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We extend the notions of𝛼-𝜓-proximal contraction and𝛼-proximal admissibility tomultivaluedmaps and then using these notions
we obtain some best proximity point theorems for multivalued mappings. Our results extend some recent results by Jleli and those
contained therein. Some examples are constructed to show the generality of our results.

1. Introduction and Preliminaries

Samet et al. [1] introduced the notion of 𝛼-𝜓-contractive
type mappings and proved some fixed point theorems for
such mappings in the frame work of complete metric spaces.
Karapınar and Samet [2] generalized 𝛼-𝜓-contractive type
mappings and obtained some fixed point theorems for
generalized 𝛼-𝜓-contractive type mapping. Some interesting
multivalued generalizations of 𝛼-𝜓-contractive type map-
pings are available in [3–12]. Recently, Jleli and Samet [13]
introduced the notion of 𝛼-𝜓-proximal contractive type
mappings and proved some best proximity point theorems.
Many authors obtained best proximity point theorems in
different setting; see, for example, [13–35]. Abkar and Gbeleh
[16] and Al-Thagafi and Shahzad [18, 20] investigated best
proximity points for multivalued mappings. The purpose of
this paper is to extend the results of Jleli and Samet [13] for
nonself multivalued mappings. To demonstrate generality of
our main result we have constructed some examples.

Let (𝑋, 𝑑) be a metric space. For 𝐴, 𝐵 ⊂ 𝑋, we use the
following notations: dist(𝐴, 𝐵) = inf{𝑑(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵},
𝐷(𝑥, 𝐵) = inf{𝑑(𝑥, 𝑏) : 𝑏 ∈ 𝐵}, 𝐴

0
= {𝑎 ∈ 𝐴 : 𝑑(𝑎, 𝑏) = dist

(𝐴, 𝐵) for some 𝑏 ∈ 𝐵}, 𝐵
0
= {𝑏 ∈ 𝐵 : 𝑑(𝑎, 𝑏) = dist

(𝐴, 𝐵) for some 𝑎 ∈ 𝐴}, 2𝑋 \ 0 is the set of all nonempty
subsets of 𝑋, 𝐶𝐿(𝑋) is the set of all nonempty closed subsets

of𝑋, and𝐾(𝑋) is the set of all nonempty compact subsets of
𝑋. For every 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋), let

𝐻(𝐴, 𝐵)

=

{
{
{
{

{
{
{
{

{

max{sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵) , sup
𝑦∈𝐵

𝑑 (𝑦, 𝐴)}

if the maximum exists;
∞ otherwise.

(1)

Such a map 𝐻 is called the generalized Hausdorff metric
induced by 𝑑. A point 𝑥∗ ∈ 𝑋 is said to be the best proximity
point of a mapping 𝑇 : 𝐴 → 𝐵 if 𝑑(𝑥∗, 𝑇𝑥∗) = dist(𝐴, 𝐵).
When 𝐴 = 𝐵, the best proximity point reduces to fixed point
of the mapping 𝑇.

Definition 1 (see [28]). Let (𝐴, 𝐵) be a pair of nonempty
subsets of a metric space (𝑋, 𝑑) with 𝐴

0
̸= 0. Then the pair

(𝐴, 𝐵) is said to have the weak 𝑃-property if and only if, for
any 𝑥
1
, 𝑥
2
∈ 𝐴 and 𝑦

1
, 𝑦
2
∈ 𝐵,

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑦
2
) = dist (𝐴, 𝐵) 󳨐⇒ 𝑑 (𝑥

1
, 𝑥
2
) ≤ 𝑑 (𝑦

1
, 𝑦
2
) . (2)
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Example 2. Let 𝑋 = {(0, 1), (1, 0), (0, 3), (3, 0)}, endowed
with the usual metric 𝑑. Let 𝐴 = {(0, 1), (1, 0)} and 𝐵 =

{(0, 3), (3, 0)}. Then for

𝑑 ((0, 1) , (0, 3)) = dist (𝐴, 𝐵) ,

𝑑 ((1, 0) , (3, 0)) = dist (𝐴, 𝐵) ,
(3)

we have

𝑑 ((0, 1) , (1, 0)) < 𝑑 ((0, 3) , (3, 0)) . (4)

Also, 𝐴
0

̸= 0. Thus, the pair (𝐴, 𝐵) satisfies weak 𝑃-property.

