) has always a disease-free equilibrium 𝐸
0
=

(Λ
ℎ
/𝜇
1
, 0, 0) and basic reproduction number 𝑅

0
=

Λ
ℎ
Λ V𝛾(𝛼𝜙 + 𝛽𝜓𝜃)/𝜇

2

1
𝜇
2

2
.

If 𝑅
0
> 1, system (3) has a unique endemic equilibrium

𝐸
∗
= (𝑆
∗

ℎ
, 𝐼
∗

ℎ
, 𝐼
∗

V ) in the interior of Γ, where

𝑆
∗

ℎ
=

Λ
ℎ

(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼∗V + 𝜇1
, 𝐼

∗

ℎ
=

Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V

𝜇
1
(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼∗V + 𝜇

2

1

,

𝐼
∗

V =
𝜇
2

1
𝜇
2

2
(𝑅
0
− 1)

𝜇
2
(𝛼𝜙 + 𝛽𝜓𝜃) (Λ

ℎ
𝛾 + 𝜇
1
𝜇
2
)
.

(4)

Mathematical analysis of the system (3) is provided in
Appendices A and B.

3. A Model for Optimal Control of PWD

In the host pine tree population, the force of infections
is reduced by 1 − 𝑢

1
, where 𝑢

1
∈ [0, 1] measures the

level of successful prevention efforts. It follows that control
variable 𝑢

1
represents the use of drugs or vaccine which

are alternative preventive measures to minimize or eliminate
PWN infection (e.g., tree-injection of a nematicide). In
system (1), we modified the recruitment rate in susceptible
vector populations by including density effects. Further, we
replace the previous recruitment rates with Λ V → Λ V𝑁V.
In the vector adult beetles population, the control variable
𝑢
2
∈ [0, 1] represents the level of adulticide used for vector

control such as aerial spraying of pesticide. It follows that
the reproduction rate of the vector population is reduced by
a factor of 1 − 𝑢

2
. Further, we assumed that the mortality

rate of the vector population increases at a rate proportional
to 𝑢
2
, where 𝑟

0
> 0 is a rate constant. Considering these

assumptions and extensions, it follows that the extended
model is described by an initial value problem with a system
of four differential equations:

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
− 𝛼𝜙 (1 − 𝑢

1
) 𝐼V𝑆ℎ − 𝛽𝜓𝜃 (1 − 𝑢1) 𝐼V𝑆ℎ − 𝜇1𝑆ℎ,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛼𝜙 (1 − 𝑢

1
) 𝐼V𝑆ℎ + 𝛽𝜓𝜃 (1 − 𝑢1) 𝐼V𝑆ℎ − 𝜇1𝐼ℎ,

𝑑𝑆V

𝑑𝑡
= Λ V𝑁V (1 − 𝑢2) − 𝛾𝐼ℎ𝑆V − 𝜇2𝑆V − 𝑟0𝑢2𝑆V,

𝑑𝐼V

𝑑𝑡
= 𝛾𝐼
ℎ
𝑆V − 𝜇2𝐼V − 𝑟0𝑢2𝐼V,

(5)

with initial conditions 𝑆
ℎ
(0) ≥ 0, 𝐼

ℎ
(0) ≥ 0, 𝑆V(0) ≥ 0, and

𝐼V(0) ≥ 0.

4. Analysis of Optimal Control

We define the objective functional 𝐽(𝑢
1
, 𝑢
2
) = ∫

𝑇

0
(𝐴
1
𝐼
ℎ
+

𝐴
2
𝑁V + (𝐵

1
/2)𝑢
2

1
+ (𝐵
2
/2)𝑢
2

2
)𝑑𝑡 subject to the state system

given by (5). The objective of our work is to minimize

the infected host pine tree and the total number of vector
population and the cost of implementing the control by using
possible minimal control variables 𝑢

1
, 𝑢
2
. For the optimal

control problem of the given system, we consider the control
variables 𝑢 = (𝑢

1
, 𝑢
2
) ∈ 𝑈 relative to the state variables 𝑆

ℎ
,

𝐼
ℎ
, 𝑆V, and 𝐼V where both control variables are bounded and

measured with

𝑈 = {(𝑢
1
, 𝑢
2
) | 𝑢
𝑖
is Lebsegue measurable on [0, 1] ,

0 ≤ 𝑢
𝑖
≤ 1, 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 2} .

(6)

In the objective functional the quantities 𝐴
1
, 𝐴
2
represent

the weight constants of the infected host population and total
vector population, respectively. In the objective functional
𝐵
1
and 𝐵

2
are weight factors for reduction of vector-host

contacts and vector control, respectively. The terms (𝐵
1
/2)𝑢
2

1

and (𝐵
2
/2)𝑢
2

2
describe the costs associated with prevention of

vector-host contacts and vector control, respectively.
The cost associated with the first control could come

from the use of tree-injection of a nematicide. The cost
associated with the second control could come from physical
or chemical treatment of wilt pines to kill their larvae or
eradication of vector beetles by aerial pesticide spraying.

Our aim is to find control functions 𝑢∗
1
, 𝑢∗
2
such that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
) = min
𝑈

𝐽 (𝑢
1
, 𝑢
2
) (7)

subject to system (5), where the control set is defined as

𝑈 = {(𝑢
1
(𝑡) , 𝑢
2
(𝑡)) | 0 ≤ 𝑢

1
, 𝑢
2
≤ 1, 𝑡 ∈ [0, 𝑇]} . (8)

We note that the existence of an optimal control pair can
be proved by using results from Fleming and Rishel [19].
We know easily that the system of equations given by (5) is
bounded from above by a linear system. According to the
theorem in [19], the solution exists if the following hypotheses
are met.

(𝐻
1
) The set of controls and corresponding state variables
is nonempty.

