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It can be deduced from previous studies that there exists a research gap in assembly line sequencing optimization model for mixed-
model production lines. In particular, there is a lack of studies which focus on the integration between job shop and assembly lines
using fuzzy techniques. Hence, this paper is aimed at addressing themultiobjectivemixed-model assembly line sequencing problem
by integrating job shop and assembly production lines for factories withmodular layouts.Theprimary goal is tominimize themake-
span, setup time, and cost simultaneously in mixed-model assembly lines. Such conflicting goals arise when switching between
different products. A genetic algorithm (GA) approach is used to solve this problem, in which trapezoidal fuzzy numbers are
implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative
of real-case data.

1. Introduction

It is known that an efficient and effective production line
sequencing and scheduling are required for manufactur-
ing industries due to the fluctuations in market demand
and increasing competition on the global scale. Hence,
manufacturers are gearing towards optimizing the design
of manufacturing systems in the shortest time possible in
order to enhance competitiveness. The production lines of
a multistage process can be generally classified as job-shop
(JS) and flow-shop (FS) line processing, in which each type
complies with a set of sequential operations. Production
sequential operation is established in the factories in which
the materials undergo a refining process in order to produce
a product that is suitable for onward consumption and the
components are assembled to make finished articles. Raw
materials require a sequence of treatments to render them
useful. Development of optimization methods for solving
JS and FS problems effectively is of utmost importance to
the apparel industry and other manufacturing industries
which require similar assembly operations at large. JS and
FS involve the assignment of a set of tasks to workstations

(machines) in a predefined sequence while optimizing one or
more objectives without violating the restrictions imposed by
the production line [1]. Most of the problems involving line
balancing and sequencing problem in JS and FS fall within
the NP-hard class of combinatorial optimization problems,
which results in a critical need to develop efficient algorithms
to attain optimum solutions [1–6]. It can be extremely
time-consuming for optimum-seeking methods to obtain
optimum solutions within a vast search space [2].

Efficient and effective JS and FS sequencing and schedul-
ing is required for recentmanufacturing processes in order to
achieve higher customer satisfaction and shorter production
lead times and enhance competitiveness in the escalating
volatile market demand. This emphasizes the significance of
just-in-time (JIT) and agile manufacturing in the modern
era. To cope with such circumstances, JS and FS assembly
lines are shifting towards mixed-model assembly lines, in
which multiple models are produced on a constant basis.
Therefore, sequencing with multiobjective goals is a critical
operation scheduling that directly affects the efficiency of
mixed-model production assembly lines for factories with
modular layouts. It will be noted that modular layouts are
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layoutswhich integrate JS and FS.Owing to the importance of
this issue, this study is aimed at developing a multiobjective
mixed-production line sequencing model by implementing
genetic algorithms (GAs) and fuzzy logic.

2. Mixed-Model Assembly Line Sequencing

Mixed-model assembly lines (MMAL) have been widely used
by manufacturers and they play a key role in producing
a variety of products. Products with similar characteris-
tics are assembled with different processing times on the
same assembly line at very low cost [7–9]. This, in turn,
requires the implementation of cost-efficient and flexible
production systems. MMAL reduce setup operations to an
extent that various models from a common base product
can be manufactured in intermixed sequences. However,
the observed diversity of MMAL makes thorough sequence
planning essential in order to exploit the benefits of assembly
line production. These benefits include diversified small
lot production and prompt response to sudden changes in
demand for models without large inventories [10]. Mixed-
model sequencing (MMS) aims at avoiding or minimiz-
ing sequence-dependent work overload based on detailed
scheduling which explicitly accounts for operation time,
worker movement, station borders, and other operational
characteristics of the line [10].

Solving the MMS problem involves determining a pro-
duction sequence for multiple products along a modular
layout. In order to reach this goal, manufacturers aim to
achieve optimum scheduling times with minimum cost.
Furthermore, it is impractical formanufacturers to constantly
alter their machine layouts when producing a new product.
For companies with fixed factory machine layouts, opti-
mization of production lines is solely based on altering the
sequence of production lines. However, this approach poses
the following challenges that need to be addressed:

(1) production of various products using existing facil-
ities such as the number and location of machines,
travelling time between the machines, and limited
number of workers for different products;

(2) assignment of parts from different products to the
machines, in which the optimum sequence needs to
be considered in order to minimize scheduling time.
Problems also arise when changing the setup number
of the machines;

(3) assignment of parts to other parts during product
assembly, in which the parts that are ready for assem-
bly need to be considered in order to minimize the
scheduling time required to assemble the product;

(4) identification of the best minimum setup number and
setup cost sequencing, in which the above mentioned
issues need to be considered simultaneously.

It can be seen that identifying the best scheduling and
sequencing production line is a challenging task, particularly
for the production of a mixed-model from a large number
of providers with multiple objectives. MMS is a NP-hard

problem which requires an effective model. A unique and
stable model is needed to facilitate MMS in the production
of mixed products in a manufacturing environment with
multiple parts, machines, products, and assemblies in order
tominimize scheduling time, idle time of themachines, setup
number, and setup cost as well as to maximize the number
of products and assembly of various products. An effective
model provides companies with a means to reschedule their
production lines based on the changing demands of a flexible
market. The effective utilization of MMAL requires solving
two problems in a sequential manner, as follows.

(1) Levelling workloads for stations on the line: this is
known as line design and balancing.

(2) Maintaining a constant rate of usage for each part
used on the production line: this involves determin-
ing the production sequence for various models.

The first goal involves sequencing the mixed-models in
order to achieve a balanced workload at each assembly sta-
tion, whereas the second goal involves sequencing themixed-
models in order tominimize variations in the usage of various
parts and components over time [8, 9, 11]. A number of
MMS studies attempted at solving mixed-model sequencing
problems using sequencing procedures that will optimize
various system measures such as throughput, scheduling
time, number of stations, idle time, flow time, line length,
work-in-process, and raw material demand deviations [12–
16].

Zhu et al. [17] studied the complexity of product variety
of MMAL defined by the operators such as selection of
parts, tools, and fixtures as well as assembly procedures in
sequence planning. The aim was to reduce manufacturing
complexity in a multiproduct, multistage, manual assembly
line environment. The methodology was developed to deter-
mine optimum assembly sequences which will minimize
system complexity. Rekiek et al. [18] and De Lit et al.
[19] developed an approach which integrates product family
design (including assembly sequences) with the assembly
system so that multiple products can be assembled on the
same line. A new alternative for mixed-model assembly
for low-volume manufacturing environments was investi-
gated by Heike et al. [7]. The efficient utilization of labour
and/ormachinery presents significant challenges.Themodels
developed focus on evaluating and understanding different
alternatives for mixed-model assembly in the aerospace
industry. These models include one linear and two nonlinear
programswhich are formulated to evaluate constant and vari-
able scheduling time policies. The models were successfully
implemented on an airplane assembly process characterized
by low-volume manufacturing. Bukchin et al. [20] proposed
a mathematical formulation for MMAL designs based on
the make-to-order production policy. Hence, the arrival
sequence is randomly distributed according to demand pro-
portions, rendering the balancing procedure an important
aspect of the design process. An integrated machine tool
selection and sequencing model was proposed by Moona et
al. [21]. The model determines machine visiting sequences
for all part types, such that the total production time for
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the production order is minimized and the workloads
between machine tools are balanced. Numerical experiments
were carried out using problems of various sizes in order
to demonstrate the efficiency of the proposed GA on the
integrated machine tool selection and sequencing prob-
lem.