Definition 3 (see [13]). Let 𝑇 : 𝐴 → 𝐵 and 𝛼 : 𝐴 × 𝐴 →

[0,∞). We say that 𝑇 is an 𝛼-proximal admissible if

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1

𝑑 (𝑢
1
, 𝑇𝑥
1
) = dist (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = dist (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝛼 (𝑢
1
, 𝑢
2
) ≥ 1, (5)

where 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

Example 4. Let𝑋 = R×R, endowed with the usual metric 𝑑.
Let 𝑎 be any fixed positive real number, 𝐴 = {(𝑎, 𝑦) : 𝑦 ∈ R}

and 𝐵 = {(0, 𝑦) : 𝑦 ∈ R}. Define 𝑇 : 𝐴 → 𝐵 by

𝑇 (𝑎, 𝑦) =

{

{

{

(0,

𝑦

4

) if 𝑦 ≥ 0

(0, 4𝑦) if 𝑦 < 0.
(6)

Define 𝛼 : 𝐴 × 𝐴 → [0,∞) by

𝛼 ((𝑎, 𝑥) , (𝑎, 𝑦)) = {

2 if 𝑥, 𝑦 ≥ 0
0 otherwise.

(7)

Let 𝑤
1
= (𝑎, 𝑦

1
), 𝑤
2
= (𝑎, 𝑦

2
), 𝑤
3
= (𝑎, 𝑦

3
), and 𝑤

4
= (𝑎, 𝑦

4
)

be arbitrary points from 𝐴 satisfying

𝛼 (𝑤
1
, 𝑤
2
) = 2, (8)

𝑑 (𝑤
3
, 𝑇𝑤
1
) = 𝑎 = dist (𝐴, 𝐵) ,

𝑑 (𝑤
4
, 𝑇𝑤
2
) = 𝑎 = dist (𝐴, 𝐵) .

(9)

It follows from (8) that 𝑦
1
, 𝑦
2
≥ 0. Further, from (9), 𝑦

3
=

𝑦
1
/4 and 𝑦

4
= 𝑦
2
/4, which implies that 𝑦

3
, 𝑦
4
≥ 0. Hence,

𝛼(𝑤
3
, 𝑤
4
) = 2. Therefore, 𝑇 is an 𝛼-proximal admissible map.

Let Ψ denote the set of all functions 𝜓: [0,∞) → [0,∞)

satisfying the following properties:

(a) 𝜓 is monotone nondecreasing;
(b) ∑∞

𝑛=1
𝜓
𝑛
(𝑡) < ∞ for each 𝑡 > 0.

Definition 5 (see [13]). A nonself mapping 𝑇 : 𝐴 → 𝐵 is said
to be an 𝛼-𝜓-proximal contraction, if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) ∀𝑥, 𝑦 ∈ 𝐴, (10)

where 𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ.

Example 6. Let us consider Example 4 again with 𝜓(𝑡) = 𝑡/2
for each 𝑡 ≥ 0. Then it is easy to see that, for each 𝑤

1
, 𝑤
2
∈ 𝐴,

we have

𝛼 (𝑤
1
, 𝑤
2
) 𝑑 (𝑇𝑤

1
, 𝑇𝑤
2
) ≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑤
1
− 𝑤
2

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑤

1
, 𝑤
2
)) .

(11)

Thus, 𝑇 is an 𝛼-𝜓-proximal contraction.

The following are main results of [13].

Theorem 7 (see [13], Theorem 3.1). Let 𝐴 and 𝐵 be two non-
empty closed subsets of a complete metric space (𝑋, 𝑑) such that
𝐴
0
is nonempty. Let 𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ.