(𝐻
2
) The control set 𝑈 is convex and closed.

(𝐻
3
) Each right-hand side of the state system is bounded
by a linear functional in the state and control and can
be written as a linear function of 𝑢 with coefficients
depending on time and state.

(𝐻
4
) There exist constants 𝑐

1
, 𝑐
2
> 0 and 𝛽 > 1 such that

the integrand 𝐿(𝑦, 𝑢, 𝑡) of the objective functional 𝐽 is
convex and satisfies

𝐿 (𝑦, 𝑢, 𝑡) ≥ 𝑐
1
(
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨

2
)
𝛽/2

− 𝑐
2
. (9)

In order to verify these conditions, we use a result by Lukes
[20] to give the existence of solutions of the state system (5)
with bounded coefficients, which gives (𝐻

1
). We note that

the solutions are bounded. Our control set satisfies condition
(𝐻
2
). Since our state system is bilinear in 𝑢

1
, 𝑢
2
, the right-

hand side the state system (5) satisfies condition (𝐻
3
), using

the boundedness of the solutions. Note that the integrand of
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our objective functional is convex. Moreover we have the last
condition needed

𝐴
1
𝐼
ℎ
+ 𝐴
2
𝑁V +

𝐵
1

2
𝑢
2

1
+
𝐵
2

2
𝑢
2

2
≥ 𝑐
1
(
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢2

󵄨󵄨󵄨󵄨

2
)
𝛽/2

− 𝑐
2
,

(10)

where 𝑐
1
, 𝑐
2
> 0,𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
> 0, and𝛽 > 1.Thuswe obtain

the following.

Theorem 1. Given the objective functional 𝐽(𝑢
1
, 𝑢
2
) =

∫
𝑇

0
(𝐴
1
𝐼
ℎ
+ 𝐴
2
𝑁V + (𝐵

1
/2)𝑢
2

1
+ (𝐵
2
/2)𝑢
2

2
)𝑑𝑡, where 𝑈 =

{(𝑢
1
, 𝑢
2
) | 0 ≤ 𝑢

1
, 𝑢
2
≤ 1, 𝑡 ∈ [0, 𝑇]} subject to the system

(5) with initial conditions, then there exists an optimal control
𝑢
∗
= (𝑢
∗

1
, 𝑢
∗

2
) such that 𝐽(𝑢∗

1
, 𝑢
∗

2
) = min

𝑈
𝐽(𝑢
1
, 𝑢
2
).

Lagrangian for a problem discusses how the techniques
come and Hamiltonian helps in solving the adjoint variable,
which we need to construct for the optimal control problem.
In order to find an optimal solution pair, first we should
construct the Lagrangian and Hamiltonian for the optimal
control problem (5). In fact, the Lagrangian of the optimal
problem is given by

𝐿 (𝐼
ℎ
, 𝑁V, 𝑢1, 𝑢2) = 𝐴

1
𝐼
ℎ
+ 𝐴
2
𝑁V +

𝐵
1

2
𝑢
2

1
+
𝐵
2

2
𝑢
2

2
. (11)

We seek for the minimal value of the Lagrangian. To do this,
we define the Hamiltonian 𝐻 for the control problem as
taking 𝑋 = (𝑆

ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V), 𝑈 = (𝑢

1
, 𝑢
2
), and 𝜆 = (𝜆

1
, 𝜆
2
,

𝜆
3
, 𝜆
4
), to obtain

𝐻(𝑋,𝑈, 𝜆)

= 𝐿 (𝐼
ℎ
, 𝑁V, 𝑢1, 𝑢2)

+ 𝜆
1
[Λ
ℎ
− 𝛼𝜙 (1 − 𝑢

1
) 𝐼V𝑆ℎ−𝛽𝜓𝜃 (1 − 𝑢1) 𝐼V𝑆ℎ − 𝜇1𝑆ℎ]

+ 𝜆
2
[𝛼𝜙 (1 − 𝑢

1
) 𝐼V𝑆ℎ + 𝛽𝜓𝜃 (1 − 𝑢1) 𝐼V𝑆ℎ − 𝜇1𝐼ℎ]

+ 𝜆
3
[Λ V𝑁V (1 − 𝑢2) − 𝛾𝐼ℎ𝑆V − 𝜇2𝑆V − 𝑟0𝑢2𝑆V]

+ 𝜆
4
[𝛾𝐼
ℎ
𝑆V − 𝜇2𝐼V − 𝑟0𝑢2𝐼V] .

(12)

In order to find the necessary conditions for this optimal
control pair, we apply Pontryagin’s Maximum Principle [21]
as follows.

If (𝑢∗
1
, 𝑢
∗

2
) is an optimal solution of an optimal control

problem, then there exists a nontrivial vector function 𝜆(𝑡) =
(𝜆
1
(𝑡), 𝜆
2
(𝑡), . . . 𝜆

𝑛
(𝑡)) satisfying the following equalities. The

state equation is

𝑑𝑥

𝑑𝑡
=
𝜕𝐻 (𝑡, 𝑢

∗

1
, 𝑢
∗

2
, 𝜆 (𝑡))

𝜕𝜆
, (13)

the optimality condition

0 =
𝜕𝐻 (𝑡, 𝑢

∗

1
, 𝑢
∗

2
, 𝜆 (𝑡))

𝜕𝑢
, (14)

and the adjoint equation

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻 (𝑡, 𝑢
∗

1
, 𝑢
∗

2
, 𝜆 (𝑡))

𝜕𝑥
. (15)

Now we apply the necessary conditions to the Hamiltonian
𝐻.