Khan andDay [22] introduced a knowledge-based design
methodology (KBDM) for automated and manual assembly
lines, which can be applied equally well to single, multi-,
and mixed-product assembly lines with either deterministic
or stochastic operation times. Mendes et al. [23] developed
simulation models for varying the levels of demand and
line configurations and utilized a mixed-model PC cam-
era assembly line. The simulation models were used to
compare flow time and resource utilization, which provide
operational support and help fine-tune line configurations.
Joly and Frein [24] investigated a set of vehicles within an
industrial environment in order to minimize manufacturing
costs by considering assembly and paint shop objectives.
The approach was implemented to solve a problem with
a monoobjective function. One heuristic (a progressive,
construction-sequence algorithm) and three metaheuristics
(simulated annealing, variable neighbourhood search, and an
evolutionary algorithm) were described and compared.

Theuse ofGA formixed-model sequencing line problems
is discussed as follows. Ghosh and Gagnon [25] introduced
a mathematical programming model and an iterative GA-
based procedure for MALBP with parallel work stations,
in which the goal was to maximize the production rate
of the line for a predetermined number of operators. An
intelligence-based GA was developed by Norozi et al. [26]
in order to tackle the complexity of sequencing in parallel
MMAL. A spreading and cutting sequencing (SCS) model
using GA was implemented by Wong et al. [27] to solve
the sequencing problem of a computerized fabric cutting
system used in the garment industry. The job sequence
of spreading and cutting operation can be optimized by
reducing the completion time for daily operation of fabric
spreading and cutting as well as improving the utilization of
machines. Ponnambalam et al. [28] studied the performance
of GAs for a multilevel MMAL sequencing problem. Both
single objective and multiple objectives were considered.The
main objective of the multiobjective GA was to minimize
the total utility work levelling, parts usage, and total setup
cost. Development of optimization methods for solving JS
and FS that are involving assembly line balancing/sequencing
in mixed-model problems falls under the NP-hard class
problem. Optimization involves exploiting the capabilities
of mathematical programming in order to minimize the
overall make-span and setup objectives for sets of single
lines [26]. Evolutionary computing is a research area within
computer science for solving combinatorial optimization
and complex problems based on the principles of generic
population-based heuristic techniques. In the advent of
metaheuristic algorithms in recent years, numerous complex
scheduling problems have been studied and solved using
metaheuristic search techniques such as ant colony optimiza-
tion (ACO), tabu search (TS), genetic algorithm (GA), and
simulated annealing (SA). Metaheuristic algorithms are used

to overcome the complexity of sequencing in assembly lines
[26].

GA was introduced by David Goldberg based on the
procedure of natural mechanism and natural genetics. The
population is composed of a collection of chromosomes in
which each string is encoded and the problem is solved as a
finite length of genes [26]. Good gene characteristics produce
new generations. After several evolutions, the genes become
highly adaptive to a given environment [29]. GAs have been
proven to be highly effective for achieving optimum or
near-optimum solutions in complex real-world optimization
problems. However, GAs are limited by the fact that their
performance is very sensitive to parameter settings [29]. GA
design consists of two key steps, namely, genetic operations
and parameter settings [29]. The genetic operations involve
choosing a suitable selection method. The typical methods
for selection are roulette, tournament, stochastic uniform,
remainder, and uniform selection. Selection is the only
operation of evolution and thus choosing a suitable selection
method is important. Parameter settings involve setting the
required parameters and variables for controlling the algo-
rithms such as population size, number of generations, the
number of selected candidates, crossover rate, and mutation
rate [30].

2.1. Multiobjective Mixed-Production Line Optimization.
Multiobjective formulations are realistic models of numerous
complex engineering optimization problems. In most real-
life problems, the objectives often contradict one another
and optimizing a particular solution with respect to a
single objective may give undesirable results for other
objectives. Being a population-based approach, GA is
well suited to solve multiobjective optimization problems
[31]. A generic single-objective GA can be modified to
search for a set of multiple nondominated solutions in a
single run. The ability of GAs to simultaneously search
different regions of a solution space makes it possible to
search a diverse set of solutions for difficult problems with
nonconvex, discontinuous, and multimodal solution spaces.
Multiobjective optimization problems can be found in
various fields, such as product and process design, finance,
aircraft design, oil and gas industry, automobile design, or
wherever optimum decisions are needed, by considering the
trade-offs between multiple conflicting objectives. If more
than one criterion is to be treated simultaneously, then it
is a multiobjective optimization problem. Maximizing the
profit and minimizing the cost of a product, maximizing the
performance and minimizing fuel consumption of a vehicle,
and minimizing the weight while maximizing the strength
of a particular component are all examples of multiobjective
optimization problems. If the multiobjective problem is well
formed, there will not be a single solution that simultaneously
minimizes each objective to its fullest. In each case, the aim
is to search for a solution in which each objective has been
optimized to an extent that if the objectives are optimized
further, other objectives will suffer as a result. The search for
an optimum solution and quantifying the extent to which
this solution is superior compared to other such solutions



4 Journal of Applied Mathematics

(note that there will generally be many solutions) are the goal
when setting up and solving a multiobjective optimization
problem. Most of the real-world decision problems involve
multiple conflicting objectives that need to be tackled
while adhering to the various constraints. In multiobjective
problems, there may not exist a solution which is the best
with respect to all objectives. It will be highlighted that there
will be a set of solutions which are superior to other solutions
in the search space when all objectives are considered but are
inferior to the solutions for one or more objectives. These
solutions are called nondominated solutions [32].

The job-shop scheduling problem with sequence-
dependent setup times (SDST-JSP) is a generalization
of the classical JSS, in which the setup operation of a
machine is required when the machine switches between
two jobs. The common goal of SDST-JSP is to minimize
the completion time of the last job (make-span). SDST-
JSP has been investigated by a number of researchers.
A new multiobjective GA (MOGA) was introduced by
Zacharia and Nearchou [33] for solving fuzzy assembly line
balancing of SALBP-2 comprising multiple objectives, that
is, minimizing the fuzzy scheduling time, balancing the
fuzzy delay time, and smoothing the fuzzy index of the line.
McMullen [34] proposed a technique to generate production
sequences, whereby the number of setups and scheduling
flexibility are considered. These objectives are inversely
correlated, which poses a challenge for optimizing both
objectives simultaneously. An efficient frontier approach was
exploited for problems where simultaneous maximization of
flexibility and minimization of setups are desired. McMullen
[35] presented a relatively new approach using ACO to
address a two-objective production-sequencing problem by
stimulating the artificial intelligence agents of virtual ants
to obtain desirable solutions for manufacturing logistics.
The first objective involves minimizing the number of
setups, while the second objective involves optimizing the
stability of material usage rates. McMullen [36] developed
a technique which addresses a JIT production-scheduling
problem consisting of two objectives, namely, minimization
of setups between product variants and optimization of
schedule flexibility. These objectives are inversely correlated,
which poses a challenge in attaining desirable results
for both objectives. An efficient frontier approach was
employed to address the problem, which yields desirable
sequences for both objectives. The artificial neural network
approach using Kohonen self-organizing map (SOM) was
implemented to determine sequences which are desirable
in terms of the number of setups and flexibility. McMullen
and Tarasewich [37] introduced an efficient frontier
approach to support sequencing decisions. A beam-search
heuristic approach was used to effectively generate efficient
frontiers. Rahimi-Vahed et al. [8] addressed a multiobjective
sequencing problem using a mathematical formulation
which considers three objectives simultaneously. These
objectives are minimizing the total utility work, minimizing
variations in the total production rate, and minimizing
the total setup cost. The scatter search methodology was
used to generate a set of solutions that approximates the
nondominated frontiers where simultaneous minimization