Suppose that𝑇 : 𝐴 → 𝐵 be amappings satisfying the following
conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is an 𝛼-proximal admissible;

(iii) there exist elements 𝑥
0
, 𝑥
1
∈ 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (12)

(iv) 𝑇 is a continuous 𝛼-𝜓-proximal contraction.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝑑(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

(C) If {𝑥
𝑛
} is a sequence in 𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1

for all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then there exists a

subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛𝑘
, 𝑥) ≥ 1 for all 𝑘.

Theorem 8 (see [13], Theorem 3.2). Let 𝐴 and 𝐵 be two
nonempty closed subsets of a complete metric space (𝑋, 𝑑) such
that 𝐴

0
is nonempty. Let 𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ.

Suppose that 𝑇 : 𝐴 → 𝐵 is a mapping satisfying the following
conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
and (𝐴, 𝐵) satisfies the 𝑃-property;

(ii) 𝑇 is an 𝛼-proximal admissible;

(iii) there exist elements 𝑥
0
and 𝑥

1
∈ 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (13)

(iv) property (C) holds and 𝑇 is an 𝛼-𝜓-proximal contrac-
tion.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝑑(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

Definition 9 (see [16]). An element 𝑥∗ ∈ 𝐴 is said to be the
best proximity point of a multivalued nonself mapping 𝑇, if
𝐷(𝑥
∗
, 𝑇𝑥
∗
) = dist(𝐴, 𝐵).
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2. Main Result

We start this section by introducing following definition.

Definition 10. Let 𝐴 and 𝐵 be two nonempty subsets of a
metric space (𝑋, 𝑑). A mapping 𝑇 : 𝐴 → 2

𝐵
\ 0 is called

𝛼-proximal admissible if there exists a mapping 𝛼 : 𝐴×𝐴 →

[0,∞) such that

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1

𝑑 (𝑢
1
, 𝑦
1
) = dist (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑦
2
) = dist (𝐴, 𝐵)

}

}

}

󳨐⇒ 𝛼 (𝑢
1
, 𝑢
2
) ≥ 1, (14)

where 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴, 𝑦

1
∈ 𝑇𝑥
1
, and 𝑦

2
∈ 𝑇𝑥
2
.

Definition 11. Let 𝐴 and 𝐵 be two nonempty subsets of a
metric space (𝑋, 𝑑). A mapping 𝑇 : 𝐴 → 𝐶𝐿(𝐵) is said to
be an 𝛼-𝜓-proximal contraction, if there exist two functions
𝜓 ∈ Ψ and 𝛼 : 𝐴 × 𝐴 → [0,∞) such that

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝐴. (15)

Lemma 12 (see [5]). Let (𝑋, 𝑑) be a metric space and 𝐵 ∈

𝐶𝐿(𝑋). Then for each 𝑥 ∈ 𝑋 with 𝑑(𝑥, 𝐵) > 0 and 𝑞 > 1,
there exists an element 𝑏 ∈ 𝐵 such that

𝑑 (𝑥, 𝑏) < 𝑞𝑑 (𝑥, 𝐵) . (16)

Now we are in position to state and prove our first result.

Theorem 13. Let 𝐴 and 𝐵 be two nonempty closed subsets of
a complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ be a strictly increasing
map. Suppose that 𝑇 : 𝐴 → 𝐶𝐿(𝐵) is a mapping satisfying
the following conditions:

(i) 𝑇𝑥 ⊆ 𝐵
0
for each 𝑥 ∈ 𝐴

0
and (𝐴, 𝐵) satisfies the weak

𝑃-property;
(ii) 𝑇 is an 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
, 𝑥
1
∈ 𝐴
0
and 𝑦

1
∈ 𝑇𝑥
0
such

that

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (17)

(iv) 𝑇 is a continuous 𝛼-𝜓-proximal contraction.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝐷(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

Proof. From condition (iii), there exist elements 𝑥
0
, 𝑥
1
∈ 𝐴
0

and 𝑦
1
∈ 𝑇𝑥
0
such that

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1. (18)

Assume that 𝑦
1
∉ 𝑇𝑥
1
; for otherwise 𝑥

1
is the best proximity

point. From condition (iv), we have

0 < 𝑑 (𝑦
1
, 𝑇𝑥
1
) ≤ 𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
)

≤ 𝛼 (𝑥
0
, 𝑥
1
)𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) ≤ 𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) .