Theorem 2. Given optimal controls 𝑢∗
1
, 𝑢∗
2
and solutions 𝑆∗

ℎ
,

𝐼
∗

ℎ
, 𝑆∗V , and 𝐼

∗

V of the corresponding state system (5), there exist
adjoint variables 𝜆

1
, 𝜆
2
, 𝜆
3
, and 𝜆

4
satisfying

𝑑𝜆
1

𝑑𝑡
= (𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝑢

1 (𝑡)) (𝜆1 − 𝜆2) 𝐼V + 𝜆1𝜇1,

𝑑𝜆
2

𝑑𝑡
= −𝐴

1
+ 𝛾 (𝜆

3
− 𝜆
4
) 𝑆V + 𝜆2𝜇1,

𝑑𝜆
3

𝑑𝑡
= 𝛾 (𝜆

3
− 𝜆
4
) 𝐼
ℎ
+ 𝜆
3
(𝜇
2
+ 𝑟
0
𝑢
2
(𝑡)) − 𝜆

3
Λ V (1 − 𝑢2) ,

𝑑𝜆
4

𝑑𝑡
= (𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝑢

1 (𝑡)) (𝜆1 − 𝜆2) 𝑆ℎ

+ 𝜆
4
(𝜇
2
+ 𝑟
0
𝑢
2
(𝑡)) − 𝜆

3
Λ V (1 − 𝑢2) ,

(16)

with transversality conditions

𝜆
1
(𝑇) = 𝜆

2
(𝑇) = 𝜆

3
(𝑇) = 𝜆

4
(𝑇) = 0. (17)

Furthermore, 𝑢∗
1
, 𝑢∗
2
are represented by

𝑢
∗

1
= max{min{1, 1

𝐵
1

(𝜆
2
− 𝜆
1
) (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V𝑆ℎ} , 0} ,

𝑢
∗

2
= max{min{1, 1

𝐵
2

[Λ V𝜆3 (𝑆V + 𝐼V)

+ 𝑟
0
(𝜆
3
𝑆V + 𝜆4𝐼V)] } , 0} .

(18)

Proof. To determine the adjoint equations and the transver-
sality conditions we use the Hamilton𝐻. We differentiate the
Hamiltonian𝐻 with respect to 𝑆

ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V. Thus we obtain

𝑑𝜆
1

𝑑𝑡
= (𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝑢

1
(𝑡)) (𝜆

1
− 𝜆
2
) 𝐼V + 𝜆1𝜇1,

𝑑𝜆
2

𝑑𝑡
= −𝐴

1
+ 𝛾 (𝜆

3
− 𝜆
4
) 𝑆V + 𝜆2𝜇1,

𝑑𝜆
3

𝑑𝑡
= 𝛾 (𝜆

3
− 𝜆
4
) 𝐼
ℎ
+ 𝜆
3
(𝜇
2
+ 𝑟
0
𝑢
2 (𝑡)) − 𝜆3Λ V (1 − 𝑢2) ,

𝑑𝜆
4

𝑑𝑡
= (𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝑢

1
(𝑡)) (𝜆

1
− 𝜆
2
) 𝑆
ℎ

+ 𝜆
4
(𝜇
2
+ 𝑟
0
𝑢
2 (𝑡)) − 𝜆3Λ V (1 − 𝑢2) ,

(19)

with transversality conditions

𝜆
1
(𝑇) = 𝜆

2
(𝑇) = 𝜆

3
(𝑇) = 𝜆

4
(𝑇) = 0. (20)
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Using the optimality conditions we have and the property of
the control space 𝑈 we can drive

𝑢
∗

1
= max{min{1, 1

𝐵
1

(𝜆
2
− 𝜆
1
) (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V𝑆ℎ} , 0} ,

𝑢
∗

2
= max{min{1, 1

𝐵
2

[Λ V𝜆3 (𝑆V + 𝐼V)

+ 𝑟
0
(𝜆
3
𝑆V + 𝜆4𝐼V)] } , 0} .

(21)

5. Numerical Results

In this section, we show the numerical simulations of the
impacts of the optimal control strategy in the proposed
the PWD model. The optimality system is solved using the
Runge-Kutta fourth order scheme. The optimal strategy is
obtained by solving the state and adjoint systems and the
transversality conditions. First we start to solve the state (16)
using the Runge-Kutta fourth order forward in time with a
guess for the controls over the simulated time.Then, using the
current iteration of the state equations, the adjoint equations
in system (16) are solved by a backward method with the
transversality conditions (17). Then the controls are updated
by using a convex combination of the previous controls and
the value from the characterizations (18). This process is
repeated and iterations stopped if the values of the unknowns
at the previous iterations are very close to the ones at the
present iterations [21].We have chosen the same set of weight
factors 𝐴

1
= 0.01, 𝐴

2
= 0.001, 𝐵

1
= 50, and 𝐵

2
= 200

initial state variables 𝑆
ℎ
(0) = 300, 𝐼

ℎ
(0) = 50, 𝑆V(0) = 65, and

𝐼V(0) = 20 to illustrate the effect of different optimal control
strategies on the spread of pine wilt disease in a population.
In this section, we investigate numerically the effect of the
following optimal control strategies on the spread of pine wilt
disease. Three different control strategies are explored. Then
we look at the following three alternatives:

(i) strategy 1: precaution effort by tree-injection of a
nematicide and eradication of vector beetles (controls
𝑢
1
and 𝑢

2
);

(ii) strategy 2: physical or chemical treatment ofwilt pines
to kill their larvae or eradication of vector beetles by
aerial pesticide spraying ( control 𝑢

2
alone);

(iii) strategy 3: precaution effort by tree-injection of a
nematicide ( control 𝑢

1
alone).

Baseline values of model parameters used for simulations
are presented in Table 1. Owing to the absence of data, some
of the other parameters associated with given model are
assumed (see Table 1).