of the above mentioned objectives is desired. Javadi et al.
[9] proposed a fuzzy goal programming approach to solve
a multiobjective mixed-model assembly line sequencing
problem for a JIT production system. Three objectives are
solved simultaneously as mentioned in [8]. These objectives
compriseminimization of the total utilitywork and variations
in the total production rate and total setup cost. The fuzzy
goal programming based approach was proposed to solve the
problem because of the conflicting objectives. Bard et al. [38]
investigated the sequencing of MMAL, which was perceived
as a multiobjective problem. They developed a method to
minimize the overall line length and maintain a constant rate
for part usage. The problem was solved using the weighted
sum and tabu search methods. McMullen [39] focused
on minimizing the number of setups and maintaining a
constant rate for part usage, in which the multiobjective
problem was solved using the TS method. McMullen and
Frazier [40] developed an SA method for the model used
by McMullen [39] as well as TS method. Ponnambalam et
al. [28] compared the performance of selection mechanisms
(i.e., Pareto stratum-niche cubicle and selection based on
scalar fitness function values). The objectives of their study
were to minimize variations in part usage, total utility
work, and setup cost. The results indicated that the GA
which incorporates Pareto stratum-niche cubicle exhibits
superior performance compared to GAs with other selection
mechanisms. Giard and Jeunet [41] presented an integer
programming formulation for sequencing in mixed-model
assembly lines, whereby the number of temporarily hired
utility workers and the numbers of sequence-dependent
setups are optimized simultaneously via a cost function. The
objective function is a cost function involving two elements,
namely, the cost associated with additional utility workers
and setup cost.

2.2. Application of Fuzzy Numbers in Assembly Line Models.
Fuzzy set theory accounts for the ambiguities involved when
assigning processing and scheduling times as well as the
uncertainty contained within such time variables [42]. The
data of real-world problems are imprecise, vague, or uncer-
tain, in which the input data can only be estimated within this
uncertainty. The uncertainty may be represented by a fuzzy
number. The membership function of fuzzy data represents
the grade of satisfaction of the decision-maker. The concept
of fuzzy numbers was introduced to treat imprecise data such
as the processing and travelling time of each job [43, 44].The
time variables were represented by triangular fuzzy numbers,
which allow practitioners to account for ambiguities when
assigning processing and scheduling times, while maintain-
ing the variability of the stochastic environment [42].

Gen et al. [43] and Tsujimura et al. [44] proposed a
new method for treating the data of real-world problems by
introducing a fuzzy assembly line balancing based on GA.
Fuzzy variables were implemented by Fonseca et al. [42]
in order to solve assembly line balancing. Fuzzy set theory
is a viable alternative method for modelling and solving
stochastic assembly line balancing problems. The variability
and uncertainty in assembly line balancing problems have
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been traditionally modelled by statistical distribution. A
novel fuzzy extension of the simple assembly line balancing
problem (SALBP) was proposed by Zacharia and Nearchou
[33]. The fuzzy job processing times reflect the uncertainty,
variability, and imprecision with which real-world produc-
tion systems are afflicted. The job processing times are
formulated by triangular fuzzymembership functions. A new
MOGA was introduced for solving the fuzzy SALBP in order
to minimize the fuzzy scheduling time, fuzzy balance delay
time, and fuzzy smoothness index of the line.

2.3. Summary of Previous Studies and Findings. It can be
observed from the literature review that the majority of
works are focused on an assembly line balancing and only a
few papers address mixed-assembly line sequencing. Hence,
mixed-assembly line sequencing needs to be investigated in
detail. Most papers focused on the number and order of
mixed-models, neglecting the assignment of a product’s sub-
parts to their respectivemachines (job sequence). In addition,
most papers overlook the designation and adaptation of parts
with other parts as well as their final assembly. It is found that
the production ofmixed-models is influenced by a number of
criteria, which limits the applicability of the research results
in real production line conditions. It will be highlighted that
only one criterion was considered in previous works such
as operation line, and therefore other factors such as the
travelling time of the conveyor were neglected. Deterministic
time has also been of interest in most studies. It will be
highlighted that only assembly line balancing was carried out
in previous works in order to minimize the prediction time
for input data, which include the travelling and processing
times for each available job. Although the results from
mixed-assembly line sequencing studies are applicable in real
manufacturing environments, little is known about fuzzy
mixed-model assembly line sequencing. Hence, it is evident
that there is a lack of studies which implements the concept of
fuzzy time in order to minimize the prediction time of input
data.

In general, the research papers can be classified into two
groups, whereby the first group focuses solely on objective
criteria, while the second group focuses on multiobjective
investigations. A critical evaluation of previousworks clarifies
that addressing these objectives involves the development
of various methods, in which MMAL sequencing is the
ideal method for a single objective. Comparison of various
GA methods reveals that multiobjective studies have not
been investigated extensively, unlike single-objective studies.
Much effort has been made to intensify and accelerate
the running of GA methods to achieve optimum results.
Although mixed-model assembly line sequencing is of prime
importance, there is a lack of studies which focus on this
topic. In this paper, a hybrid method is proposed, in which
mixed-model assembly line sequencing is integrated with
the operating and travelling time in the form of fuzzy num-
bers of a multiobjective optimization problem. The hybrid
method will providemanufacturers with an ideal and feasible
alternative since mixed-model assembly line sequencing is
integrated into a software application. This has been ignored

in previous works and much effort is needed to address the
above issue.

3. Problem Definition and Assumptions

In a highly competitive market, companies try to produce
various kinds of products to meet market demand. One
manufacturing problem that is often associated with schedul-
ing practices is mixed-model production line sequencing as
shown in Figure 1. Solving this problem involves determining
the optimal sequence for jobs (𝐽𝑞)which includes the assigned
part (𝑃𝑖) to machine (𝑀𝑗), considering each of the jobs with
the availability of the machines (𝑀𝑗) in job-shop. Moreover,
with the need to solve the problem of determining the
jobs (𝐽𝑞) which includes assembly of the parts (𝑃𝑖) in the
assembly line for multiple products along a modular layout.
Themain solid arrows in Figure 1(a) represent the sequence to
produce the parts, followed by a discrete part manufacturing
assembly, leading to the final product. Likewise, the elapsed
traveling time between machines for manufacturing a part
is given by (𝑇 ⋅ 𝑡𝑖,𝑗). To satisfy the no-wait restriction, the
completion time of the operation (𝑂𝑃𝑖,𝑗) must be equal to
the earliest time to start the operation.There must not be any
waiting time in the processing of any consecutive operations
of each of the jobs. Figure 1(b) represented by gray lines
provides insight into problems involving the determining of
the optimal number of setup tool changes sequencing (𝑆𝑢) of
jobs (𝐽𝑞) assigned to “𝑚” machines, throughout the job-shop
and assembly production line.

