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To study the relationship between antimicrobial resistance and the concentration of antibiotics, a competitive population dynamical
model is proposed between the susceptible strain and the resistant strain with antibiotic exposure.The strict mathematical analysis
is performed, and the results indicate that long-term high strength antibiotic treatment and prevention can induce the extinction
of susceptible strain.Thus, the prescribed dose of antibiotics must be strictly controlled during the treatment and prevention of the
infections in clinics.

1. Introduction

It was thought that the war against infectious diseases has
been won in the initial stages of the discovery of antibiotics
and their widespread introduction [1]. However, during the
multiplication process of bacteria, there are high degrees of
individuality or phenotypic heterogeneity in populations of
genetically identical cells [2–5]. As a result of the cell-to-cell
variation, a high probability of the selection of antimicrobial
resistance is particularly prone to occur. Thus, the overuse of
antibiotic therapy may result in the prevalence of antibiotic-
resistant bacteria and an apparently inexorable advent of
a postantibiotic era or a super wicked challenge [6–9]. In
fact, antimicrobial resistance has now become an unfolding
catastrophe [1] and the new strategy and action plan has
been proposed by the Department of Health in the United
Kingdom [9].

To extend the life of existing antibiotics, it is necessary
to analyze the molecular mechanism of antibiotic resistance
and strategize about slowdown and avoid antibiotic resis-
tance during anti-infective therapy. In the process numerous
research articles have highlighted that bothmolecular biology
and computational biology, including mathematical mod-
eling, are vitally important methods [5, 10–15]. Especially,
recent biological study has confirmed that the signaling

nucleotide (p)ppGpp can control bacterial persistence by
stochastic induction of toxin-antitoxin activity, and there is
a special resistant strain, which can switch into slow growth
through the changes of (p)ppGpp level in high antibiotic
concentration [5]. However, under different concentrations
of antibiotic, the long-term competitive ending between the
susceptible strain and the resistant strain remains unknown.

In this paper, based on the above mentioned mechanism
of bacterial antibiotic resistance within the host, a compet-
itive population dynamical model is proposed to explore
the competitive interactions between the susceptible strain
and the resistant strain with antibiotic exposure. The focus
is the relationship between antibiotic resistance and the
concentration of antibiotics, which may be added to the host
by injection, orally, or by transfusion.The organization of this
paper is as follows. In the next section, the proposed model is
described and the global dynamics is obtained. In Section 3,
some numerical simulations are performed. Finally, a brief
discussion is given to conclude this work.

2. Model and Its Dynamical Behaviors

2.1. Description of the Model. According to the pharmacoki-
netic, we know that the concentration of the drugwithin-host
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will tend to be approximately constant after multiple dosing.
Thus, it is reasonable to assume that the plasma concentration
of the antibiotics is a constant, which is denoted as 𝑆

0
. In

addition, let 𝑥(𝑡) be the number of susceptible strains, and let
𝑦(𝑡) be the number of resistant strains at time 𝑡, respectively.
The following differential equations can be used to describe
the basic dynamics of the interaction between 𝑥(𝑡) and 𝑦(𝑡):

d𝑥 (𝑡)
d𝑡
= 𝑥 (𝑡) (𝑟1 − 𝛿11𝑥 (𝑡) − 𝛿12𝑦 (𝑡) − 𝛽𝑆0) ≜ 𝐹1 (𝑥, 𝑦) ,

d𝑦 (𝑡)
d𝑡
= 𝑦 (𝑡) (𝑟

2
𝑒
−𝜇𝑆0 − 𝛿

21
𝑥 (𝑡) − 𝛿

22
𝑦 (𝑡)) ≜ 𝐹

2
(𝑥, 𝑦) ,

(1)

where the natural growth rates and death rates of susceptible
strain and resistant strain are 𝑟

1
, 𝑟
2
, 𝛿
11
𝑥(𝑡), and 𝛿

22
𝑦(𝑡),

respectively. Parameter 𝛽 is the coefficient of the effect of
destroying susceptible bacteria by antibiotics, and function
𝑒
−𝜇𝑆0 denotes the decline of growth rate of resistant strain
by the signaling nucleotide (p)ppGpp. For biological consis-
tency, all parameters are positive constants, 𝑟

1
> 𝛽𝑆
0
and the

initial values of system (1) are 𝑥(0) > 0 and 𝑦(0) > 0.