5.1. Strategy 1: Optimal Use of Tree-Injection of a Nemati-
cide (𝑢

1
̸= 0) and Eradication of Vector Beetles (𝑢

2
̸= 0).

The computed results for optimal control under strategy 1

(𝑢
1

̸= 0, 𝑢
2

̸= 0) are shown in Figures 1, 2, 3, and 4. In Figures
2, 3, and 4, we can see that the control strategy results in
a decrease in the number of infected hosts 𝐼

ℎ
, susceptible

vectors 𝑆V, and infected vectors 𝐼V. With this strategy, an
increase in the number of susceptible hosts 𝑆

ℎ
is observed in

Figure 1.

5.2. Strategy 2: Optimal Use of Eradication of Vector Beetles
(𝑢
2

̸= 0). The computed results for optimal control under
strategy 2 (𝑢

1
= 0, 𝑢

2
̸= 0) are shown in Figures 5, 6, 7, and

8. Figures 6, 7, and 8 show a significant difference in the
number of infected hosts, susceptible vectors, and infected
vectors, respectively, compared to the situation where there is
no control. Our numerical results suggest that tree-injection
of a nematicide is not effective if we want to reduce the spread
of PWD.

5.3. Strategy 3: Optimal Use of Tree-Injection of a Nematicide
(𝑢
1

̸= 0). The computed results for optimal control under
strategy 3 (𝑢

1
̸= 0, 𝑢
2

= 0) are shown in Figures 9, 10,
11, and 12. Figures 10 and 12 show no significant difference
in the number of infected hosts 𝐼

ℎ
and infected vectors 𝐼V,

respectively, compared to the situation where there is no
control. This shows that the eradication of vector beetles is
more effective than injecting trees with nematicide. Figure 13
represents the optimal controls.

5.4. Effects of Weight Constants. A sensitivity analysis is
carried out by studying the adequacy of our simulations in
relation to the weight constants. The role of weight constants
is explored by assessing their quantitative impact in terms of
the number of infected cases. Comparative results with the
implementation of strategy 1 under different weight constants
on the controls 𝑢

1
, 𝑢
2
are shown in Figures 14 and 16 (𝐵

1
= 50,

𝐵
1
= 5, 𝐵

1
= 2, fixing 𝐵

2
= 200) and Figures 15 and 17 (fixing

𝐵
1
= 50, 𝐵

2
= 200, 𝐵

2
= 100, and 𝐵

2
= 50). In Figure 16,

the value of the weight constant 𝐵
1
is varied. As the value

of weight constants increases, control functions decrease,
and increasing the cost of successful prevention efforts, the
population of infected host 𝐼

ℎ
is increased. In Figure 17,

the value of the weight constant 𝐵
2
is varied. As the value

of weight constants increases, control functions decrease,
and increasing the cost of vector control, the population of
infected vector 𝐼V is increased.

6. Conclusions

In this paper, we proposed a host vector transmission model
to study the dynamics of PWD. A mathematical analysis was
carried out for a model in which PWD is caused by the
PWN, a parasite hosted by the pine sawyer beetle. The global
dynamics of the model showed the existence and stability of
disease-free and endemic equilibria. We proved that if 𝑅

0
≤

1, the disease-free equilibrium 𝐸
0
is globally asymptotically

stable in Γ, and thus the disease always dies out. However,
if 𝑅
0
> 1, the unique endemic equilibrium 𝐸

∗ exists and is
globally asymptotically stable, indicating that PWD persists
at the endemic equilibrium if it is initially present. We have
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Table 1: Parameters used for numerical simulation.

Notation Parameter description Estimated value Ref.

Λ
ℎ

The recruitment rate of the host pine population 0.009041 day−1 Assumed

Λ V A constant emergence rate of the vector pine sawyer beetle 0.002691 day−1 Assumed

𝜇
1

The natural death rate of host population 0.0000301 day−1 [22]

𝜇
2

The natural death rate of vector population 0.011764 day−1 [23]

𝛼 The rate in which infected beetles transmit nematode by contact 0.00166 day−1 [24]

𝛽 The rate in which infected beetles transmit nematode by oviposition 0.0004 day−1 [24]

𝛾
The rate in which the adult beetles have pinewood nematode when it escapes
from dead trees 0.00305 day−1 [25]

𝜙 The number of contacts during maturation feeding period 0.2 day [26]

𝜓 The number of contacts during the oviposition period 0.41 day−1 Assumed

𝜃
The probability in which susceptible host pine is not infectious by nematode
and ceases oleoresin exudation naturally 0.0000301 day−1 Assumed
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Figure 1: Plot of the number of susceptible hosts with and without
control, 𝑢

1
̸= 0, 𝑢
2
̸= 0.

considered the optimal control strategy for preventing the
spread of PWD. The conditions for optimal control of the
disease were derived and analyzed, and the injection of
nematicide to infected hosts was compared with the aerial
spraying of insecticides to control infected vectors. From the
control plots, we showed that the number of infected hosts
and the total vector population decreased in the optimal
system. Control programs that follow these strategies can
effectively reduce the spread of PWD in forest ecosystems.
Numerical simulations illustrated the effectiveness and effi-
ciency of the proposed control problem more effective than

With control
w/o control
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Figure 2: Plot of the number of infected hosts with and without
control, 𝑢
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̸= 0, 𝑢
2
̸= 0.

the tree-injection strategy for controlling the spread of PWD
in the forest ecosystem.

Appendices

A. The Disease-Free Equilibrium
and Its Stability

In this section, we will investigate the disease-free equilib-
rium and its stability of the system (3).
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Figure 3: Plot of the number of susceptible vectors with andwithout
control, 𝑢

1
̸= 0, 𝑢
2
̸= 0.

