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We aim at establishing a new bilateral type generating function associated with the I-function and a Mellin-Barnes type of contour
integral. The results derived here are of general character and can yield a number of (known and new) results in the theory of
generating functions.

1. Introduction

Bilinear and bilateral type generating functions are contin-
uous functions associated with a given sequence and have
useful applications in many research fields. For this reason,
generating functions are very useful in analyzing discrete
problems involving sequences of numbers or sequences of
functions, inmodern combinatorics. A number of generating
functions and expansions of such other types of hypergeo-
metric functions in one, two, and more variables have been
developed bymany authors (see [1–4]; for a very recent work,
see also [5]). Here, we present a new bilateral generating
function associated with the 𝐼-function and Mellin-Barnes
type of contour integral, mainly motivated by the work of
Srivastava and Panda [4].

For our purpose, we begin by recalling some known
functions and throughout this paper wewill use the following
notations.

LetΔ(𝑠, 𝛼) and∇(𝑠, 𝛼) stand for the s-parameter sequence
𝛼/𝑠, (𝛼+1)/𝑠, . . . , (𝛼+𝑠−1)/𝑠 and 1−(𝛼/𝑠), 1−(𝛼+1)/𝑠, . . . , 1−
(𝛼 + 𝑠 − 1)/𝑠, respectively, for an arbitrary complex number 𝛼
and for all integers 𝑠 ≥ 1.

The 𝐻-function introduced by Fox [6, p. 408] will be
represented and defined as follows:

𝐻
𝑚,𝑛

𝑝,𝑞
[𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞
] =

1

2𝜋𝑖
∫
𝐿

𝜙 (𝜉) 𝑥
𝜉

𝑑𝜉, (1)

where

𝜙 (𝜉) =

∏
𝑚

𝑗=1
Γ (𝑏
𝑗
− 𝐵
𝑗
𝜉)∏
𝑛

𝑗=1
Γ (1 − 𝑎

𝑗
+ 𝐴
𝑗
𝜉)

∏
𝑞

𝑗=𝑚+1
Γ (1 − 𝑏

𝑗
+ 𝐵
𝑗
𝜉)∏
𝑝

𝑗=𝑛+1
Γ (𝑎
𝑗
− 𝐴
𝑗
𝜉)

, (2)

where an empty product is interpreted as unity and 0 ≤ 𝑚 ≤

𝑞, 0 ≤ 𝑛 ≤ 𝑝, 𝐴
𝑗
(𝑗 = 1, . . . , 𝑝), and 𝐵

𝑗
(𝑗 = 1, . . . , 𝑞) are

positive numbers. L is suitable contour of Barnes type such
that the poles of Γ(𝑏

𝑗
− 𝐵
𝑗
𝜉) (𝑗 = 1, . . . , 𝑚) lie to the right of

it and those of Γ(1 − 𝑎
𝑗
+ 𝐴
𝑗
𝜉) (𝑗 = 1, . . . , 𝑛) lie to the left of

it. Asymptotic expansions and analytic continuations of the
𝐻-function have been discussed by Braaksma [7].

The 𝐼-function will be defined and represented as follows
[8]:

𝐼
𝑚,𝑛

𝑝𝑖,𝑞𝑖 ,𝑟
[𝑧|

(𝑎𝑗 ,𝛼𝑗)1,𝑛
,(𝑎𝑗𝑖 ,𝛼𝑗𝑖)𝑛+1,𝑝𝑖

(𝑏𝑗 ,𝛽𝑗)1,𝑚 ,(𝑏𝑗𝑖 ,𝛽𝑗𝑖)𝑚+1,𝑞𝑖

] =
1

2𝜋𝑖
∫
𝐿

𝜙 (𝜉) 𝑧
𝜉

𝑑𝜉, (3)

where

𝜙 (𝜉) =

∏
𝑚

𝑗=1
Γ (𝑏
𝑗
− 𝛽
𝑗
𝜉)∏
𝑛

𝑗=1
Γ (1 − 𝑎

𝑗
+ 𝛼
𝑗
𝜉)

