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With a new notion of independence of random variables, we establish the nonadditive version of weak law of large numbers (LLN)
for the independent and identically distributed (IID) random variables under Choquet expectations induced by 2-alternating
capacities. Moreover, we weaken the moment assumptions to the first absolute moment and characterize the approximate
distributions of random variables as well. Naturally, our theorem can be viewed as an extension of the classical LLN to the case
where the probability is no longer additive.

1. Introduction

Ever since the definition of capacity was introduced by
Choquet [1] in 1954, it has been a heated scientific subject
worldwide. Since in many application fields, such as finance,
economics, and robust statistics, the traditional additive
probability measures fail to provide adequate or good infor-
mation to describe or interpret the uncertain phenomena
accurately. Meanwhile, capacities, the nonadditive proba-
bility measures, seem to be a powerful tool to model the
uncertaintywhen the assumption of additivity is suspect (e.g.,
Augustin [2], Maccheroni and Marinacci [3], Doob [4], and
Schmeidler [5]).

In applied statistics and probabilities, law of large num-
bers (LLN) is one of the most frequently used results.
Recently, many authors have investigated different kinds of
LLNs for capacities. From 1999 to 2005, Maccheroni and
Marinacci [3, 6] introduced the definition of independence of
random variables relative to a capacity and then presented a
strong LLN for totally monotone capacities. Around 2006, by
adopting the partial differential equations (PDE), Peng [7–9]
proved the LLN with the independence of random variables
he defined under sublinear expectations. In 2009, Chareka
[10] obtained the LLN for Choquet capacities by converting
the nonadditive Choquet integral into the additive Lebesgue-
Stieltjes integral. Later, Chen [11] derived a natural extension
of the classical Kolmogorov strong LLN to the subadditive
case and the related application was given by Chen et al.

[12]. In 2011, using Chebyshev’s inequality and Borel-Cantelli
lemma for capacities, Li and Chen [13] provided the LLN
for negatively correlated random variables. In 2013, Z. Chen
and J. Chen [14] proposed a new proof of maximal distri-
bution theorem and then derived the LLN under sublinear
expectations with applications in finance. Most of the LLN
literature above focuses on the estimation, or the confidence
intervals of the average of random variables on a capacity
space, only a few gives information of the distributions of
random variables.

So far, the works closely related to our results are Peng
[7] and Z. Chen and J. Chen [14] in the sense that the three
LLNs are all proved from the perspective of convergence in
distribution (in law). However, the substantive differences
not only lie in assumptions, such as the definitions of
independence and the moment conditions, but also lie in
proving techniques: Peng achieves LLN with the help of
PDE, while our LLN is proved by Feller’s pure probabilistic
method, using Taylor’s expansions and some basic properties
of Choquet expectations.

As we known, the key to prove classical LLN are the addi-
tivity of probabilities/expectations aswell as themoment con-
ditions of random variables. However, the Choquet expec-
tations happen to be the nonadditive expectations. To over-
come this nonadditive problem, we adopt the 2-alternating
capacity; thus, the Choquet expectations induced by it turn to
be subadditive ones, under which we consider the sequence
{𝑋
𝑖
}
∞

𝑖=1
of IID random variables converges in distribution.
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In this paper, firstly, we introduce a notion of independence
of random variables under Choquet expectations, which is
different from [7], then establish the nonadditive version
of LLN, and characterize the approximate distribution of
(1/𝑛)∑

𝑛

𝑖=1
𝑋
𝑖
for large 𝑛. Moreover, our moment condition is

weaker than other Choquet literature’s.
The paper is organized as follows. In Section 2, we

present some basic concepts associated with the Choquet
expectations. One of the most important ones is the new
concept of independence we introduced in this paper, under
which we establish our results. In Section 3, we state the
LLN under Choquet expectations with proof followed by the
conclusion remarks in Section 4.

2. Preliminary

In this section, we give an overview of the definitions and
properties concerning capacities.

Let (Ω,F) be a measurable space. Suppose that 𝐶
𝑏
(R) is

the set of all bounded and continuous real-valued functions
onR and𝐶

2

𝑏
(R) is the set of functions in𝐶

𝑏
(R)with bounded,

continuous first- and second-order derivatives.

Definition 1. A set function V : F → [0, 1] is called a
capacity, if it satisfies the following properties:

(1) V(0) = 0, V(Ω) = 1;
(2) V(𝐴) ≤ V(𝐵) whenever 𝐴 ⊆ 𝐵 and 𝐴, 𝐵 ∈ F.