Theorem A.1. If 𝑅
0
< 1, then the disease-free equilibrium 𝐸

0

is locally asymptotically stable.

Proof. Linearize the system (3) around the disease-free equi-
librium 𝐸

0
. The matrix of the linearization at 𝐸

0
is given by

𝐽 (𝐸
0
) =

(
(

(

−𝜇
1

0 −
Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃)

𝜇
1

0 −𝜇
1

Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃)

𝜇
1

0
Λ V𝛾

𝜇
2

−𝜇
2

)
)

)

. (A.1)

The characteristic equation of this matrix is given by det(𝜆𝐼−
𝐽(𝐸
0
)) = 0, where 𝐼 is the 3 × 3 unit matrix. Expanding

the determinant into a characteristic equation we obtain the
following equation:

(𝜆 + 𝜇
1
) [𝜆
2
+ (𝜇
1
+ 𝜇
2
) 𝜆 + 𝜇

1
𝜇
2
−
Λ
ℎ
Λ V𝛾 (𝛼𝜙 + 𝛽𝜓𝜃)

𝜇
1
𝜇
2

]

= 0.

(A.2)

So, 𝜆 = −𝜇
1
and 𝜆2 + 𝑎

1
𝜆 + 𝑎
2
= 0, where

𝑎
1
= 𝜇
1
+ 𝜇
2
> 0,

𝑎
2
= 𝜇
1
𝜇
2
−
Λ
ℎ
Λ V𝛾 (𝛼𝜙 + 𝛽𝜓𝜃)

𝜇
1
𝜇
2

= 𝜇
1
𝜇
2
(1 − 𝑅

0
) > 0.

(A.3)
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Figure 4: Plot of the number of infected vectors with and without
control, 𝑢

1
̸= 0, 𝑢
2
̸= 0.
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Figure 5: Plot of the number of susceptible hosts with and without
control, 𝑢

1
= 0, 𝑢

2
̸= 0.

Thus, according to the Routh-Hurwitz criteria [27], the
quadratic equation has only roots with negative real parts.
Hence, the disease-free equilibrium 𝐸

0
of the system (3) is

locally asymptotically stable.

Now, we study the global behavior of the disease-free
equilibrium for system (3).
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Figure 6: Plot of the number of infected hosts with and without
control, 𝑢
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̸= 0.
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Figure 7: Plot of the number of susceptible vectors with andwithout
control, 𝑢

1
= 0, 𝑢

2
̸= 0.

Theorem A.2. If 𝑅
0
≤ 1, then the disease-free equilibrium 𝐸

0

is globally asymptotically stable in Γ.

Proof. We define the following Lyapunov function on Γ.

𝑉 = 𝑏
1
𝐼
ℎ
+ 𝑏
2
𝐼V, (A.4)
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Figure 8: Plot of the number of infected vectors with and without
control, 𝑢

1
= 0, 𝑢

2
̸= 0.

where
𝑏
1
= 𝜇
1
𝜇
2
,

𝑏
2
= Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃) .

(A.5)

Clearly, 𝑉 ≥ 0 along the solution of the system (3) and is
zero if and only if both 𝐼

ℎ
and 𝐼V are zeros. The derivative of

𝑉 along the solutions of (3) is

𝑉
󸀠
= 𝜇
1
𝜇
2
𝐼
󸀠

ℎ
+ Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

󸀠

V

= 𝜇
1
𝜇
2
(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆

ℎ
𝐼V − 𝜇

2

1
𝜇
2
𝐼
ℎ

+
Λ
ℎ
Λ V𝛾 (𝛼𝜙 + 𝛽𝜓𝜃)

𝜇
2

𝐼
ℎ

− Λ
ℎ
𝛾 (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V𝐼ℎ − Λ V𝜇2 (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V.

(A.6)

We know that
𝜇
1
𝜇
2
(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆

ℎ
𝐼V − Λ ℎ𝜇2 (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V

= 𝜇
1
𝜇
2
(𝛼𝜙 + 𝛽𝜓𝜃) (𝑆

ℎ
−
Λ
ℎ

𝜇
1

) 𝐼V ≤ 0.

(A.7)

Thus

𝑉
󸀠
≤
Λ
ℎ
Λ V𝛾 (𝛼𝜙 + 𝛽𝜓𝜃)

𝜇
2

𝐼
ℎ
− Λ
ℎ
𝛾 (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V𝐼ℎ − 𝜇

2

1
𝜇
2
𝐼
ℎ

= 𝐼
ℎ
[𝜇
2

1
𝜇
2
(𝑅
0
− 1) − Λ

ℎ
𝛾 (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V] ≤ 0.

(A.8)
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Figure 9: Plot of the number of susceptible hosts with and without
control, 𝑢
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̸= 0, 𝑢
2
= 0.
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Figure 10: Plot of the number of infected hosts with and without
control, 𝑢

1
̸= 0, 𝑢
2
= 0.

We see that if 𝑅
0
< 1, the derivative 𝑉󸀠 = 0 if and only if

𝐼
ℎ
= 0, while in the case of 𝑅

0
= 1 the derivative𝑉󸀠 = 0 if and

only if 𝐼
ℎ
= 0 or 𝐼V = 0. Consequently, the largest compact

invariant set in {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ Γ | 𝑉

󸀠
= 0}, when 𝑅

0
≤ 1, is the

singleton {𝐸
0
}. Hence by Lasalle’s Invariance Principle [28],

𝐸
0
is globally asymptotically 10 stable in Γ.This completes the

proof.
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Figure 11: Plot of the number of susceptible vectors with and
without control, 𝑢
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̸= 0, 𝑢
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= 0.
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Figure 12: Plot of the number of infected vectors with and without
control, 𝑢

1
̸= 0, 𝑢
2
= 0.