(19)

For 𝑞 > 1, it follows fromLemma 12 that there exists 𝑦
2
∈ 𝑇𝑥
1

such that

0 < 𝑑 (𝑦
1
, 𝑦
2
) < 𝑞𝑑 (𝑦

1
, 𝑇𝑥
1
) . (20)

From (19) and (20), we have

0 < 𝑑 (𝑦
1
, 𝑦
2
) < 𝑞𝑑 (𝑦

1
, 𝑇𝑥
1
) ≤ 𝑞𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) . (21)

As 𝑦
2
∈ 𝑇𝑥
1
⊆ 𝐵
0
, there exists 𝑥

2
̸= 𝑥
1
∈ 𝐴
0
such that

𝑑 (𝑥
2
, 𝑦
2
) = dist (𝐴, 𝐵) ; (22)

for otherwise 𝑥
1
is the best proximity point. As (𝐴, 𝐵) satisfies

the weak 𝑃-property, from (18) and (22), we have

0 < 𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝑑 (𝑦

1
, 𝑦
2
) . (23)

From (21) and (23), we have

0 < 𝑑 (𝑥
1
, 𝑥
2
) < 𝑞𝑑 (𝑦

1
, 𝑇𝑥
1
) ≤ 𝑞𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) . (24)

Since 𝜓 is strictly increasing, we have 𝜓(𝑑(𝑥
1
, 𝑥
2
)) <

𝜓(𝑞𝜓(𝑑(𝑥
0
, 𝑥
1
))). Put 𝑞

1
= 𝜓(𝑞𝜓(𝑑(𝑥

0
, 𝑥
1
)))/𝜓(𝑑(𝑥

1
, 𝑥
2
)).

Also, we have 𝛼(𝑥
0
, 𝑥
1
) ≥ 1, 𝑑(𝑥

1
, 𝑦
1
) = dist(𝐴, 𝐵), and 𝑑(𝑥

2
,

𝑦
2
) = dist(𝐴, 𝐵). Since 𝑇 is an 𝛼-proximal admissible, then

𝛼(𝑥
1
, 𝑥
2
) ≥ 1. Thus we have

𝑑 (𝑥
2
, 𝑦
2
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1. (25)

Assume that 𝑦
2
∉ 𝑇𝑥
2
; for otherwise 𝑥

2
is the best proximity

point. From condition (iv), we have

0 < 𝑑 (𝑦
2
, 𝑇𝑥
2
) ≤ 𝐻 (𝑇𝑥

1
, 𝑇𝑥
2
)

≤ 𝛼 (𝑥
1
, 𝑥
2
)𝐻 (𝑇𝑥

1
, 𝑇𝑥
2
) ≤ 𝜓 (𝑑 (𝑥

1
, 𝑥
2
)) .

(26)

For 𝑞
1
> 1, it follows from Lemma 12 that there exists 𝑦

3
∈

𝑇𝑥
2
such that

0 < 𝑑 (𝑦
2
, 𝑦
3
) < 𝑞
1
𝑑 (𝑦
2
, 𝑇𝑥
2
) . (27)

From (26) and (27), we have

0 < 𝑑 (𝑦
2
, 𝑦
3
) < 𝑞
1
𝑑 (𝑦
2
, 𝑇𝑥
2
) ≤ 𝑞
1
𝜓 (𝑑 (𝑥

1
, 𝑥
2
))

= 𝜓 (𝑞𝜓 (𝑑 (𝑥
0
, 𝑥
1
))) .