2.2. Mathematical Analysis. Because of the biological mean-
ing of the components (𝑥(𝑡), 𝑦(𝑡)), we focus on the model in
the first octant of R2. To study the dynamics of system (1),
we first show that that model (1) is biologically well behaved
and dissipative; that is, all solutions of model (1) in R2

+
are

ultimately bounded and the solutions with positive initial
values are positive.

Theorem 1. Under the given initial conditions, all solutions of
system (1) are positive and system (1) is dissipative.

This theorem is clear to be seen, thus, the detailed proof
is omitted for the sake of simplicity.

In order to obtain the global dynamics of system (1), we
first have the following result regarding the nonexistence of
periodic orbits in system (1).

Theorem 2. System (1) does not have nontrivial periodic
orbits.

Proof. Consider system (1) for 𝑥 > 0 and 𝑦 > 0. Take a Dulac
function:

𝐷(𝑥, 𝑦) =
1

𝑥𝑦
. (2)

We have

𝜕𝐷 (𝑥, 𝑦) 𝐹
1
(𝑥, 𝑦)

𝜕𝑥
+
𝜕𝐷 (𝑥, 𝑦) 𝐹

2
(𝑥, 𝑦)

𝜕𝑦
= −
𝛿
11

𝑦
−
𝛿
22

𝑥
< 0.

(3)

The conclusion follows from Dulac criterion [16, 17].

We now consider the existence of equilibria of system (1).
Let𝐹
1
(𝑥, 𝑦) = 0 and let𝐹

2
(𝑥, 𝑦) = 0. Clearly, when the plasma

concentration of the antibiotics 𝑆
0
< 𝑟
1
/𝛽, model (1) always

has three equilibria: one is 𝐸
0
= (0, 0), meaning that both

bacteria become extinct and the others are 𝐸
1
= (𝑥
1
, 0) and

𝐸
2
= (0, 𝑦

2
), in which

𝑥
1
=
𝑟
1
− 𝛽𝑆
0

𝛿
11

, 𝑦
2
=
𝑟
2
𝑒
−𝜇𝑆0

𝛿
22

, (4)

which are corresponding to the extinction of resistant strain
and susceptible strain, respectively. Furthermore, we have
the positive equilibrium 𝐸

+
= (𝑥
∗
, 𝑦
∗
), corresponding to

coexistence of susceptible strain and resistant strain, that is
given by intersections of the zero growth isoclines:

𝑙
1
: 𝑟
1
− 𝛿
11
𝑥 (𝑡) − 𝛿12𝑦 (𝑡) − 𝛽𝑆0 = 0,

𝑙
2
: 𝑟
2
𝑒
−𝜇𝑆0 − 𝛿

21
𝑥 (𝑡) − 𝛿

22
𝑦 (𝑡) = 0.

(5)

Apparently, the isoclines 𝑙
1
and 𝑙
2
pass through the points

𝐸
1
, (0, 𝑦
1
) and (𝑥

2
, 0), 𝐸

2
, respectively. Here

𝑦
1
=
𝑟
1
− 𝛽𝑆
0

𝛿
11

, 𝑥
2
=
𝑟
2
𝑒
−𝜇𝑆0

𝛿
21

. (6)

According to the position relation between 𝑙
1
and 𝑙
2
, we know

that there are four cases (Figure 1) depending on the size of
parameters 𝐴

1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
, in which

𝐴
1
= 𝑟
2
𝛿
12
𝑒
−𝜇𝑆0 + 𝛽𝛿

22
𝑆
0
, 𝐴

2
= 𝑟
1
𝛿
22
,

𝐴
3
= 𝑟
2
𝛿
11
𝑒
−𝜇𝑆0 + 𝛽𝛿

21
𝑆
0
, 𝐴

4
= 𝑟
1
𝛿
21
.