B. The Endemic Equilibrium and Its Stability

In this section, we will investigate the endemic equilibrium
and its stability of the system (3). We first give the following
results.
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Figure 13: Plot of the optimal controls, 𝑢
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Figure 14: Plot of different weight constants on the control (𝐵
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= 50,
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Lemma B.1. Let𝑀 be a 3 × 3 real matrix. If tr(𝑀), det(𝑀),
and det(𝑀[2]) are all negative, then all eigenvalues of𝑀 have
negative real part.

Proof. The proof of this lemma is given in [29].

Theorem B.2. If 𝑅
0
≥ 1, then the endemic equilibrium 𝐸

∗ is
locally asymptotically stable.
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Figure 15: Plot of the number of different weight constants on the
control (𝐵

2
= 200, 𝐵

2
= 100, and 𝐵

2
= 50).

Proof. In order to investigate the local stability of the endemic
equilibrium, the additive compound matrices approach as in
[30, 31] is used.Wewill linearize system (3) about an endemic
equilibrium 𝐸

∗ and get the following Jacobian matrix:

𝐽 (𝐸
∗
)=(

− (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V − 𝜇1 0 − (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
∗

ℎ

(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V −𝜇
1

(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
∗

ℎ

0
Λ V𝛾

𝜇
2

−𝛾𝐼
∗

ℎ
− 𝜇
2

).

(B.1)
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Figure 16: Plot of different weight constants on the control (without
control, 𝐵

1
= 50, 𝐵

1
= 5, and 𝐵

1
= 2).
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Figure 17: Plot of the number of different weight constants on the
control (without control, 𝐵

2
= 200, 𝐵

2
= 100, and 𝐵

2
= 50).

From the Jacobian matrix 𝐽(𝐸
∗
), the second additive

compound matrix 𝐽[2](𝐸∗) is given by

𝐽
[2]
(𝐸
∗
) = (

− (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V − 2𝜇1 (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
∗

ℎ
(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆

∗

ℎ

Λ V𝛾

𝜇
2

− (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V − 𝛾𝐼
∗

ℎ
− 𝜇
1
− 𝜇
2

0

0 (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V −𝛾𝐼
∗

ℎ
− 𝜇
1
− 𝜇
2

). (B.2)

From the Jacobian matrix 𝐽(𝐸∗), we have

tr (𝐽 (𝐸∗)) = − [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V + 𝛾𝐼
∗

ℎ
+ 2𝜇
1
+ 𝜇
2
] < 0.

(B.3)

And we know that system (3) is given

𝜇
1
=
(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆

∗

ℎ
𝐼
∗

V

𝐼
∗

ℎ

,

𝜇
2
=
𝛾𝐼
∗

ℎ
((Λ V/𝜇2) − 𝐼

∗

V )

𝐼∗V
.

(B.4)

Thus,

det (𝐽 (𝐸∗)) = − [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V + 𝜇1]

× [𝜇
1
(𝛾𝐼
∗

ℎ
+ 𝜇
2
) −

Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
∗

ℎ
]

−
Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃)
2
𝐼
∗

V 𝑆
∗

ℎ
= −

Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃)
2
𝐼
∗

V 𝑆
∗

ℎ
< 0,

(B.5)

since we know that

𝜇
1
𝜇
2
= (𝛼𝜙 + 𝛽𝜓𝜃) 𝛾 (

Λ V

𝜇
2

− 𝐼
∗

V ) 𝑆
∗

ℎ
. (B.6)

So

𝜇
1
(𝛾𝐼
∗

ℎ
+ 𝜇
2
) −

Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
∗

ℎ
= 0. (B.7)

Computing directly the determinant of 𝐽[2](𝐸∗) and from
(B.4) and (B.6) we can get

det (𝐽[2] (𝐸∗))

= − (𝛾𝐼
∗

ℎ
+ 𝜇
1
+ 𝜇
2
) [ [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V + 2𝜇1]

× ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V + 𝛾𝐼
∗

ℎ
+ 𝜇
1
+ 𝜇
2
)

−
Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
∗

ℎ
]

+
Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃)
2
𝑆
∗

ℎ
𝐼
∗

V
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= − (𝛾𝐼
∗

ℎ
+ 𝜇
1
+ 𝜇
2
) [((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V + 𝜇1)
2

+ ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V + 𝜇1) (𝛾𝐼
∗

ℎ
+ 𝜇
2
)

+𝜇
1
(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V ]

+
Λ V𝛾

𝜇
2

(𝛼𝜙 + 𝛽𝜓𝜃)
2
𝑆
∗

ℎ
𝐼
∗

V

= − (𝛾𝐼
∗

ℎ
+ 𝜇
1
+ 𝜇
2
) [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V + 𝜇1]

× [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V + 𝜇1 + 𝛾𝐼
∗

ℎ
+ 𝜇
2
]

− 𝜇
1
(𝛾𝐼
∗

ℎ
+ 𝜇
1
+ 𝜇
2
) (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V

+ (𝛼𝜙 + 𝛽𝜓𝜃)
2Λ V𝛾

𝜇
2

𝑆
∗

ℎ
𝐼
∗

V

= − (𝛾𝐼
∗

ℎ
+ 𝜇
1
+ 𝜇
2
) [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼

∗

V + 𝜇1]

× [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V + 𝜇1 + 𝛾𝐼
∗

ℎ
+ 𝜇
2
]

− (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼
∗

V 𝜇
2

1
< 0.

(B.8)

Hence by Lemma B.1, the endemic equilibrium 𝐸
∗ of the

model (3) is locally asymptotically stable in Γ.

Now we prove the global stability of the endemic equilib-
rium 𝐸

∗, when the reproduction number 𝑅
0
is greater than

the unity. For this, we will prove the following result.