Definition 2. Let 𝑋 be a random variable on (Ω,F). The
upper Choquet expectation (integral) of 𝑋 induced by a
capacity V onF is defined by

C
𝑉 [𝑋] := ∫

Ω

𝑋𝑑V (𝑡) = ∫
∞

0

V (𝑋 > 𝑡) 𝑑𝑡

+ ∫
0

−∞

[V (𝑋 > 𝑡) − 1] 𝑑𝑡.

(1)

The lowerChoquet expectation of𝑋 induced byV is given
by

C
𝑉 [𝑋] := −C

𝑉 [−𝑋] , ∀𝑋 ∈ F, (2)

which is conjugate to the upper expectation and satisfies
C
𝑉
[𝑋] ≤ C

𝑉
[𝑋].

For simplicity, we can only consider the upper Choquet
expectation in the sequel, since the lower (conjuagte) part can
be considered similarly.

Lately, a few papers have discussed the Choquet expec-
tation (integral); however, we only need the following basic
properties in this paper.

Proposition 3 (see Dennerberg [15]). Let 𝑋, 𝑌 be two
random variables on (Ω,F), and let C

𝑉
be the upper Choquet

expectation induced by a capacity V . Then, one has
(1) monotonicity: 𝑋 ≥ 𝑌 implies C

𝑉
[𝑋] ≥ C

𝑉
[𝑌];

(2) positive homogeneity:C
𝑉
[𝜆𝑋] = 𝜆C

𝑉
[𝑋],𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ≥

0;
(3) translation invariance: C

𝑉
[𝑋 + 𝑎] = C

𝑉
[𝑋] + 𝑎,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ R.

Independence. We now recall the notion of independence in
probability case briefly and then extend it to the nonadditive
case. Let 𝜉, 𝜂 be two random variables on probability space
(Ω,F, 𝑃). Let 𝐹

𝜉
and 𝐹
𝜂
be the distribution functions of 𝜉 and

𝜂, respectively, under probability 𝑃; the expectation 𝐸
𝑃
under

additive 𝑃 is defined by (see Chung [16, page 45, Theorem
2.3])

𝐸
𝑃
[𝜉] = ∫

∞

−∞

𝑥𝑑𝐹
𝜉 (𝑥)

= ∫
∞

0

𝑃 (𝜉 > 𝑥) 𝑑𝑥

+ ∫
0

−∞

[𝑃 (𝜉 > 𝑥) − 1] 𝑑𝑥.

(3)

If 𝜉 and 𝜂 are said to be independent for any bounded real-
valued function 𝜑 on R,

𝐸
𝑃
[𝜑 (𝜉 + 𝜂)] = ∫

∞

−∞

(∫
∞

−∞

𝜑 (𝑥 + 𝑦) 𝑑𝐹
𝜂
(𝑦)) 𝑑𝐹

𝜉 (𝑥)

= ∫
∞

−∞

(∫
∞

−∞

𝜑 (𝑥 + 𝑦) 𝑑𝐹
𝜉 (𝑥)) 𝑑𝐹

𝜂
(𝑦) .

(4)

Then, the independence for additive expectation 𝐸
𝑃
can be

viewed as

𝐸
𝑃
[𝜑 (𝜉 + 𝜂)] = 𝐸

𝑃
[𝐸
𝑃
[𝜑 (𝑥 + 𝜂)

󵄨󵄨󵄨󵄨󵄨𝑥=𝜉
]]

= 𝐸
𝑃
[𝐸
𝑃
[𝜑 (𝜉 + 𝑦)

󵄨󵄨󵄨󵄨󵄨𝑦=𝜂
]] .

(5)

It is worth pointing out that the independence above is
mutual independence due to Fubini’s theorem, but for nonad-
ditive Choquet expectations, the mutuality is no longer true;
that is, the second equality in (5) does not hold.

Motivated by the probability case, we give the definition
of independence under Choquet expectations naturally.

Definition 4. Let C
𝑉

be the upper Choquet expectation,
𝑋,𝑌,𝑋

𝑖
∈ F, 𝑖 ≥ 1. Then we have the following.