(7)

The object of the next analysis is to study the asymptotical
stabilizability of the equilibria. Since 𝑙

1
and 𝑙
2
are the isoclines

of system (1), 𝑙
1
and 𝑙
2
divide the first octant into several

subregions, and the derivative of 𝑥 and 𝑦 keeps a fixed sign
in each subregion as indicated in Figure 1. By the combina-
tion of Theorem 1, Theorem 2, and the Poincaré-Bendixson
theorem, with the help of the fixed sign in each subregion
(Figure 1), we have the complete dynamical behaviors of
system (1), which is summarized in Table 1.

3. Simulations

FromTable 1, we know that equilibrium𝐸
2
is globally asymp-

totically stable in the case of (IV); that is, the susceptible
strain will extinct and the resistant strain will persist, which
means that antimicrobial resistance occurs. What is the
relationship between the concentration of antibiotics and
the phenomenon of antimicrobial resistance? In this section,
we will give some qualitative analyses from a numerical
simulation standpoint.

Let

𝑟
1
= 1.5, 𝑟

2
= 3.5, 𝛿

11
= 2.0,

𝛿
22
= 12.0, 𝛽 = 1.0, 𝜇 = 0.5.

(8)

When 𝛿
12
= 4.0 and 𝛿

21
= 3.0, if there is no antibiotics,

that is, 𝑆
0
= 0, after a simple calculation, we have 𝐴

1
< 𝐴
2

and 𝐴
3
> 𝐴
4
. Thus, Case (I) occurs (Figure 2(a)). Increasing
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Table 1: Dynamical behaviors of system (1).

Case Conditions Dynamics
I 𝐴

1
< 𝐴
2
and 𝐴

3
> 𝐴
4 𝐸

0
, 𝐸
1
, and 𝐸

2
are unstable, and 𝐸

+
is globally asymptotically stable

II 𝐴
1
> 𝐴
2
and 𝐴

3
< 𝐴
4

𝐸
0
and 𝐸

+
are unstable; 𝐸

1
and 𝐸

2
are locally stable dependent on the

initial conditions
III 𝐴

1
< 𝐴
2
and 𝐴

3
< 𝐴
4 𝐸

0
and 𝐸

2
are unstable, and 𝐸

1
is globally asymptotically stable

IV 𝐴
1
> 𝐴
2
and 𝐴

3
> 𝐴
4 𝐸

0
and 𝐸

1
are unstable, and 𝐸

2
is globally asymptotically stable
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Figure 1: Illustration of the equilibria and the vector field of system (1). (I) 𝐴
1
< 𝐴
2
and 𝐴

3
> 𝐴
4
; (II) 𝐴

1
> 𝐴
2
and 𝐴

3
< 𝐴
4
; (III) 𝐴

1
< 𝐴
2

and 𝐴
3
< 𝐴
4
; (IV) 𝐴

1
> 𝐴
2
and 𝐴

3
> 𝐴
4
. Each equilibrium is represented by a closed cycle (∙), and the sign of the derivative of 𝑥, 𝑦 in each

subregion is denoted by (𝑎, 𝑏), where 𝑎 is the sign of the derivative of 𝑥 and 𝑏 is the sign of the derivative of 𝑦. Note that the expressions of
𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
are shown in (4), (6), and (7).

the concentration of antibiotics, 𝑆
0
= 0.1, the inequalities

remain valid. However, when the concentration of antibiotics
increase to 𝑆

0
= 0.9, we find that the inequalities become

𝐴
1
> 𝐴
2
, 𝐴
3
> 𝐴
4
, and Case (IV) occurs, which is

also shown in Figure 2(a). Thereby long-term high strength
antibiotic treatment and prevention can induce the extinction
of susceptible strain and accelerate the phenomenon of
antimicrobial resistance.