(28)

As 𝑦
3
∈ 𝑇𝑥
2
⊆ 𝐵
0
, there exists 𝑥

3
̸= 𝑥
2
∈ 𝐴
0
such that

𝑑 (𝑥
3
, 𝑦
3
) = dist (𝐴, 𝐵) ; (29)

for otherwise 𝑥
2
is the best proximity point. As (𝐴, 𝐵) satisfies

the weak 𝑃-property, from (25) and (29), we have

0 < 𝑑 (𝑥
2
, 𝑥
3
) ≤ 𝑑 (𝑦

2
, 𝑦
3
) . (30)

From (28) and (30), we have

0 < 𝑑 (𝑥
2
, 𝑥
3
) < 𝑞
1
𝑑 (𝑦
2
, 𝑇𝑥
2
) ≤ 𝑞
1
𝜓 (𝑑 (𝑥

1
, 𝑥
2
))

= 𝜓 (𝑞𝜓 (𝑑 (𝑥
0
, 𝑥
1
))) .

(31)
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Since 𝜓 is strictly increasing, we have 𝜓(𝑑(𝑥
2
, 𝑥
3
)) < 𝜓

2
(𝑞𝜓

(𝑑(𝑥
0
, 𝑥
1
))). Put 𝑞

2
= 𝜓
2
(𝑞𝜓(𝑑(𝑥

0
, 𝑥
1
)))/𝜓(𝑑(𝑥

2
, 𝑥
3
)). Also,

we have 𝛼(𝑥
1
, 𝑥
2
) ≥ 1, 𝑑(𝑥

2
, 𝑦
2
) = dist(𝐴, 𝐵), and 𝑑(𝑥

3
,

𝑦
3
) = dist(𝐴, 𝐵). Since 𝑇 is an 𝛼-proximal admissible then

𝛼(𝑥
2
, 𝑥
3
) ≥ 1. Thus, we have

𝑑 (𝑥
3
, 𝑦
3
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

2
, 𝑥
3
) ≥ 1. (32)

Continuing in the same way, we get sequences {𝑥
𝑛
} in𝐴

0
and

{𝑦
𝑛
} in 𝐵
0
, where 𝑦

𝑛
∈ 𝑇𝑥
𝑛−1

for each 𝑛 ∈ N such that

𝑑 (𝑥
𝑛+1
, 𝑦
𝑛+1
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1, (33)

𝑑 (𝑦
𝑛+1
, 𝑦
𝑛+2
) < 𝜓
𝑛
(𝑞𝜓 (𝑑 (𝑥

0
, 𝑥
1
))) . (34)

As 𝑦
𝑛+2

∈ 𝑇𝑥
𝑛+1

⊆ 𝐵
0
, there exists 𝑥

𝑛+2
̸= 𝑥
𝑛+1

∈ 𝐴
0
such

that

𝑑 (𝑥
𝑛+2
, 𝑦
𝑛+2
) = dist (𝐴, 𝐵) . (35)

Since (𝐴, 𝐵) satisfies the weak 𝑃-property form (33) and (35),
we have 𝑑(𝑥

𝑛+1
, 𝑥
𝑛+2
) ≤ 𝑑(𝑦

𝑛+1
, 𝑦
𝑛+2
). Then from (34), we

have

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
) < 𝜓
𝑛
(𝑞𝜓 (𝑑 (𝑥

0
, 𝑥
1
))) . (36)

For 𝑛 > 𝑚 we have

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑

𝑖=𝑛

𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
) <

𝑚−1

∑

𝑖=𝑛

𝜓
𝑖−1
(𝑞𝜓 (𝑑 (𝑥

0
, 𝑥
1
))) .

(37)

Hence, {𝑥
𝑛
} is a Cauchy sequence in 𝐴. Similarly, we show

that {𝑦
𝑛
} is a Cauchy sequence in 𝐵. Since 𝐴 and 𝐵 are closed

subsets of a complete metric space, there exist 𝑥∗ in𝐴 and 𝑦∗
in 𝐵 such that 𝑥

𝑛
→ 𝑥
∗ and 𝑦

𝑛
→ 𝑦
∗ as 𝑛 → ∞. By (35),

we conclude that 𝑑(𝑥∗, 𝑦∗) = dist(𝐴, 𝐵) as 𝑛 → ∞. Since
𝑇 is continuous and 𝑦

𝑛
∈ 𝑇𝑥
𝑛−1

, we have 𝑦∗ ∈ 𝑇𝑥∗. Hence,
dist(𝐴, 𝐵) ≤ 𝐷(𝑥∗, 𝑇𝑥∗) ≤ 𝑑(𝑥∗, 𝑦∗) = dist(𝐴, 𝐵). Therefore,
𝑥
∗ is the best proximity point of the mapping 𝑇.