The following assumptions are taken in themultiobjective
evaluation: (i) all jobs are available at zero time; (ii) the con-
veyor (operator movement) moves at a constant speed. If job
overlapping occurs, the remainingworkwill be accomplished
by temporary operators; (iii) the job operation begins when
the part enters the machine. Once the job is completed, the
operator will move the part to the next machine; (iv) at a
given time, only one job can be processed on onemachine; (v)
the operator is assigned to each selected part that is assigned
to each machine; (vi) the position of the machines on the
assembly line varies from one another depending on the
user input, which is based on the travelling time; (vii) once
operation has started on a machine, it cannot be interrupted
before completion, either on or between the machines; (viii)
the assembly line can process jobs for a product family, which
is described by a joint priority matrix; (ix) the processing
time varies for different jobs and these jobs are allocated to
the same machine, no matter what the optimum processing
time for each job might be; (x) the demand for all products
as well as the sequence of the products entering the assembly
line is predetermined; (xi) the completion time for all jobs is
represented by a fuzzy number.

The goal is to minimize the make-span or total comple-
tion time andminimize the number of change tools setups for
eachmachine in mixed-model production line sequencing of
all the jobs without waiting between successive operations of
a job by using the fuzzy operation and travelling time which
makes the solution more realistic.
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ÕPn− 1,m
XP𝑛−1,M𝑚 ,P.No𝑘

SA
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Figure 1: The precedence of a multiobjective mixed-model production line sequencing problem.
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4. Model Derivation

The objectives of the function value, for multiobjective
mixed-production assembly line sequencing, are categorized
into twomain objectives: (1)minimizing the total make-span
and (2)minimizing the total setup number as discussed in the
following.

4.1. Minimizing the Total Make-Span. The step involves
evaluating each chromosome based on the make-span by
considering the product number and assembly sequence for
a gene code (𝑋𝑞). The 𝑌1, 𝑌2, 𝑌3, and 𝑆 ⋅ 𝑡 (𝑋𝑞) are computed
in which (𝑋𝑞) are calculated as follows. 𝑌1 is determined
by checking the start time (𝑆 ⋅ 𝑡) of the parts (𝑃𝑖) entering
the machines (𝑀𝑗), based on the sequence assigned to the
machines. This is expressed by

𝑌1 = {
0, 𝑃 (𝑋𝑞) ̸=𝑃 (𝑋𝑞)

𝑆.𝑡 (𝑋𝑞)+ÕP (𝑋𝑞)+𝑇 ⋅ 𝑡 (𝑋𝑞) , 𝑃 (𝑋𝑞)=𝑃 (𝑋𝑞)

𝑞

= 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1) , 𝑞 = 1, . . . , 𝑒.

(1)

𝑌2 is determined by checking the start time (𝑆 ⋅ 𝑡) machine’s
availability (𝑀𝑗) assigned to produce the parts (𝑃𝑖), as given
by

𝑌2 = {
0, 𝑀(𝑋𝑞) ̸=𝑀(𝑋𝑞)

𝑆 ⋅ 𝑡 (𝑋𝑞) + ÕP (𝑋𝑞) , 𝑀 (𝑋𝑞) = 𝑀(𝑋𝑞)

𝑞

= 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1) , 𝑞 = 1, . . . , 𝑒.

(2)

𝑌3 is then determined by checking the start time (̃𝑆 ⋅ 𝑡) of the
parts (𝑃𝑖) entering the machines (𝑀𝑗) based on the sequence
of the part’s assembly (A.S.𝑝) for each product (P.No.ℎ) as
given by (5) and (6). For each 𝑋𝑞, where 𝑞 = 1, 2, . . . , 𝑒, note
that the product number (P.No(𝑋𝑞)) and assembly sequence
(A.S(𝑋𝑞)) are important. Equations (3) through (6) are given
below.

(i) Consider

If A.S (𝑋𝑞) = 0 ⇒ 𝑌3 = 0, 𝑞 = 1, 2, . . . , 𝑒 (3)

If A.S (𝑋𝑞) ̸= 0 ⇒ compares = P.No (𝑋𝑞) ,

P.No (𝑋𝑞−1) .
(4)

(ii) If P.No(𝑋𝑞) = P.No(𝑋𝑞−1), then

𝑌3 =

{{

{{

{

𝑆 ⋅ 𝑡 (𝑋𝑞−1) A.S (𝑋𝑞) = A.S (𝑋𝑞−1)
𝑆 ⋅ 𝑡 (𝑋𝑞−1) + ÕP (𝑋𝑞−1)
+𝑇 ⋅ 𝑡 (𝑋𝑞−1) , A.S (𝑋𝑞) ̸=A.S (𝑋𝑞−1)

𝑞 = 1, 2, 3, . . . , 𝑒.

(5)

(iii) If P.No(𝑋𝑞) ̸=P.No(𝑋𝑞−1) when searching gene code
𝑋𝑞 , where 𝑞


= 𝑞− 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1), go backwards one

by one until P.No(𝑋𝑞) = P.No(𝑋𝑞) is met as follows:

𝑌3 =

{{

{{

{

𝑆 ⋅ 𝑡 (𝑋𝑞) A.S (𝑋𝑞) = A.S (𝑋𝑞)
𝑆 ⋅ 𝑡 (𝑋𝑞) + 𝑂𝑃 (𝑋𝑞)

+𝑇 ⋅ 𝑡 (𝑋𝑞) , A.S (𝑋𝑞) ̸=A.S (𝑋𝑞)

𝑞

= 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1) , 𝑞 = 1, 2, 3, . . . , 𝑒.

(6)

The start time is obtained using (7), in which 𝑌1, 𝑌2, 𝑌3 are
determined from the previous steps. Consider

S̃ ⋅ t (𝑋𝑞) = Max (𝑌1, 𝑌2, 𝑌3) ; 𝑋𝑞, 𝑞 = 1, 2, . . . , 𝑒. (7)

Note. In the first run, if 𝑌1 = 𝑌2 = 𝑌3 = 0, then 𝑆 ⋅ 𝑡 =
Max(𝑌1, 𝑌2, 𝑌3) + 𝑇 ⋅ 𝑡.

The make-span fitness function is then calculated for all
chromosomes using

T.C.T = Max 𝑆 ⋅ 𝑡 (𝑋𝑞) + ÕP (𝑋𝑞) ; 𝑞 = 1, 2, . . . , 𝑒.

(8)

4.2. Minimizing the Setup Number. In many industries,
sequence-dependent setups are considered as an impor-
tant item in assembly operations. The model considering
sequence-dependent setups is considered in this paper. The
machine number 𝑀(𝑋𝑞) and the setup number 𝑆(𝑋𝑞) are
defined for the element (𝑋𝑞) in the chromosome, where 𝑞 =
1, 2, . . . , 𝑒; the total setup number at the beginning is T.S.N =

0. All the genes𝑋𝑞, where 𝑞 = 1, 2, . . . , 𝑒, in the chromosomes
one by one will be checked and total setup number (T.S.N)
based on the𝑀(𝑋𝑞) and 𝑆(𝑋𝑞) has been determined for all
𝑋𝑞 as shown in

(i)

If 𝑀(𝑋𝑞) ̸=𝑀(𝑋𝑞) , where 𝑞 = 1, 2, 3, . . . , 𝑒,

and 𝑞 = 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1)

then T.S.N = T.S.N + 1;

(9)

(ii)

If 𝑀(𝑋𝑞) = 𝑀(𝑋𝑞) , where 𝑞 = 1, 2, 3, . . . , 𝑒,

and 𝑞 = 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1) then

T.S.N = {
T.S.N + 1 𝑆 (𝑀(𝑋𝑞)) = 𝑆 (𝑀(𝑋𝑞))

T.S.N + 0 𝑆 (𝑀(𝑋𝑞)) ̸= 𝑆 (𝑀(𝑋𝑞))

𝑞 = 1, 2, 3, . . . , 𝑒, 𝑞

= 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1) .