By changing the parameter 𝛿
21

to 6.0, because 𝐴
1
<

𝐴
2
and 𝐴

3
< 𝐴
4
are valid, we can obtain the extinction

of resistant strain and persistence of susceptible strain if
there is no antibiotics or low strength antibiotic treatment
(Figure 2(b), Case (III) in Table 1). Similarly, when there is a
high strength antibiotic treatment, 𝑆

0
= 0.9, the inequalities

change to 𝐴
1
> 𝐴
2
and 𝐴

3
> 𝐴
4
(Case (IV) in Table 1) and

the simulated time series is shown in Figure 2(b). Thus, the
serious consequences of the abuse of antibiotic were proved
afresh during the treatment and prevention of the infections.

Holding 𝛿
21
= 6.0 and changing the parameter 𝛿

12
to 5.5,

the inequalities 𝐴
1
> 𝐴
2
and 𝐴

3
< 𝐴
4
are valid if 𝑆

0
= 0.0

or 𝑆
0
= 0.1 (Case (II) in Table 1). Thus, both extinction and

persistence of the resistant strain may happen in course of

the competition because 𝐸
1
and 𝐸

2
are locally stable depen-

dent on the initial conditions (Figures 2(c) and 2(d)). How-
ever, when the concentration of antibiotics increase to 𝑆

0
=

0.9, the resistant strain is survived since the inequalities
change to 𝐴

1
> 𝐴
2
and 𝐴

3
> 𝐴
4
(Case (IV) in Table 1) and

the equilibrium 𝐸
2
is globally asymptotically stable (Figures

2(c) and 2(d)), which alsomeans that it is necessary to control
the dose of antibiotics. Otherwise, antimicrobial resistance
will occur.

4. Discussion

According to the latest mechanism of bacterial antibiotic
resistance within the host [5], a competitive population
model (1) between the susceptible strain and resistant strain
is proposed under the circumstance of antibiotic exposure.
Based on the global dynamics of system (1), the relationship
is explored between antimicrobial resistance and the concen-
tration of antibiotics by numerical simulations. The results
indicate that the resistant strain will ultimately survive along
with the long-term high strength antibiotic treatment and
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Figure 2: Time series of the susceptible strain (𝑥(𝑡)) and resistant strain (𝑦(𝑡)) within host as predicted by the model (1). 𝛿
12
= 4.0 and

𝛿
21
= 3.0 in (a); 𝛿

12
= 4.0 and 𝛿

21
= 6.0 in (b); 𝛿

12
= 5.5 and 𝛿

21
= 6.0 in (c) and (d). The initial condition is (𝑥(0), 𝑦(0)) = (0.8, 0.2) in (a),

(b), and (c), and (𝑥(0), 𝑦(0)) = (0.2, 0.8) in (d). Other parameters are shown in (8).

prevention, which has been found in many recurrent and
chronic infections [18–20].

Note that the assumption that infections can be prevented
or treated has become the backbone of the whole modern
healthcare [1].Thus, resistance is not just an infectious disease
issue, it is also a surgical issue, a cancer issue, and a health
system issue [1]. Antimicrobial prescribing needs to be more
evidence based and more efficiently targeted [9]. In particu-
lar, in order to inhibit or decelerate resistance to antibiotics,
the prescribed dose of antibiotics must be strictly controlled
during the treatment and prevention of the infections in

clinics. Otherwise, a postantibiotic era or a super wicked
challenge is likely to occur [6–9]. Though the risk-benefit
balance for antibiotic prescribing is becoming even more
complex [9],mathematicalmodelingmay be a useful research
tool because it can involve and integrate a wide range of
subjects, including biology, medicine, and economics.
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