(i) Independence: random variable 𝑌 is independent of
𝑋, if for any function 𝜑 ∈ 𝐶

𝑏
(R),

C
𝑉
[𝜑 (𝑋 + 𝑌)] = C

𝑉
[C
𝑉
[𝜑 (𝑥 + 𝑌)

󵄨󵄨󵄨󵄨𝑥=𝑋 ]] . (6)

(ii) Identical distribution: random variables 𝑋 and 𝑌 are
said to be identically distributed, if for each real-
valued function 𝜑 with 𝜑(𝑋), 𝜑(𝑌) ∈ F,

C
𝑉
[𝜑 (𝑋)] = C

𝑉
[𝜑 (𝑌)] < ∞. (7)

(iii) IID sequence: a sequence {𝑋
𝑖
}
∞

𝑖=1
of random vari-

ables is called independent and identically distributed
(IID), if𝑋

𝑖
and𝑋

𝑗
are identically distributed for each

𝑖, 𝑗 ⩾ 1 and 𝑋
𝑖+1

is independent of ∑𝑖
𝑗=1

𝑋
𝑗
.

Motivated by Peng [7], we give the notions of distribution
functions and convergence in distribution for Choquet’s case.
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Definition 5. Let C
𝑉

be the upper Choquet expectation
induced by a capacity V on F, 𝑋 ∈ F. For any real-valued
function 𝜑 onR with 𝜑(𝑋) ∈ F, the distribution function of
𝑋 is defined by

F
𝑋

[𝜑] := C
𝑉
[𝜑 (𝑋)] , ∀𝑋 ∈ F. (8)

Definition 6. A sequence {𝑋
𝑖
}
∞

𝑖=1
of random variables is said

to converge in distribution (in law) under upper Choquet
expectation C

𝑉
on F, if for each real-valued function 𝜑 on

R with 𝜑(𝑋
𝑖
) ∈ F, 𝑖 ≥ 1, the sequence {C

𝑉
[𝜑(𝑋
𝑖
)]}
∞

𝑖=1

converges.

2-Alternating Capacities. A lot of work on capacities has
focused on the 2-alternating case, since the 2-alternating
capacities can be applied in many fields, for example, in game
theory as certain convex games (see Shapley [17]), in Bayesian
robustness [18], and so forth.

Definition 7. A capacity V is 2-alternating if for all 𝐴, 𝐵 ∈ F,

V (𝐴 ∪ 𝐵) ≤ V (𝐴) + V (𝐵) − V (𝐴 ∩ 𝐵) . (9)

The following proposition and lemma help us overcome
the problem of nonadditivity of Choquet expectations.

Proposition 8 (see Dennerberg [15]). Let (Ω,F) be a mea-
surable space, and let V be a 2-alternating capacity defined on
F. Then V is subadditive:

V (

𝑛

⋃
𝑖=1

𝐴
𝑖
) ≤

𝑛

∑
𝑖=1

V (𝐴
𝑖
) , ∀𝐴

𝑖
∈ F, 𝑖 ≥ 1. (10)

Lemma 9. Let C
𝑉
be the upper Choquet expectation induced

by 2-alternating capacity V . For any 𝑋,𝑌 ∈ F, one has the
following.

(1) Subadditivity: C
𝑉
[𝑋 + 𝑌] ≤ C

𝑉
[𝑋] + C

𝑉
[𝑌].

(2) For any constant 𝑎 ∈ R,

C
𝑉 [𝑎𝑋] = 𝑎

+
C
𝑉 [𝑋] − 𝑎

−
C
𝑉 [𝑋] , (11)

where 𝑎
+

= max{𝑎, 0} and 𝑎
−

= max{−𝑎, 0}.
(3) Sublinearity: −C

𝑉
[|𝑌|] ≤ C

𝑉
[𝑌] ≤ C

𝑉
[𝑋 + 𝑌] −

C
𝑉
[𝑋] ≤ C

𝑉
[𝑌] ≤ C

𝑉
[|𝑌|].

Proof. (1) is fromDennerberg [15]; (2) and (3) follow from (1)
and Proposition 3.

3. Main Results

In this section, we first introduce three lemmas which we will
make use of and then state the main theorem with proof.

Lemma 10. Let {𝑋
𝑖
}
∞

𝑖=1
be a sequence of independent random

variables on (Ω,F). Let V be a 2-alternating capacity defined
on F, and let C

𝑉
, C
𝑉
be the induced upper, lower Choquet

expectations, respectively. Then for any 𝜑 ∈ 𝐶
𝑏
(R) and any

constant 𝑦
𝑖
∈ R,

𝐼
1
≤ C
𝑉
[𝜑(

𝑛

∑
𝑖=1

𝑋
𝑖
)] − 𝜑(

𝑛

∑
𝑖=1

𝑦
𝑖
) ≤ 𝐼

2
, (12)

where

𝐼
1
:=

𝑛

∑
𝑚=1

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−(𝑚−1)
− 𝑦
𝑚
)] − 𝜑 (𝑥)} ,

𝐼
2
:=

𝑛

∑
𝑚=1

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−(𝑚−1)
− 𝑦
𝑚
)] − 𝜑 (𝑥)} .