Theorem 14. Let 𝐴 and 𝐵 be two nonempty closed subsets of
a complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝑇 : 𝐴 → 𝐾(𝐵) be mappings
satisfying the following conditions:

(i) 𝑇𝑥 ⊆ 𝐵
0
for each 𝑥 ∈ 𝐴

0
and (𝐴, 𝐵) satisfies the weak

𝑃-property;
(ii) 𝑇 is an 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
, 𝑥
1
∈ 𝐴
0
and 𝑦

1
∈ 𝑇𝑥
0
such

that

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (38)

(iv) 𝑇 is a continuous 𝛼-𝜓-proximal contraction.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝐷(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

Theorem 15. Let 𝐴 and 𝐵 be two nonempty closed subsets of
a complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝜓 ∈ Ψ be a strictly increasing
map. Suppose that 𝑇 : 𝐴 → 𝐶𝐿(𝐵) is a mapping satisfying
the following conditions:

(i) 𝑇𝑥 ⊆ 𝐵
0
for each 𝑥 ∈ 𝐴

0
and (𝐴, 𝐵) satisfies the weak

𝑃-property;
(ii) 𝑇 is an 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
, 𝑥
1
∈ 𝐴
0
and 𝑦

1
∈ 𝑇𝑥
0
such

that

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (39)

(iv) property (C) holds and 𝑇 is an 𝛼-𝜓-proximal contrac-
tion.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝐷(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

Proof. Following the proof ofTheorem 13, there exist Cauchy
sequences {𝑥

𝑛
} in 𝐴 and {𝑦

𝑛
} in 𝐵 such that (33) holds and

𝑥
𝑛
→ 𝑥

∗
∈ 𝐴 and 𝑦

𝑛
→ 𝑦

∗
∈ 𝐵 as 𝑛 → ∞. From

the condition (C), there exists a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
}

such that 𝛼(𝑥
𝑛𝑘
, 𝑥
∗
) ≥ 1 for all 𝑘. Since 𝑇 is an 𝛼-𝜓-proximal

contraction, we have

𝐻(𝑇𝑥
𝑛𝑘
, 𝑇𝑥
∗
) ≤ 𝛼 (𝑥

𝑛𝑘
, 𝑥
∗
)𝐻 (𝑇𝑥

𝑛𝑘
, 𝑇𝑥
∗
)

≤ 𝜓 (𝑑 (𝑥
𝑛𝑘
, 𝑥
∗
)) , ∀𝑘.

(40)

Letting 𝑘 → ∞ in the above inequality, we get𝑇𝑥
𝑛𝑘
→ 𝑇𝑥

∗.
By continuity of the metric 𝑑, we have

𝑑 (𝑥
∗
, 𝑦
∗
) = lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘+1

, 𝑦
𝑛𝑘+1

) = dist (𝐴, 𝐵) . (41)

Since 𝑦
𝑛𝑘+1

∈ 𝑇
𝑥𝑛𝑘

, 𝑦
𝑛𝑘
→ 𝑦
∗, and 𝑇𝑥

𝑛𝑘
→ 𝑇𝑥

∗, then 𝑦∗ ∈
𝑇𝑥
∗. Hence, dist(𝐴, 𝐵) ≤ 𝐷(𝑥

∗
, 𝑇𝑥
∗
) ≤ 𝑑(𝑥

∗
, 𝑦
∗
) = dist(𝐴,

𝐵). Therefore, 𝑥∗ is the best proximity point of the mapping
𝑇.