Theorem B.3. If 𝑅
0
> 1, then system (3) is uniformly per-

sistent; that is, there exists 𝑐 > 0 (independent of initial con-
ditions), such that lim inf

𝑡→∞
𝐸
ℎ
(𝑡) ≥ 𝑐, lim inf

𝑡→∞
𝐼
ℎ
(𝑡) ≥ 𝑐,

and lim inf
𝑡→∞

𝐼V(𝑡) ≥ 𝑐.

Proof. Let 𝜋 be a semidynamical system (3) in (𝑅
+

0
)
3, 𝜒 a

locally compact metric space, and Γ
0
= {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ Γ | 𝐼V =

0}. The set Γ
0
is a compact subset of Γ and Γ/Γ

0
is positively

invariant set of system (3). Let 𝑃 : 𝜒 → 𝑅
+

0
be defined by

𝑃(𝐸
ℎ
, 𝑆
ℎ
, 𝐼V) = 𝐼V and set 𝑆 = {(𝑆

ℎ
, 𝐼
ℎ
, 𝐼V) ∈ Γ | 𝑃(𝐸ℎ, 𝐼ℎ, 𝐼V) <

𝜌}, where 𝜌 is sufficiently small so that 𝑅
0
(1 − (𝜇

2
/Λ V)𝜌) > 1.

Assume that there is a solution 𝑥 ∈ 𝑆 such that, for each 𝑡 > 0,
we have 𝑃(𝜋(𝑥, 𝑡)) < 𝑃(𝑥) < 𝜌. Let us consider the following:

𝐿 (𝑡) =
Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝛿

∗
)

𝜇
1
𝜇
2

𝐼V + 𝐼ℎ, (B.9)

where 𝛿∗ > 0 is a sufficiently small constant so that 𝑅
0
(1 −

(𝜇
2
/Λ V)𝜌)(1 − 𝛿

∗
) > 1. By a direct calculation, we have

𝐿
󸀠
(𝑡)

≥ 𝜇
1
[
Λ
ℎ
Λ V𝛾 (𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝛿

∗
) (1 − (𝜇

2
𝜌/Λ V))

𝜇
2

1
𝜇
2

2

− 1] 𝐼
ℎ

+
Λ
ℎ
(𝛼𝜙 + 𝛽𝜓𝜃) 𝛿

∗

𝜇
1

𝐼V.

(B.10)

Let

𝛿

= min{𝜇
1
[
Λ
ℎ
Λ V𝛾 (𝛼𝜙 + 𝛽𝜓𝜃) (1 − 𝛿

∗
) (1 − (𝜇

2
𝜌/Λ V))

𝜇
2

1
𝜇
2

2

−1] ,
𝜇
2
𝛿
∗

1 − 𝛿∗
} > 0.

(B.11)

Thus, we have

𝐿
󸀠
(𝑡) ≥ 𝛿𝐿 (𝑡) . (B.12)

The inequality (B.12) implies that 𝐿(𝑡) → ∞ as 𝑡 → ∞.
However, 𝐿(𝑡) is bounded on the set Γ. According toTheorem
1 in [32], we complete the proof of Theorem 2.

Finally, we will investigate the global stability of the
endemic equilibrium𝐸

∗ in the feasible region Γ. To do this we
will use the results about the three dimensionless competitive
systems that live in convex sets [33–35] and powerful theory
of additive compound matrix to prove asymptotic orbital
stability of periodic solutions [30]. We easily can get that
the system (3) is competitive in Γ, by looking at its Jacobian
matrix and choosing the matrix𝐻 as

H = (

1 0 0

0 −1 0

0 0 1

) , (B.13)

with respect to the partial order defined by the orthant

Δ = {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ 𝑅

3
| 𝑆
ℎ
≥ 0, 𝐼
ℎ
≤ 0, 𝐼V ≥ 0} . (B.14)

Theorem B.4. If 𝑅
0
> 1, then the endemic equilibrium 𝐸

∗ is
globally asymptotically stable in int Γ.

Since system (3) is competitive and persistent, and 𝐸
∗

is locally asymptotically stable if 𝑅
0
> 1. Furthermore, in

accordance withTheorem 2.1 andTheorem 2.2 [35],Theorem
600 would be established if we show that system (3) has the
property of stability of periodic orbits. Hence we will prove
the following theorem.

Theorem B.5. If 𝑅
0
> 1, then system (3) has the property of

stability of periodic orbits.

Proof. In accordance with the criterion given by Li and
Muldowney [31], for the asymptotic orbital stability of a
periodic orbit of a general autonomous system, it is sufficient
to prove that the linear nonautonomous system

𝑋
󸀠
(𝑡) = 𝐽 (𝐸

[2]
(𝑝 (𝑡)))𝑋 (𝑡) (B.15)
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is asymptotically stable, where 𝐽(𝐸[2]) is the second additive
compound matrix of the Jacobian 𝐽(𝐸). The Jacobian of
system (3) is given by

𝐽 (𝐸) = (

− (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V − 𝜇1 0 − (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
ℎ

(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V −𝜇
1

(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
ℎ

0
Λ V𝛾

𝜇
2

−𝛾𝐼
ℎ
− 𝜇
2

).

(B.16)

For the solution 𝑝(𝑡), (B.15) becomes

𝑋
󸀠
= − [(𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V + 2𝜇1]𝑋

+ (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
ℎ
𝑌 + (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆

ℎ
𝑍,

𝑌
󸀠
=
Λ V𝛾

𝜇
2

𝑋 − ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V + 𝛾𝐼ℎ + 𝜇1 + 𝜇2) 𝑌,

𝑍
󸀠
= (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V𝑌 − (𝛾𝐼

ℎ
+ 𝜇
1
+ 𝜇
2
) 𝑍.