(13)

Proof. Set 𝑆
𝑛
:= ∑
𝑛

𝑖=1
𝑋
𝑖
, 𝑆
0
= 0,

C
𝑉
[𝜑 (𝑆
𝑛
)] − 𝜑(

𝑛

∑
𝑖=1

𝑦
𝑖
) =

𝑛−1

∑
𝑚=0

Δ
𝑚
, (14)

where

Δ
𝑚

:= C
𝑉
[𝜑(𝑆

𝑛−𝑚
+

𝑚

∑
𝑖=1

𝑦
𝑖
)]

− C
𝑉
[𝜑(𝑆

𝑛−(𝑚+1)
+

𝑚+1

∑
𝑖=1

𝑦
𝑖
)] .

(15)

We now estimate the term Δ
𝑚
for 0 ≤ 𝑚 ≤ 𝑛 − 1.

Let ℎ(𝑥) := C
𝑉
[𝜑(𝑥 + 𝑋

𝑛−𝑚
)], by the independence of

{𝑋
𝑖
}
𝑛

𝑖=1
,

C
𝑉
[𝜑(𝑆

𝑛−𝑚
+

𝑚

∑
𝑖=1

𝑦
𝑖
)]

= C
𝑉
[C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)]

󵄨󵄨󵄨󵄨󵄨𝑥=𝑆𝑛−(𝑚+1)+∑
𝑚

𝑖=1
𝑦
𝑖

]

= C
𝑉
[ℎ(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
)] .

(16)

This with the sublinearity of C
𝑉
in Lemma 9, for one side,

implies,

Δ
𝑚

= C
𝑉
[ℎ(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
)]

− C
𝑉
[𝜑(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
+ 𝑦
𝑚+1

)]

≤ C
𝑉
[ℎ(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
)

−𝜑(𝑆
𝑛−(𝑚+1)

+

𝑚

∑
𝑖=1

𝑦
𝑖
+ 𝑦
𝑚+1

)]

≤ sup
𝑥∈R

{ℎ (𝑥) − 𝜑 (𝑥 + 𝑦
𝑚+1

)}

= sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)} .

(17)
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For the other side,

Δ
𝑚

= C
𝑉
[ℎ(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
)]

− C
𝑉
[𝜑(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
+ 𝑦
𝑚+1

)]

≥ C
𝑉
[ℎ(𝑆

𝑛−(𝑚+1)
+

𝑚

∑
𝑖=1

𝑦
𝑖
)

− 𝜑(𝑆
𝑛−(𝑚+1)

+

𝑚

∑
𝑖=1

𝑦
𝑖
+ 𝑦
𝑚+1

)]

≥ inf
𝑥∈R

{ℎ (𝑥) − 𝜑 (𝑥 + 𝑦
𝑚+1

)}

= inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)} .

(18)

That is,

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)}

≤ Δ
𝑚

≤ sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)} .

(19)

This with (14) implies that
𝑛−1

∑
𝑚=0

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)}

≤ C
𝑉
[𝜑 (𝑆
𝑛
)] − 𝜑(

𝑛

∑
𝑖=1

𝑦
𝑖
)

≤

𝑛−1

∑
𝑚=0

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)} .

(20)

It then follows by the fact that

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)}

= sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
− 𝑦
𝑚+1

)] − 𝜑 (𝑥)}

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
)] − 𝜑 (𝑥 + 𝑦

𝑚+1
)}

= inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 + 𝑋

𝑛−𝑚
− 𝑦
𝑚+1

)] − 𝜑 (𝑥)} .

(21)

We complete the proof of this lemma.

Lemma 11. Let V be a 2-alternating capacity and C
𝑉
, C
𝑉
be

the induced upper, lower Choquet expectations, respectively. Let
{𝑋
𝑖
}
∞

𝑖=1
be a sequence of IID random variables withC

𝑉
[𝑋
𝑖
] = 𝜇

andC
𝑉
[𝑋
𝑖
] = 𝜇 satisfying that for 𝑖 ≥ 1,

C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨] < ∞. (22)

Then, for each function 𝜑 ∈ 𝐶
2

𝑏
(R), there exists a positive

constant 𝑏
𝑛
(𝜖) with 𝑏

𝑛
(𝜖) → 0, as 𝑛 → ∞, such that

(1)
𝑛

∑
𝑖=1

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥)}

≤ sup
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇, 𝜇) + 𝑏

𝑛 (𝜖) .