(10)

5. Fuzzification of the Mixed-Model
Line Sequencing

In order to develop a fuzzy version of the mixed-model
line sequencing, operation and travelling time had to rep-
resent a fuzzy number, which is applied for the processing
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and scheduling time of each robot and machine. The fuzzy
sets that are most appropriate to represent these values are
triangular fuzzy numbers (TFN) due to the nature of the pro-
cessing and scheduling times. Rather than assigning a specific
value for each time variable as in the case of deterministic
time methods, TFN establish extreme points to represent the
most and least likely values of the individual variables. The
use of TFN in-time modelling enables users to account for
variability and ambiguity, similar to statistical distributions.
However, TFN differ from statistical distributions such that
they do not require prior knowledge or historical data when
establishing their values. This is a major advantage of using
TFN compared to statistics. TFN are achieved by defining the
existing deterministic time as the most likely values for the
newTFN.This implies that the deterministic value represents
the fuzzy element in the set, with a membership value of 1. A
value of 1 is added or subtracted from the most likely values
in order to get the least likely values for the new TFN, with
a membership value of 0. This same procedure is applied to
adapt the deterministic scheduling times in the fuzzy domain
[42]. No major changes are required when adapting these
heuristics to handle fuzzy processing and scheduling times.

6. Solution Algorithm

In this study, a multiobjective optimization model is devel-
oped for a mixed-model process, comprising the manu-
facture of parts, assignment of parts to their respective
machines, and assembly of parts to form the final products.
The multi objective mixed model involves minimizing the
make-span and setup cost. The operation time and travelling
time are represented by fuzzy numbers. It will be highlighted
that the steps for GA modelling include model, constraints,
fitness function, and satisfying multiple objectives within
the domain of model restrictions, fitness function, and
multiobjective cases. These steps are carried out for various
types of applications and include input data, fuzzy variables,
and initialization of parameters, evaluation, crossover rate,
mutation rate, and termination. The input data are coded by
considering the sequence of part production stages, sequence
of product assembly, and sequence of part allocation to
each machine during the initialization of parameters. The
proposed model consists of input data and fuzzy variables.
Care is taken to ensure that the setup and operation time
for each machine as well as the travelling time of the parts
between various machines are accounted for. The evaluation
stage involves developing themultiobjective fitness functions.
Nine rules are used to control the crossover rate during the
crossover stage, whereas eight rules were used to control
the mutation rate during the mutation stage. Two rules
are designed for the termination stage in order to control
termination and gain optimum results. Sorting, selection
of tournament candidates, elitism, and new population size
were performed based on the existing conditions.

The model is developed based on the works of [1, 5, 8, 28,
34, 45, 46]. A contribution of this paper is the development
of a multiobjective fuzzy mixed production line sequencing
optimization model using the genetic algorithm approach

by integrating job-shop and assembly production lines for
factories withmodular layouts.The significance of thismodel
is for those factories who want to produce the various
kinds of products with fixed machine just by changing the
sequencing of the products. The model helps the manager
to sequence and schedule the production line easily and
accurately by taking the market demand into consideration.
The line sequencing is optimized based on the make-span
and also the setup number of the production line. The flow
chart of the proposedmultiobjective fuzzymixed-production
assembly line sequencing model is shown in Figure 2.

7. Development of Multiobjective
Genetic Algorithm

The procedure used in the development of the model is
described in detail as follows.

Step 1 (input data). The first step involves identifying the
machine number (𝑀𝑗) such as CNC, NC, and robot, as well
as assigning the parts (𝑃𝑖) to their respective machines and
robots based on the production and assembly line sequence.
Also, it needs to identify the fuzzy completion time of
the operation ((𝑂𝑃)𝑖,𝑗)) and fuzzy traveling time between
machines in order to manufacture a part by ((𝑇 ⋅ 𝑡)𝑖,𝑗).

Step 2 (initialization of parameters). Initialization involves
setting the parameters of the GA, creating the scores for the
simulation, and creating the first generation of chromosomes
based on the Notations section. The results of the model will
depend on the difficulties encountered during production
planning and sequencing. The general schematic for reading
data in mixed-production assembly line problems is pre-
sented in Figure 3. Figure 3 shows the number of finished
products, the number of tasks involved in the total produc-
tion line (𝐽𝑞), the order of parts in the assembly (𝐴.𝑆.𝑝),
and the setup of each machine (𝑆𝑢). Figure 3 also shows the
number of parts (𝑃𝑖) and the order for manufacturing each
part. For example, the user proceeds to the next item (part)
once the order of the manufacturing process is completed
for each part. 𝑀𝑗 represents the number of machines used
for manufacturing parts and various products. The dashed
arrows illustrate the coherence between these machines (𝑀𝑗)
during various phases of the production line. The fuzzy
operation time (ÕP𝑖,𝑗) and fuzzy traveling time (𝑇 ⋅ 𝑡𝑖,𝑗) are
presented in Figure 3. The first column of Figure 3 (i.e., gene
code (𝑋𝑞)) shows the coding of each row, which will be
discussed later.

From the data shown in Figure 3, the number of existing
gene codes in the first column represents empty chromo-
somes (𝑋𝑖), which are formed based on the job numbers.
Once the chromosomes have been formed, the chromosomes
will be filled with numbers via stochastic repeating. The
numbers vary between 0 and the maximum number of
genes in the chromosomes. The gene codes are filled up
by random numbers, neglecting the encoding sequence of
the produced chromosomes. Once the chromosomes have
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Figure 2: Flow chart of the proposed multiobjective fuzzy mixed-production assembly line sequencing model.
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Figure 3: General schematic of reading data for the mixed-model assembly line problem.
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been filled with random numbers, the classified gene code
numbers are ranked as a possible sequence which can be used
by the GA. The steps are described briefly as follows.

Identification of the First of Each Part Type’s Gene Code. The
first of each part type’s gene code is identified using (11),
whereby each part has a sequence of gene codes with 𝑓-
elements, where 𝑊𝑧, 𝑧 = 1, 2, . . . , 𝑓, have the same part
number. Consider

𝑋𝑞 −𝑊1 ≤ (𝑓 − 1) . (11)

Classification Based on the Product’s Part Sequence. Each gene
code number in the chromosome line is compared to the
previous one.Three conditions are used when comparing the
gene code numbers and are described below.

(1) The first or existing gene code number fills up the new
chromosome without any changes in the gene code
number.

(2) If the gene code number is the same as other gene
code numbers in the chromosome, the chromosome
is filled up with the addition of one number out of the
existing gene code numbers.

(3) If the gene code number is different from other gene
code numbers within the chromosome, the existing
gene code number fills up the chromosome without
any changes in the gene code number.

Classification Based on the Assembly Sequence. Once the
product’s part sequence has been classified, the chromosome
is filled up using the assembly sequence number relating to a
gene code (𝑋𝑞) of the specific chromosome. Finally, the final
gene code numbers are ranked by two sequence filters, which
accounts for the assembly sequence code and product’s part
sequence.