∑
𝑟

𝑖=1
[∏
𝑞𝑖

𝑗=1
Γ (1 − 𝑏

𝑗𝑖
+ 𝛽
𝑗𝑖
𝜉)∏
𝑝

𝑗=1
Γ (𝑎
𝑗𝑖
− 𝛼
𝑗𝑖
𝜉)]

,

(4)
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and 𝑚, 𝑛, 𝑝
𝑖
, 𝑞
𝑖
are integers satisfying 0 ≤ 𝑛 ≤ 𝑝

𝑖
, 1 ≤

𝑚 ≤ 𝑞
𝑖
(𝑖 = 1, . . . , 𝑟), where 𝑟 is finite. 𝛼

𝑗
, 𝛽
𝑗
, 𝛼
𝑗𝑖
, 𝛽
𝑗𝑖
are

positive integers and 𝑎
𝑗
, 𝑏
𝑗
, 𝑎
𝑗𝑖
, 𝑏
𝑗𝑖
are complex numbers.The

𝐼-function is a generalized form of the well-known Fox 𝐻-
function [6]. In the sequel, the 𝐼-function will be studied
under the following conditions of existence:

(i) 𝐴
𝑖
> 0,

󵄨󵄨󵄨󵄨arg 𝑧
󵄨󵄨󵄨󵄨 <

𝐴
𝑖
𝜋

2
(5)

(ii) 𝐴
𝑖
≥ 0,

󵄨󵄨󵄨󵄨arg 𝑧
󵄨󵄨󵄨󵄨 ≤

𝐴
𝑖
𝜋

2
, R (𝐵 + 1) < 0, (6)

where

𝐴
𝑖
=

𝑛

∑

𝑗=1

𝛼
𝑗
−

𝑝𝑖

∑

𝑗=𝑛+1

𝛼
𝑗𝑖
+

𝑚

∑

𝑗=1

𝛽
𝑗

−

𝑞𝑖

∑

𝑗=𝑚+1

𝛽
𝑗𝑖
, ∀𝑖 = (1, 2, . . . , 𝑟) ,

𝐵 =

𝑚

∑

𝑗=1

𝑏
𝑗
+

𝑞𝑖

∑

𝑗=𝑚+1

𝑏
𝑗𝑖
−

𝑛

∑

𝑗=1

𝑎
𝑗
−

𝑝𝑖

∑

𝑗=𝑛+1

𝑎
𝑗𝑖

+
1

2
(𝑝
𝑖
− 𝑞
𝑖
) , ∀𝑖 = (1, 2, . . . , 𝑟) .

(7)

2. Bilateral Generating Functions
for 𝐼-Functions

In this section, we establish generating functions for the 𝐼-
function and Mellin-Barnes type of contour integral (3) and
(1), respectively.

Theorem 1. Let 𝑀, 𝑁, 𝑃
𝑖
, 𝑄
𝑖
, 𝑚, 𝑛, 𝑝, and 𝑞 be positive

integers.Then the following bilateral generating function holds:

∞

∑

𝜔=0

𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑛

;(∇(𝑠,−𝜔),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,−𝜔),0)1,𝑠
]

× 𝐼
𝑀,𝑁+𝑠

𝑃𝑖+𝑠,𝑄𝑖 ,𝑟
[𝑦

󵄨󵄨󵄨󵄨

(𝑎
󸀠
𝑗 ,𝛼𝑗)1,𝑁
;(∇(𝑠,𝜎+𝜔),1)1,𝑠 ;(𝑎

󸀠
𝑗𝑖 ,𝛼𝑗𝑖)𝑁+1,𝑃𝑖

(𝑏
󸀠
𝑗 ,𝛽𝑗)1,𝑀

;(𝑏
󸀠
𝑗𝑖 ,𝛽𝑗𝑖)𝑀+1,𝑄𝑖

]
𝑧
𝜔

𝜔!