(23)

(2)
𝑛

∑
𝑖=1

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥)}

≥ inf
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇, 𝜇) − 𝑏

𝑛 (𝜖) ,

(24)

where 𝐺(𝑥, 𝜇, 𝜇) := 𝑥
+
𝜇 − 𝑥
−
𝜇.

Proof. Applying theTaylor expansion for function𝜑, 0 ≤ 𝜃
1
≤

1,

𝜑(𝑥 +
𝑋
𝑖

𝑛
) − 𝜑 (𝑥) = 𝜑

󸀠
(𝑥)

𝑋
𝑖

𝑛
+ 𝐽
𝑛
(𝑥,𝑋
𝑖
) , (25)

where 𝐽
𝑛
(𝑥, 𝑋
𝑖
) := (𝜑

󸀠
(𝑥 + 𝜃

1
(𝑋
𝑖
/𝑛)) − 𝜑

󸀠
(𝑥))(𝑋

𝑖
/𝑛).

Set the upper Choquet expectation C
𝑉
on both sides of

the above equality, by the sublinearity of C
𝑉
,

−C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] ≤ C

𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
) − 𝜑 (𝑥)]

− C
𝑉
[𝜑
󸀠
(𝑥)

𝑋
𝑖

𝑛
] ≤ C

𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] .

(26)

Since C
𝑉
[𝑋
𝑖
] = 𝜇,C

𝑉
[𝑋
𝑖
] = 𝜇, 𝑖 = 1, 2, . . . , 𝑛, thus

C
𝑉
[𝜑
󸀠
(𝑥)

𝑋
𝑖

𝑛
] =

1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇) . (27)

Therefore, by translation invariance of Proposition 3,

−C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] ≤ C

𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥)

−
1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇) ≤ C

𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] .

(28)

Take supremum sup
𝑥∈R on both sides of (28),

sup
𝑥∈R

{−C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨]}

≤ sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥) −

1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇)}

≤ sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] .

(29)

For writing convenience, denote

𝑇
𝑖

𝑛
(𝑥) := C

𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥) −

1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇) .

(30)
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From (29), we have

−

𝑛

∑
𝑖=1

sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] ≤

𝑛

∑
𝑖=1

sup
𝑥∈R

𝑇
𝑖

𝑛
(𝑥)

≤

𝑛

∑
𝑖=1

sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] .

(31)

In order to prove this lemma, we only need to estimate the
term ∑

𝑛

𝑖=1
sup
𝑥∈RC𝑉[|𝐽𝑛(𝑥, 𝑋

𝑖
)|].

Indeed, since {𝑋
𝑖
}
𝑛

𝑖=1
is identically distributed and

C
𝑉
[|𝑋
1
|] < ∞, by the definition of Choquet expectation, for

any 𝜖 > 0, we have C
𝑉
[|𝑋
1
|𝐼
{|𝑋
1
|>𝑛𝜖}

] → 0 as 𝑛 → ∞. Thus,
for any 𝜖 > 0,
𝑛

∑
𝑖=1

sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨]

≤

𝑛

∑
𝑖=1

{sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑖/𝑛|>𝜖}]

+ sup
𝑥∈R

C
𝑉

[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑖/𝑛|≤𝜖}] }

≤

𝑛

∑
𝑖=1

C
𝑉
[(sup
𝑥∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑥 + 𝜃

1

𝑋
𝑖

𝑛
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ sup
𝑥∈R

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨
)

×

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

𝑛
𝐼
{|𝑋
𝑖
|>𝑛𝜖}

]

+

𝑛

∑
𝑖=1

1

2
C
𝑉
[sup
𝑥∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠󸀠
(𝑥 + 𝜃

2

𝑋
𝑖

𝑛
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
2

𝑖

𝑛2
𝐼
{|𝑋
𝑖
|≤𝑛𝜖}

]

≤

𝑛

∑
𝑖=1

1

𝑛
2
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩
C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑖|>𝑛𝜖}]

+

𝑛

∑
𝑖=1

1

𝑛2
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨] 𝑛𝜖

= 2
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩
C
𝑉
[
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 𝐼{|𝑋1|>𝑛𝜖}] +
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

C
𝑉
[
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨] 𝜖

:= 𝑏
𝑛 (𝜖) 󳨀→ 0, 𝑛 󳨀→ ∞,

(32)
where ‖𝜑‖ := sup

𝑥∈R|𝜑(𝑥)| and 0 ≤ 𝜃
2
≤ 1.