Step 3 (multiobjective evaluation). After initializing the pop-
ulation size, each chromosome must be evaluated during
each generation of the selection process. The fitness function
value involves evaluating each chromosome by minimizing
the make-span and considering the product number and
assembly sequence for a gene code (𝑋𝑞) which are defined
as (1) through (8). Moreover, the evaluation of each chro-
mosome for the second objective function to minimize the
setup number in mixed-model line sequencing is defined as
(9) through (10). Finally the total fitness values of the efficient
frontiers are calculated based on these two objectives [35].
This is accomplished by looking up the score of each gene
in the chromosome, by means of adding and averaging the
scores for the chromosome. This step is repeated for each
possible chromosome (𝑋𝑞) in the population size. The elite
chromosome of the generation is determined as part of the
evaluation process.

Step 4 (sorting). The total fitness value is calculated for the
population size based on Step 3. Calculations are carried out

in ascending order from “Min” to “Max” for the total fitness
values of all chromosomes.

Step 5 (tournament candidate selection). The chromosomes
are selected for the next generation using the tournament
selection scheme, which is a proportionate random selection
method. Two parent chromosomes are selected from a
population according to their fitness function values.

The main characteristics of tournament selection are
summarized as follows.

(i) Tournament selection is quite useful in certain situa-
tions, such as multiobjective optimization.

(ii) Tournament selection uses only local information.
(iii) Tournament selection is easily implemented with low

time complexity.
(iv) Tournament selection can be easily implemented in a

parallel environment.

However, tournament selection also suffers from selection
bias, which means that the best one will not be selected if it is
very unlucky.

Step 6 (crossover selection). Crossover probability crosses
over parents to form new offspring (children). In the
crossover phase, all chromosomes (except for the elite chro-
mosome) are paired up and crossed over with a probability
crossover rate. Crossover is accomplished by choosing a
site randomly along the length of the chromosome and
exchanging the genes of two chromosomes (parents) for each
gene past this crossover site. The steps for crossover are as
follows.

(1) Identify the number of different requirements for
manufactured products (P.No.ℎ).

(2) Create the one randomnumber between product type
numbers (P.No.ℎ) as follows:

for (int ℎ = 1; 𝑖 < P.No.ℎ; ℎ + +)

{

Product Random = rand ()% Product;

} .

(12)

(3) Identify the gene code number (𝑋𝑞) for the selected
product obtained from the previous step.

(4) Search and identify the gene code from parent A
based on randomproduct selection and transfer these
gene codes to child B, which is exactly at the same
gene location.

(5) Search and identify the gene code fromparent B based
on random product selection and transfer the gene
code to child A, which is exactly at the same gene
location.

(6) Transfer the remaining gene code from parent A to
the gene blank of child A.
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(7) Transfer the remaining gene code fromparent B to the
gene blank of child B.

(8) Calculate the number of crossovers based on the
crossover rate (CR(𝑡)) fromStep 9 and population size
(PS) using

Number of crossovers = CR (𝑡) × PS
2

. (13)

(9) Once new offspring have been created, the new off-
springwill have previous chromosomes in the current
generation.

Step 7 (elitism). In crossover operation, the worst or weakest
chromosomes will fade away, whereas the characteristics of
the chromosomes will change continuously during mutation
operation. The elite chromosome will not be subjected to
mutation in the next generation. Consequently, GA does not
lead to annihilation since several chromosomes (one, two, or
three) from each generation are transferred directly to the
next generation. Mutation is not applied on chromosomes
which are immune. It is possible to maintain a fixed fitness
value in some generations, but theywill never deteriorate.The
first three best chromosomes are selected in the elitism step.

Step 8 (mutation). Following the crossover operation, the
genes will mutate to any of the codes with a mutation rate for
each gene in the chromosomes, with the exception of the elite
chromosome. When the crossover and mutation operations
are complete, the chromosomes will be evaluated for another
round of selection and reproduction. Considering elitism and
after identifying the parts in which mutation will be applied,
the number of mutations in each generation is calculated
using (14) based on themutation rate (Pm(𝑡)), population size
(PS), and maximum gene code (Max .𝑋𝑞) as follows:

Number of mutations ≅ [(PS ×Max .𝑋𝑖) × Pm] . (14)

After identifying the number of gene mutations, a set of
rules needs to be devised for themutation of genes frompoint
A to point B and vice versa, while focusing on the stability of
the chromosome sequence. It is important that the sequence
of the chromosomes is not displaced. There are eight sets
of rules for this step which are classified into two groups as
follows.

(1) Four rules are used to check themutation based on the
part sequence (Rules 1 and 2) and product assembly
(Rules 3 and 4) of genes from A to B.

(2) Four rules are used to check themutation based on the
part sequence (Rules 5 and 6) and product assembly
(Rules 7 and 8) of genes from B to A.

The first group of gene mutation fromA to B is illustrated
in Figure 4. Likewise, the second group of genemutation from
B to A is illustrated in Figure 5.

Note.

(i) Care should be taken to ensure that the position of A
is before B.

A BA < B

Figure 4: General overview of the first group of gene mutation.

A B
A < B

Figure 5: General overview of the second group of gene mutation.

(ii) The above eight mutation rules should be checked
thoroughly to ensure their ideal applications. In the
adverse case, the above eight rules ought to be done
over.

Step 9 (new population size). Having performed crossover,
elitism, and mutation operations, the most ideal chromo-
somes of the current generation are compared and evaluated
to identify its total value, after checking its termination in the
following step.

Step 10 (termination). The loop of chromosome generations
is terminatedwhen certain conditions aremet.The elite chro-
mosome is returned as the best solution once the termination
criteria are met. The termination criteria are listed below.

(1) If the number of generations reaches its maximum,
the loop of chromosome generations is terminated.

(2) If there are no changes in the elite solution (i.e.,
no changes in fitness function value), the loop of
chromosome generations is terminated using

Fitness Value (𝑋𝑞) − Fitness Value (𝑋𝑞+1) ≤ 0.0001.
(15)

8. Computational Results

Theresults of themultiobjective fuzzymixed-model assembly
line model are presented in this section. Each metaheuristic
model is verified, validated, and tested using a test-bed. It
seems natural that one of the crucial elements for comparing
heuristics is the test-bed onto which the heuristics are
tested. Hence, test-beds are essential when comparing two
metaheuristics. Silberholz and Golden [47] studied how to
create and classify instances in a new test-bed and how to
ensure that other researchers have access to the problems
for future metaheuristic comparisons. Silberholz and Golden
[47] proposed that two types of test-beds may be used for
comparing metaheuristics, namely, (1) existing test-beds and
(2) new test-beds. Existing test-beds are used when compar-
ing a newmetaheuristic to an existing one. It is advantageous
to test problem instances that have been tested in previous
studies. The results will be compared on a by-instance basis,
allowing relative gap calculations between the two heuristics.
New test-beds are developed when an existing test-bed is
insufficient. For instance, there are no test-beds available for
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Table 1: Input data for numerical example.

Number of jobs (𝐽
𝑞
) Number of products

(P.No.
ℎ
)

Number of parts (𝑃
𝑖
) Number of lathe machines,

CNC, and robots (𝑀
𝑗
)

Number of machine setup
tools (𝑆

𝑢
)

50 4 20 5 5

cases where metaheuristics are written specifically for a new
problem and thus a new test-bed needs to be developed for
this purpose. A new test-bed also needs to be developed if
the existing test-beds are insufficient, which are often due to
the fact that the test-beds are too small to effectively test a
heuristic. There are two points which need to be addressed
when developing new test-beds, that is, the purpose of
developing the test-beds and the accessibility of new test
instances [47]. The purpose of a problem suite is to emulate
real-world problem instances with a variety of test cases and
difficulty levels. When creating a new test-bed, the focus is to
provide others with accessibility to problem instances. This
enables other researchers to make comparisons easily, while
ensuring that the problem instances are widely used. One
way to ensure this is to create a simple generating function
for the problem instances. Capturing the real aspects of a
problem is particularly significant when developing a new
test-bed. In this section, the results are presented based on the
development of new test-beds due to the fact that the existing
test-beds are inadequate. This is followed by a discussion on
the identification of the optimum scheduling time for a fuzzy
mixed-model assembly line sequencing problem.