(B.17)

In order to prove that (B.15) is asymptotically stable, we will
use the following Lyapunov function which is similar to the
one found in [31] for the SEIR model. Let

𝑉 (𝑋 (𝑡) , 𝑌 (𝑡) , 𝑍 (𝑡) , 𝑆
ℎ
, 𝐼
ℎ
, 𝐼V)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋 (𝑡) ,
𝐼
ℎ

𝐼V
𝑌 (𝑡) ,

𝐼
ℎ

𝐼V
𝑍 (𝑡))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

(B.18)

where ‖ ⋅ ‖ is the norm in 𝑅3 defined by

‖(𝑋, 𝑌, 𝑍)‖ = sup {|𝑋| , |𝑌 + 𝑍|} . (B.19)

Since the given system is uniformly persistence, we obtain
that the orbit of 𝑝(𝑡) remains at a positive distance from the
boundary of Γ. Therefore, we have 𝐼

ℎ
(𝑡) ≥ 𝑐, 𝐼

ℎ
(𝑡) ≥ 𝑐 with

0 < 𝑐 < min{Λ
ℎ
/𝜇
1
, Λ V/𝜇2}. Hence, the function 𝑉(𝑡) is well

defined along 𝑝(𝑡) and

𝑉 (𝑋, 𝑌, 𝑍, 𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ≥ 𝑐 ‖(𝑋, 𝑌, 𝑍)‖ . (B.20)

Along the positive solution (𝑋, 𝑌, 𝑍) of the system, 𝑉(𝑡)
becomes

𝑉 (𝑡) = sup{|𝑋| ,
𝐼
ℎ

𝐼V
(|𝑌 + 𝑍|)} . (B.21)

Similarly as was done in [31], we found the following inequal-
ities:
𝐷
+ |𝑋| ≤ − ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V + 2𝜇1) |𝑋|

+ (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
ℎ |𝑌 + 𝑍|

= − ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V + 2𝜇1) |𝑋|

+ (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
ℎ

𝐼V

𝐼
ℎ

(
𝐼
ℎ

𝐼V
(|𝑌| + |𝑍|)) ,

𝐷
+ |𝑌| ≤

Λ V𝛾

𝜇
2

|𝑋| − ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V + 𝛾𝐼ℎ + 𝜇1 + 𝜇2) |𝑌| ,

𝐷
+ |𝑍| ≤ (𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V |𝑌| − (𝛾𝐼ℎ + 𝜇1 + 𝜇2) |𝑍| .

(B.22)

We know that

𝐷
+ (|𝑌 + 𝑍|) ≤

Λ V𝛾

𝜇
2

|𝑋| − (𝛾𝐼ℎ + 𝜇1 + 𝜇2) (|𝑌| + |𝑍|) .

(B.23)

Therefore

𝐷
+
(
𝐼
ℎ

𝐼V
(|𝑌 + 𝑍|))

= (
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V
)
𝐼
ℎ

𝐼V
(|𝑌 + 𝑍|) +

𝐼
ℎ

𝐼V
𝐷
+
(|𝑌 + 𝑍|)

≤ (
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V
)
𝐼
ℎ

𝐼V
(|𝑌 + 𝑍|)

+
𝐼
ℎ

𝐼V
[
Λ V𝛾

𝜇
2

|𝑋| − (𝛾𝐼ℎ + 𝜇1 + 𝜇2) |𝑌 + 𝑍|]

=
𝐼
ℎ

𝐼V

𝛾Λ V

𝜇
2

|𝑋| + (
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V
− 𝛾𝐼
ℎ
− 𝜇
1
− 𝜇
2
)
𝐼
ℎ

𝐼V
|𝑌 + 𝑍| .

(B.24)

Thus we get

𝐷
+
𝑉 (𝑡) ≤ sup {𝑔

1
(𝑡) , 𝑔
2
(𝑡)} 𝑉 (𝑡) , (B.25)

where

𝑔
1 (𝑡) = − ((𝛼𝜙 + 𝛽𝜓𝜃) 𝐼V + 2𝜇1) + (𝛼𝜙 + 𝛽𝜓𝜃) 𝑆ℎ

𝐼V

𝐼
ℎ

,

𝑔
2 (𝑡) =

Λ V𝛾𝐼ℎ

𝜇
2
𝐼V

+
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V
− 𝛾𝐼
ℎ
− 𝜇
1
− 𝜇
2
.

(B.26)

Since

(𝛼𝜙 + 𝛽𝜓𝜃) 𝑆
ℎ

𝐼V

𝐼
ℎ

=
𝐼
󸀠

ℎ

𝐼
ℎ

+ 𝜇
1
,

Λ V𝛾𝐼ℎ

𝜇
2
𝐼V

=
𝐼
󸀠

V

𝐼V
+ 𝛾𝐼
ℎ
+ 𝜇
2
,

(B.27)

we have

𝑔
1
≤
𝐼
󸀠

ℎ

𝐼
ℎ

− 𝜇
1
, 𝑔

2
=
𝐼
󸀠

ℎ

𝐼
ℎ

− 𝜇
1
. (B.28)

Hence we find

sup {𝑔
1
, 𝑔
2
} ≤

𝐼
󸀠

ℎ

𝐼
ℎ

− 𝜇
1
. (B.29)

Therefore, by Gronwall’s inequality, we obtain

𝑉 (𝑡) ≤ 𝑉 (0) 𝐼ℎ𝑒
−𝜇
1
𝑡
≤ 𝑉 (0)

Λ
ℎ

𝜇
1

𝑒
−𝜇
1
𝑡
, (B.30)

which implies that𝑉(𝑡) → 0 as 𝑡 → ∞.This implies that the
given linear system is asymptotically stable and the periodic
solution is asymptotically orbitally stable.
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