Combining (31) and (32), for the arbitrary of 𝜖, as 𝑛 →

∞, we have
𝑛

∑
𝑖=1

sup
𝑥∈R

𝑇
𝑖

𝑛
(𝑥) ≤

𝑛

∑
𝑖=1

sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] ≤ 𝑏
𝑛 (𝜖) 󳨀→ 0.

(33)

(1) From (33), we have
𝑛

∑
𝑖=1

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥)}

=

𝑛

∑
𝑖=1

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥)

−
1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇) +

1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇) }

≤

𝑛

∑
𝑖=1

sup
𝑥∈R

𝑇
𝑖

𝑛
(𝑥) +

𝑛

∑
𝑖=1

sup
𝑥∈R

{
1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇)}

≤ 𝑏
𝑛 (𝜖) + sup

𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇, 𝜇) .

(34)

(2) Taking infimum inf
𝑥∈R on both sides of (28), similar

to the proof of (1), we have

𝑛

∑
𝑖=1

inf
𝑥∈R

𝑇
𝑖

𝑛
(𝑥) ≥ −

𝑛

∑
𝑖=1

sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
)
󵄨󵄨󵄨󵄨] ≥ −𝑏

𝑛 (𝜖) . (35)

Hence,
𝑛

∑
𝑖=1

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖

𝑛
)] − 𝜑 (𝑥)}

≥

𝑛

∑
𝑖=1

inf
𝑥∈R

𝑇
𝑖

𝑛
(𝑥) +

𝑛

∑
𝑖=1

inf
𝑥∈R

{
1

𝑛
𝐺 (𝜑
󸀠
(𝑥) , 𝜇, 𝜇)}

≥ −𝑏
𝑛 (𝜖) + inf

𝑥∈R
𝐺(𝜑
󸀠
(𝑥) , 𝜇, 𝜇) .

(36)

The proof of the lemma is complete.

Lemma12. Let𝐺(𝑥, 𝑦, 𝑧) be the function defined in Lemma 11;
that is,

𝐺 (𝑥, 𝑦, 𝑧) := 𝑥
+
𝑦 − 𝑥
−
𝑧. (37)

Then

(1) inf
𝑦∈𝐷
𝑛

sup
𝑥∈R𝐺(𝜑

󸀠
(𝑥), 𝜇 − (1/𝑛)∑

𝑛

𝑖=1
𝑦
𝑖
, 𝜇 − (1/

𝑛)∑
𝑛

𝑖=1
𝑦
𝑖
) = 0.

(2) inf
𝑦∈𝐷
𝑛

inf
𝑥∈R𝐺(𝜑

󸀠
(𝑥), 𝜇 − (1/𝑛)∑

𝑛

𝑖=1
𝑦
𝑖
, 𝜇 − (1/

𝑛)∑
𝑛

𝑖=1
𝑦
𝑖
) = 0,

where 𝐷
𝑛

:= {𝑦 := (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) : 𝑦
𝑖
∈ [𝜇, 𝜇], 𝑖 =

1, 2, . . . , 𝑛}.

Proof. Consider the following:

inf
𝑦∈𝐷
𝑛

sup
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
, 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)

= inf
𝑦∈𝐷
𝑛

sup
𝑥∈R

{(𝜑
󸀠
(𝑥))
+

(𝜇 −
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)

−(𝜑
󸀠
(𝑥))
−

(𝜇 −
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)}

= inf
𝑦∈𝐷
𝑛

sup
𝑥∈R

{(𝜑
󸀠
(𝑥))
+

(𝜇 −
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)

+(𝜑
󸀠
(𝑥))
−

(
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
− 𝜇)} .

(38)



6 Abstract and Applied Analysis

Observing the above equality, obviously, if 𝜑󸀠(𝑥) ≥ 0, note the
fact that (1/𝑛)∑𝑛

𝑖=1
𝑦
𝑖
∈ [𝜇, 𝜇], therefore, the above equality is

equal to

inf
𝑦∈𝐷
𝑛

sup
𝑥∈R

{(𝜑
󸀠
(𝑥))
+

(𝜇 −
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)}

= sup
𝑥∈R

(𝜑
󸀠
(𝑥))
+

inf
𝑦∈𝐷
𝑛

(𝜇 −
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
) = 0.