8.1. Input Data. A hypothetical numerical example is
designed to test the fuzzy mixed-model assembly line
sequencing problem. The input data of the hypothetical
numerical example is given in Table 1, consisting of 50 jobs
and 20 parts in order to produce four products.There are five
machine tools (one lathe, two CNC, and two robots) assigned
to assemble four products.

8.2. Initialization of Parameters and Fuzzy Variables. The
initialization of parameters for the mixed-model assembly
line sequencing example is shown in Table 3. It can be seen
that 50 jobs (𝐽𝑞; 𝑞 = 1, 2, . . . , 50) are required to produce
20 parts (𝑃𝑖; 𝑖 = 0, 1, ..., 19) and these parts are assembled
to produce four types of product (P.No.ℎ; ℎ = 1, 2, 3, 4).
The number of tool changes is 5 (𝑆𝑢; u = A, B, C, D, and E)
and these tools are assigned to five machines (𝑀(𝑋𝑞); q =
0, 1, 2, 3, 4). The job sequence is dependent upon the part
and product assembly and is described as follows. First, the
job number is assigned to produce the first product, ranging
from 1 to 10 (P.No.1, ℎ = 1; 𝐽𝑞, 𝑞 = 1, 2, . . . , 10). It will be
highlighted that there are 10 jobs in this case and they are
sequenced to produce three parts according to the following
order. Job numbers 1, 2, and 3 are assigned to produce Part
(0) ((𝑃𝑖), 𝑖 = 0 → 𝐽1, 𝐽2, 𝐽3), while job numbers 4 and 5
are assigned to produce Part (1) ((𝑃𝑖), 𝑖 = 1 → 𝐽4, 𝐽5). Job
numbers 6 and 7 are assigned to produce Part (2) ((𝑃𝑖),
𝑖 = 2 → 𝐽6, 𝐽7), whereas job numbers 8, 9, and 10
are assigned to produce Part (3), which is a subpart of the

product assembly ((𝑃𝑖), 𝑖 = 3 → 𝐽8, 𝐽9, 𝐽10). Production of
the second, third, and fourth products is based on the
sequence described for Product (1), as shown in Table 2. The
fuzzy processing time of each job (𝐽𝑞, 𝑞 = 1, 2, . . . , 10) is
defined as a triplet (𝑎1, 𝑎2, 𝑎3). The total operating time is
based on the fuzzy triangular time and is required to complete
the jobs sequentially when producing each part, in which
each part is assigned to a machine (𝑀𝑗, 𝑗 = 0, 1, 2, 3, 4).
The total operating time is defined as (ÕP𝑖,𝑗 = (𝑎1, 𝑎2, 𝑎3); 𝑖 =
0, 1, 2, . . . , 19; 𝑗 = 0, 1, . . . , 5; a = time). The total travelling
time based on the above information is defined as (𝑇 ⋅ 𝑡𝑖,𝑗 =
(𝑎1, 𝑎2, 𝑎3); 𝑖 = 0, 1, 2, . . . , 19; 𝑗 = 0, 1, . . . , 5; a = time). The
operation and travelling time are fuzzy numbers, which are
indicated by “𝑎1,” “𝑎2,” and “𝑎3.” The parameters “𝑎1,” “𝑎2,”
and “𝑎3” represent the optimistic time, normal time, and
pessimistic time, respectively.

8.3. Model Development. A numerical example for mixed-
model assembly line sequencing is presented in Figure 6,
based on the parameters listed in Table 2. The solid arrows
represent the order of the product line (sequence of part pro-
duction), discrete part manufacturing, and assembly, leading
to the finished products, as indicated by the job numbers.
Suppose that the production process involves manufacturing
four products using the same assembly line. In other words,
four different products are manufactured simultaneously on
the assembly line, and hence the problem is a mixed-model
assembly line problem. In this example, 20 parts need to
be manufactured using five machines. From Figure 6, the
order of the production of parts is represented by the dashed
rectangles and is termed as the process line. The assembly
lines are represented by the dotted rectangles.The assignment
of parts to their respective machines based on job number is
illustrated in Figure 7.

8.4. Multiobjective Evaluation. The optimized optimistic,
medium, and pessimistic starting times (𝑆 ⋅ 𝑡) are shown in
the sixth column of Table 3, based on the GA encoding
chromosome sequence (𝑋𝑞) and job sequence (𝐽𝑞). The
final optimized optimistic start time is 59.5, whereas the
final medium and pessimistic start times are 69 and 85.5,
respectively.

The scheduling of existing optimistic time for mixed-
model assembly line sequencing (machine versus optimistic
time) is shown in Figure 8(a), whereas the scheduling for
optimized optimistic scheduling time is shown in Figure 8(b).
This chart is created to demonstrate the allocated time and
setup number based on the part assembly sequence for each
mixed-model. The existing optimistic total scheduling time
is obtained to be 166 min, whereas the optimized optimistic
total scheduled time is 62.5 min, which indicates significant
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Figure 6: Example of mixed-model assembly line sequencing (50 jobs, 20 parts, 4 products).

time-savings. Moreover, the total fuzzy setup numbers for
the existing and optimized optimistic data are 44 and 36,
respectively.

The percentage of the existing and optimized fuzzy
numbers which represent the efficiency and idle time of the
machines is presented in Table 4. The efficiency and idle
time are categorized as optimistic, medium, and pessimistic.
The lowest efficiency is obtained for Machine (4), in which
the optimistic, medium, and pessimistic times which are
3.3%, 6.4%, and 3.9% increase to 8.7%, 21.9%, and 11.7%. The
highest idle time is also obtained for Machine (4), whereby
the optimistic, medium, and pessimistic times which are
96.7%, 93.6%, and 96.1% decrease to 91.35%, 78.1%, and
88.3%.

The final results based on the existing and optimized
data are shown in Table 5. The overall results show that the
existing fuzzy data is improved by optimization. The total
fuzzy existing scheduling time is optimized from 166, 250,
and 266 to 62.5, 73, and 88.5. The total fuzzy setup numbers
for the existing and optimized data are 44, 44, and 44 and
36, 36, and 39, respectively. The total fuzzy existing efficient
frontier is 105, 147, and 155, while the optimized ones are
49.25, 54.5, and 63.75. The total fuzzy existing cycle and

setup time are optimized from 254, 338, and 354 to 135,
145, and 168. The total fuzzy operation setup times for the
existing and optimized data are 88, 88, and 88 and 72, 72,
and 78, respectively. The total fuzzy existing changing setup
cost is optimized from $ 3520, $ 3520, and $ 3520 to $
2880, $ 2880, and $ 3120. The total fuzzy units produced per
day for the existing and optimized data are approximately
1.80, 1.92, and 2.89 and 5.33, 6.58, and 7.62, respectively.
The total existing fuzzy percentage efficiency is optimized
from 10.32%, 10.90%, and 11.45% to 30.16%, 32.22%, and
35.34%.