Theorem 16. Let 𝐴 and 𝐵 be two nonempty closed subsets of
a complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝑇 : 𝐴 → 𝐾(𝐵) be mappings
satisfying the following conditions:

(i) 𝑇𝑥 ⊆ 𝐵
0
for each 𝑥 ∈ 𝐴

0
and (𝐴, 𝐵) satisfies the weak

𝑃-property;
(ii) 𝑇 is an 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
, 𝑥
1
∈ 𝐴
0
and 𝑦

1
∈ 𝑇𝑥
0
such

that

𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (42)

(iv) property (C) holds and 𝑇 is an 𝛼-𝜓-proximal contrac-
tion.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝐷(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).
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Example 17. Let 𝑋 = [0,∞) × [0,∞) be endowed with the
usual metric 𝑑. Suppose that 𝐴 = {(1/2, 𝑥) : 0 ≤ 𝑥 < ∞} and
𝐵 = {(0, 𝑥) : 0 ≤ 𝑥 < ∞}. Define 𝑇 : 𝐴 → 𝐶𝐿(𝐵) by

𝑇(

1

2

, 𝑎) =

{

{

{

{(0,

𝑥

2

) : 0 ≤ 𝑥 ≤ 𝑎} if 𝑎 ≤ 1

{(0, 𝑥
2
) : 0 ≤ 𝑥 ≤ 𝑎

2
} if 𝑎 > 1,

(43)

and 𝛼 : 𝐴 × 𝐴 → [0,∞) by

𝛼 (𝑥, 𝑦) =

{

{

{

1 if 𝑥, 𝑦 ∈ {(1
2

, 𝑎) : 0 ≤ 𝑎 ≤ 1}

0 otherwise.
(44)

Let 𝜓(𝑡) = 𝑡/2 for all 𝑡 ≥ 0. Notice that 𝐴
0
= 𝐴, 𝐵

0
= 𝐵,

and 𝑇𝑥 ⊆ 𝐵
0
for each 𝑥 ∈ 𝐴

0
. Also, the pair (𝐴, 𝐵) satisfies

the weak 𝑃-property. Let 𝑥
0
, 𝑥
1
∈ {(1/2, 𝑥) : 0 ≤ 𝑥 ≤ 1};

then 𝑇𝑥
0
, 𝑇𝑥
1
⊆ {(0, 𝑥/2) : 0 ≤ 𝑥 ≤ 1}. Consider 𝑦

1
∈ 𝑇𝑥
0
,

𝑦
2
∈ 𝑇𝑥
1
, and 𝑢

1
, 𝑢
2
∈ 𝐴 such that 𝑑(𝑢

1
, 𝑦
1
) = dist(𝐴, 𝐵)

and 𝑑(𝑢
2
, 𝑦
2
) = dist(𝐴, 𝐵). Then we have 𝑢

1
, 𝑢
2
∈ {(1/2, 𝑥) :

0 ≤ 𝑥 ≤ 1/2}. Hence, 𝑇 is an 𝛼-proximal admissible map. For
𝑥
0
= (1/2, 1) ∈ 𝐴

0
and 𝑦

1
= (0, 1/2) ∈ 𝑇𝑥

0
in 𝐵
0
, we have

𝑥
1
= (1/2, 1/2) ∈ 𝐴

0
such that 𝑑(𝑥

1
, 𝑦
1
) = dist(𝐴, 𝐵) and

𝛼(𝑥
0
, 𝑥
1
) = 1. If 𝑥, 𝑦 ∈ {(1/2, 𝑎) : 0 ≤ 𝑎 ≤ 1}, then we have

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) =

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2

=

1

2

𝑑 (𝑥, 𝑦) = 𝜓 (𝑑 (𝑥, 𝑦)) ;

(45)

for otherwise

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) . (46)

Hence, 𝑇 is an 𝛼-𝜓-proximal contraction. Moreover, if {𝑥
𝑛
}

is a sequence in 𝐴 such that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) = 1 for all 𝑛 and

𝑥
𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then there exists a subsequence

{𝑥
𝑛𝑘
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛𝑘
, 𝑥) = 1 for all 𝑘.Therefore, all the

conditions of Theorem 15 hold and 𝑇 has the best proximity
point.