(39)

Similarly, if 𝜑󸀠(𝑥) < 0, it is easy to prove that

inf
𝑦∈𝐷
𝑛

sup
𝑥∈R

{(𝜑
󸀠
(𝑥))
−

(
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
− 𝜇)}

= sup
𝑥∈R

(𝜑
󸀠
(𝑥))
−

inf
𝑦∈𝐷
𝑛

(
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
− 𝜇) = 0.

(40)

The proof of (1) is complete. (2) can be proved in the same
way.

Theorem 13 (Law of large number). Let V be a 2-alternating
capacity defined on F, and let C

𝑉
, C
𝑉
be the induced upper,

lower Choquet expectations, respectively. Let {𝑋
𝑖
}
∞

𝑖=1
be a

sequence of IID random variables on (Ω,F)withC
𝑉
[𝑋
𝑖
] = 𝜇,

C
𝑉
[𝑋
𝑖
] = 𝜇. Assume that for 𝑖 ≥ 1,

C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨] < ∞. (41)

Then for each function 𝜑 ∈ 𝐶
2

𝑏
(R),

(1)

lim
𝑛→∞

C
𝑉
[𝜑(

1

𝑛

𝑛

∑
𝑖=1

𝑋
𝑖
)] = sup

𝜇≤𝑥≤𝜇

𝜑 (𝑥) ; (42)

(2)

lim
𝑛→∞

C
𝑉
[𝜑(

1

𝑛

𝑛

∑
𝑖=1

𝑋
𝑖
)] = inf

𝜇≤𝑥≤𝜇

𝜑 (𝑥) . (43)

Proof. (1) Set partial sums 𝑆
𝑛

:= ∑
𝑛

𝑖=1
𝑋
𝑖
, 𝑆
0

= 0. Let 𝐷
𝑛
be

the set denoted in Lemma 12; that is,
𝐷
𝑛
:= {𝑦 := (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) : 𝜇 ≤ 𝑦

𝑖
≤ 𝜇, 𝑖 = 1, . . . , 𝑛} .

(44)
Obviously,

sup
𝑦∈𝐷
𝑛

𝜑(
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
) = sup
𝜇≤𝑥≤𝜇

𝜑 (𝑥) . (45)

Then,

C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] − sup
𝜇≤𝑥≤𝜇

𝜑 (𝑥)

= C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] − sup
𝑦∈𝐷
𝑛

𝜑(
1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)

= inf
𝑦∈𝐷
𝑛

{C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] − 𝜑(

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)} .

(46)

By Lemma 10, Lemma 11(1), and Lemma 12(1), for any 𝜖 > 0,

inf
𝑦∈𝐷
𝑛

{C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] − 𝜑(

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)}

≤ inf
𝑦∈𝐷
𝑛

𝑛

∑
𝑖=1

sup
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖
− 𝑦
𝑖

𝑛
)] − 𝜑 (𝑥)}

≤ inf
𝑦∈𝐷
𝑛

{sup
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
, 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
) + 𝑏
𝑛 (𝜖)}

= inf
𝑦∈𝐷
𝑛

sup
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
, 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
) + 𝑏
𝑛 (𝜖)

= 𝑏
𝑛 (𝜖) 󳨀→ 0, 𝑛 󳨀→ ∞.

(47)

This with (46) implies that

lim sup
𝑛→∞

C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] ≤ sup
𝜇≤𝑥≤𝜇

𝜑 (𝑥) . (48)

Note that, similar to (32), 𝑏
𝑛
(𝜖) in (47) is still a pos-

itive constant with 𝑏
𝑛
(𝜖) → 0 as 𝑛 → ∞. To be

specific, due to the following facts: (a) |𝑦
𝑖
| ≤ |𝜇| + |𝜇|

for 𝑦 ∈ 𝐷
𝑛
; (b) {𝑋

𝑖
}
𝑛

𝑖=1
is identically distributed; (c) by

the definition of Choquet expectation, C
𝑉
[|𝑋
1
|] < ∞

implies C
𝑉
[|𝑋
1
|𝐼
{|𝑋
1
|>𝑛𝜖−|𝜇|−|𝜇|}

] → 0 as 𝑛 → ∞; and (d)
C
𝑉
[𝐼
{|𝑋
1
|>𝑛𝜖−|𝜇|−|𝜇|}

] ≤ (1/(𝑛𝜀 − |𝜇| − |𝜇|))C
𝑉
[|𝑋
1
|] → 0 as

𝑛 → ∞. Then for any 𝜖 > 0, we have

𝑛

∑
𝑖=1

sup
𝑥∈R

C
𝑉
[
󵄨󵄨󵄨󵄨𝐽𝑛 (𝑥,𝑋

𝑖
− 𝑦
𝑖
)
󵄨󵄨󵄨󵄨]