9. Conclusion

It is known that mixed-model assembly line sequencing is
a problem which involves job-shop and assembly line with
multiple conflicting objectives, namely, minimizing the setup
time and make-span. These objectives have been achieved
successfully and tested using a hypothetical numerical exam-
ple. An optimization model is developed using GA for the
mixed-model assembly line sequencing problem in order
to address conflicting objectives which involve minimizing
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Figure 8: Optimistic time scheduling for mixed-model assembly line sequencing.



Journal of Applied Mathematics 15

Table 2: Fuzzy variables and initialization of parameters.
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Table 3: Optimized scheduling time based on optimistic, medium, and pessimistic data.
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Table 4: Percentage of existing and optimized fuzzy numbers representing the efficiency and idle time of machines.

Existing data Optimized data
Efficiency Idle time Efficiency Idle time

(Opt, Med, Pes) (Opt, Med, Pes) (Opt, Med, Pes) (Opt, Med, Pes)
Machine (0) (12%, 10.4%, 12%) (88%, 89.6%, 88%) (31.7%, 35.6%, 35.6%) (68.3%, 64.4%, 64.4%)
Machine (1) (16.6%, 13.6%, 15.2%) (83.4%, 86.4%, 84.8%) (43.7%, 46.6%, 45%) (56.3%, 53.4%, 55%)
Machine (2) (16.9%, 13.6%, 15%) (83.1%, 86.4%, 85%) (44.4%, 46.6%, 44.4%) (55.6%, 53.4%, 55.6%)
Machine (3) (8.4%, 7.6%, 8.3%) (91.6%, 92.4%, 91.7%) (22.2%, 26.0%, 24.4%) (77.8%, 74%, 75.6%)
Machine (4) (3.3%, 6.4%, 3.9%) (96.7%, 93.6%, 96.1%) (8.7%, 21.9%, 11.7%) (91.35, 78.1%, 88.3%)

Table 5: Summary of the final results based on existing and optimized data.

Existing data Optimized data
(Opt, Med, Pes) (Opt, Med, Pes)

Total scheduling time (166, 250, 266) (62.5, 73, 88.5)
Total setup number (No.) (44, 44, 44) (36, 36, 39)
Total efficient frontier (105, 147, 155) (49.25, 54.5, 63.75)
Total scheduling time with setup time (254, 338, 354) (135, 145, 168)
Total operation setup time (88, 88, 88) (72, 72, 78)
Total changing setup cost ($) (3520, 3520, 3520) (2880, 2880, 3120)
Total units produced per day (2.89, 1.92, 1.80) (7.62, 6.58, 5.33)
Total efficiency (%) (11.45%, 10.32%, 10.90%) (30.16%, 35.34%, 32.22%)
Total idle time (%) (88.55%, 89.68%, 89.10%) (69.84%, 64.66%, 67.78%)

the make-span (i.e., minimizing scheduling time, travelling
time, and machine idle time and maximizing production)
and minimizing the setup time (i.e., minimizing the num-
ber of machine setup tool changes and minimizing the
machine setup cost) simultaneously that occur when switch-
ing between different products.The triangular fuzzy numbers
are applied for variables such as operation and travelling
time. The hypothetical numerical example comprises 50
jobs to produce 20 parts using five machines in order to
assemble four products. The fuzzy numbers are categorized
as optimistic, medium, and pessimistic fuzzy total scheduling
time. The results show that the fuzzy total scheduling time
which is 166, 250, and 266 decreases to 62.5, 73, and 88.5 after
optimization. Comparison is made between the existing and
optimized results representing the efficiency and idle time of
each machine. The existing and optimized results of the total
scheduling time, total setup number, total efficient frontier,
total scheduling time with setup time, total operation setup
time, total changing setup cost ($), and total units produced
per day are also compared.

Notations

𝑖: An index used for parts; 𝑖 = 1, 2, . . . , 𝑛
𝑗: An index used for machines;

𝑗 = 1, 2, . . . , 𝑚

𝑛: Number of total parts
𝑚: Number of total machines

𝑢: An index used for a setup change for the
machine; 𝑢 = 𝐴, 𝐵, . . . , 𝑍

𝑝: An index used for an assembly sequence;
𝑝 = 1, 2, . . . , V

V: Maximum number of assembly sequence
orders in each product

ℎ: An index used for a product number;
ℎ = 1, 2, . . . , 𝑘

𝑘: Total product
𝑞: An index used for gene code number in each

chromosome; 𝑞 = 1, 2, . . . , 𝑒
𝑒: Total gene on each chromosome
𝑧: An index used for a same part’s gene code
𝑓: Number of same part’s gene code
𝑎: An index used for showing an optimistic

time
𝑏: An index used for showing an average time
𝑐: An index used for showing a pessimistic time
𝑋𝑞: The gene code number in the chromosome;

𝑞 = 1, 2, . . . , 𝑒

𝑋𝑞 : The alleviated gene code number in the
chromosome; 𝑞 = 𝑞 − 1, 𝑞 − 2, . . . , 𝑞 − (𝑞 − 1)

𝐽𝑞: The number of tasks involved in the total
production line; 𝑞 = 1, 2, . . . , 𝑒

𝑃𝑖: Number of parts; 𝑖 = 1, 2, . . . , 𝑛
𝑀𝑗: Machine use for manufacturing parts and

various products; 𝑗 = 1, 2, . . . , 𝑚
𝑆𝑢: Setup number based on the jobs, assigned to

each machine; 𝑢 = 𝐴, 𝐵, . . . , 𝑍
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P.No.ℎ: Product number; ℎ = 1, 2, . . . , 𝑘
A.S.𝑝: The order of parts in the assembly;

𝑝 = 1, 2, . . . , V
ÕP𝑖,𝑗: Fuzzy operation time of parts 𝑃𝑖,

𝑖 = 1, 2, . . . , 𝑛, in machine𝑀𝑗, 𝑖 = 1, 2, . . . , 𝑚,
defined as a triplet (𝑎, 𝑏, 𝑐)

𝑇 ⋅ 𝑡𝑖,𝑗: Fuzzy traveling time of parts 𝑃𝑖,
𝑖 = 1, 2, . . . , 𝑛, travel between each machine
𝑀𝑗, 𝑗 = 1, 2, . . . , 𝑚, defined as a triplet
(𝑎, 𝑏, 𝑐)

𝑊𝑧: A sequence of the same part’s gene code with
𝑓-elements,𝑊𝑧, 𝑧 = 1, 2, . . . , 𝑓

𝑆 ⋅ 𝑡: Fuzzy start time
𝑌1: Checking the start time (𝑆 ⋅ 𝑡), based on the

part’s sequencing (𝑃𝑖) assigned to the
machine (𝑀𝑗)

𝑌2: Checking the start time (𝑆 ⋅ 𝑡) of machine’s
availability (𝑀𝑗) assigned to produce the
parts (𝑃𝑖)

𝑌3: Checking the start time (𝑆 ⋅ 𝑡) of the parts
entering the machines based on the sequence
of the part’s assembly (𝐴.𝑆.𝑝) for each
product (𝑃.𝑁𝑜.ℎ)

T.S.N: Total setup number
T.C.T: Total completion time
PS: Population size
CR(𝑡): Crossover rate
Pm(𝑡): Mutation rate
Max .𝑋𝑞: Maximum gene code.
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