Example 18. Let 𝑋 = [0,∞) × [0,∞) be endowed with the
usual metric 𝑑. Let 𝑎 > 1 be any fixed real number, 𝐴 =

{(𝑎, 𝑥) : 0 ≤ 𝑥 < ∞} and 𝐵 = {(0, 𝑥) : 0 ≤ 𝑥 < ∞}. Define
𝑇 : 𝐴 → 𝐶𝐿(𝐵) by

𝑇 (𝑎, 𝑥) = {(0, 𝑏
2
) : 0 ≤ 𝑏 ≤ 𝑥} (47)

and 𝛼 : 𝐴 × 𝐴 → [0,∞) by

𝛼 ((𝑎, 𝑥) , (𝑎, 𝑦)) =

{

{

{

1 if 𝑥 = 𝑦 = 0
1

𝑎 (𝑥 + 𝑦)

otherwise. (48)

Let 𝜓(𝑡) = (1/𝑎)𝑡 for all 𝑡 ≥ 0. Notice that 𝐴
0
= 𝐴, 𝐵

0
= 𝐵,

and𝑇𝑥 ⊆ 𝐵
0
for each 𝑥 ∈ 𝐴

0
. If𝑤
1
= (𝑎, 𝑦

1
), 𝑤
2
= (𝑎, 𝑦

2
) ∈ 𝐴

with either 𝑦
1

̸= 0 or 𝑦
2

̸= 0 or both are nonzero, we have

𝛼 (𝑤
1
, 𝑤
2
)𝐻 (𝑇𝑤

1
, 𝑇𝑤
2
) =

1

𝑎 (𝑦
1
+ 𝑦
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑦
1
)
2
− (𝑦
2
)
2󵄨󵄨
󵄨
󵄨
󵄨

=

1

𝑎

󵄨
󵄨
󵄨
󵄨
𝑦
1
− 𝑦
2

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑤

1
, 𝑤
2
)) ;

(49)

for otherwise
𝛼 (𝑤
1
, 𝑤
2
)𝐻 (𝑇𝑤

1
, 𝑇𝑤
2
) = 0 = 𝜓 (𝑑 (𝑤

1
, 𝑤
2
)) . (50)

For 𝑥
0
= (𝑎, 1/2𝑎) ∈ 𝐴

0
and 𝑦

1
= (0, 1/4𝑎

2
) ∈ 𝑇𝑥

0
in 𝐵
0
,

we have 𝑥
1
= (𝑎, 1/4𝑎

2
) ∈ 𝐴

0
such that 𝑑(𝑥

1
, 𝑦
1
) = 𝑎 =

dist(𝐴, 𝐵) and 𝛼(𝑥
0
, 𝑥
1
) > 1. Furthermore, it is easy to see

that remaining conditions of Theorem 13 also hold. Thus, 𝑇
has the best proximity point.

3. Consequences

From results of previous section, we immediately obtain the
following results.

Corollary 19. Let 𝐴 and 𝐵 be two nonempty closed subsets of
a complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝑇 : 𝐴 → 𝐵 be mappings satisfying
the following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
and (𝐴, 𝐵) satisfies the weak 𝑃-property;

(ii) 𝑇 is an 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (51)

(iv) 𝑇 is a continuous 𝛼-𝜓-proximal contraction.
Then there exists an element 𝑥∗ ∈ 𝐴

0
such that 𝑑(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

Corollary 20. Let 𝐴 and 𝐵 be two nonempty closed subsets of
a complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonempty. Let

𝛼 : 𝐴 × 𝐴 → [0,∞) and 𝑇 : 𝐴 → 𝐵 be mappings satisfying
the following conditions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
and (𝐴, 𝐵) satisfies the weak 𝑃-property;

(ii) 𝑇 is an 𝛼-proximal admissible;
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = dist (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1; (52)

(iv) property (C) holds and 𝑇 is an 𝛼-𝜓-proximal contrac-
tion.

Then there exists an element 𝑥∗ ∈ 𝐴
0
such that 𝑑(𝑥∗, 𝑇𝑥∗) =

dist(𝐴, 𝐵).

Remark 21. Note that Corollaries 19 and 20 generalize Theo-
rems 7 and 8 in Section 1, respectively.
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