≤

𝑛

∑
𝑖=1

{
1

𝑛
2
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩
C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑖−𝑦𝑖|>𝑛𝜖}]

+
1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨] 𝜖}

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩

1

𝑛

𝑛

∑
𝑖=1

{C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑖|>𝑛𝜖−|𝜇|−|𝜇|}]

+ (
󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝜇
󵄨󵄨󵄨󵄨󵄨
)C
𝑉
[𝐼
{|𝑋
𝑖
|>𝑛𝜖−|𝜇|−|𝜇|}

]}

+ 𝜖
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

1

𝑛

𝑛

∑
𝑖=1

(C
𝑉
[
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨] +
󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝜇
󵄨󵄨󵄨󵄨󵄨
)

= 2
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩

{C
𝑉
[
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 𝐼{|𝑋1|>𝑛𝜖−|𝜇|−|𝜇|}]

+ (
󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝜇
󵄨󵄨󵄨󵄨󵄨
)C
𝑉
[𝐼
{|𝑋
1
|>𝑛𝜖−|𝜇|−|𝜇|}

]}

+ 𝜖
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

(C
𝑉
[
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨] +
󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝜇
󵄨󵄨󵄨󵄨󵄨
)

:= 𝑏
𝑛 (𝜖) 󳨀→ 0, 𝑛 󳨀→ ∞.

(49)
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On the other hand, by Lemma 10, Lemma 11(2), and
Lemma 12(2), for any 𝜖 > 0,

inf
𝑦∈𝐷
𝑛

{C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] − 𝜑(

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
)}

≥ inf
𝑦∈𝐷
𝑛

𝑛

∑
𝑛=1

inf
𝑥∈R

{C
𝑉
[𝜑 (𝑥 +

𝑋
𝑖
− 𝑦
𝑖

𝑛
)] − 𝜑 (𝑥)}

≥ inf
𝑦∈𝐷
𝑛

{inf
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
, 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
) − 𝑏
𝑛 (𝜖)}

= inf
𝑦∈𝐷
𝑛

inf
𝑥∈R

𝐺(𝜑
󸀠
(𝑥) , 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
, 𝜇 −

1

𝑛

𝑛

∑
𝑖=1

𝑦
𝑖
) − 𝑏
𝑛 (𝜖)

= −𝑏
𝑛 (𝜖) 󳨀→ 0, 𝑛 󳨀→ ∞.

(50)

Together with (46), we have

lim inf
𝑛→∞

C
𝑉
[𝜑 (

1

𝑛
𝑆
𝑛
)] ≥ sup
𝜇≤𝑥≤𝜇

𝜑 (𝑥) . (51)

Combining (48) and (51), (42) is achieved. Hence, we
obtain the LLN under upper Choquet expectation C

𝑉

induced by the 2-alternating capacity V .
(2) Since the following conjugate property, for 𝑖 ≥ 1,

C
𝑉
[𝜑 (𝑋

𝑖
)] = −C

𝑉
[−𝜑 (𝑋

𝑖
)] , ∀𝑋

𝑖
∈ F, (52)

the part for lower Choquet expectation C
𝑉
can be proved

similarly, we just omit it.

Remark 14. The condition 𝜑 ∈ 𝐶
2

𝑏
(R) in Theorem 13 can be

weaken to 𝜑 ∈ 𝐶
𝑏
(R). Further, the IID condition can be

weaken to “the independent random variables satisfying the
Choquet absolute moment condition”; see our future work.

4. Conclusion Remarks

In summary, under the new concept of independence, we
propose the nonadditive version of LLN under Choquet
expectations induced by 2-alternating capacities and char-
acterize the approximate distributions of random variables.
Meanwhile, we weaken the moment conditions to the first
absolute moment condition compared to other Choquet
LLNs’, such as Chareka [10]. Our main technique is purely
probabilistic and elementary, thus, it can be viewed as a
natural extension of the traditional LLN to the case where the
probability is no longer additive.
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