= (1 −
𝑧

𝑠
)

−𝜎

𝐼
𝑀,𝑁+𝑠

𝑃𝑖+𝑠,𝑄𝑖+𝑠,𝑟

× [

[

𝑦(1 −
𝑧

𝑠
)

−𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎
󸀠
𝑗 ,𝛼𝑗)1,𝑁
;(Δ(𝑠,𝜎),1)1,𝑠 ;(𝑎

󸀠
𝑗𝑖 ,𝛼𝑗𝑖)𝑁+1,𝑃𝑖

(𝑏
󸀠
𝑗
,𝛽𝑗)
1,𝑀
;(𝑏
󸀠
𝑗𝑖
,𝛽𝑗𝑖)
𝑀+1,𝑄𝑖

]

]

× 𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥(1 −

𝑠

𝑧
)

−𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎𝑗 ,𝐴𝑗)1,𝑛
;(∇(𝑠,𝜎),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,𝜎),0)1,𝑠

] ,

(8)

where 𝜎 is an arbitrary complex number and 𝑠 is an integer≥ 0.

Proof. For convenience, let the left-hand side of (8) be
denoted by 𝐽. Applying the integral representation of (3) to 𝐽,
then interchanging the order of summation and integration

(which can be justified when the integral and the series
involved are uniformly absolutely convergent), we get

𝐽 =
1

2𝜋𝑖
∫
𝐿

𝜙 (𝜉)

𝑠

∏

𝑘=1

Γ (Δ (𝑠, 𝜎) + 𝜉)

× {

∞

∑

𝜔=0

(𝜎 + 𝑠𝜉)
𝜔

𝜔!
𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠

× [𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑛

;(∇(𝑠,−𝜔),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,−𝜔),0)1,𝑠
] (

𝑧

𝑠
)

𝜔

}𝑦
𝜉

𝑑𝜉.

(9)

Using the known formula (see [4, p. 273, (4.10)] ),
namely,

∞

∑

𝜔=0

(𝜎)
𝜔

𝜔!
𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑛

;(∇(𝑠,−𝜔),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,−𝜔),0)1,𝑠
] 𝑡
𝜔

= (1 − 𝑡)
−𝜎

𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠

× [𝑥(
𝑡

𝑡 − 1
)

𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎𝑗 ,𝐴𝑗)1,𝑛
;(∇(𝑠,𝜎),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,𝜎),0)1,𝑠

]

(10)

and the Mellin-Barnes type contour integral of the 𝐻-
function given by (1).

Finally, in viewof (10) and (3), we get the desired assertion
(8) of Theorem 1.

3. Special Cases

In this section, we consider some consequences of the main
results derived in the preceding section.

(i) If we put 𝑟 = 1, 𝐼-function reduces to Fox𝐻-function
[6].Then themain result (8) takes the following form:

∞

∑

𝜔=0

𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑛

;(∇(𝑠,−𝜔),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,−𝜔),0)1,𝑠
]

× 𝐻
𝑀,𝑁+𝑠

𝑃+𝑠,𝑄
[𝑦

󵄨󵄨󵄨󵄨

(𝑎
󸀠
𝑗 ,𝛼𝑗)1,𝑁
;(∇(𝑠,𝜎+𝜔),1)1,𝑠 ;(𝑎

󸀠
𝑗𝑖 ,𝛼𝑗)𝑛+1,𝑃

(𝑏
󸀠
𝑗
,𝛽𝑗)
1,𝑀
;(𝑏
󸀠
𝑗
,𝛽𝑗)
𝑀+1,𝑄

]
𝑧
𝜔

𝜔!

= (1 −
𝑧

𝑠
)

−𝜎

𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠

× [𝑥(1 −
𝑠

𝑧
)

−𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎𝑗 ,𝐴𝑗)1,𝑛
;(∇(𝑠,𝜎),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,𝜎),0)1,𝑠

]

× 𝐻
𝑀,𝑁+𝑠

𝑃+𝑠,𝑄

[

[

𝑦(1 −
𝑧

𝑠
)

−𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎
󸀠
𝑗 ,𝛼𝑗)1,𝑁
;(Δ(𝑠,𝜎),1)1,𝑠 ;(𝑎

󸀠
𝑗 ,𝛽𝑗)𝑁+1,𝑃

(𝑏
󸀠
𝑗
,𝛽𝑗)
1,𝑀
;(𝑏
󸀠
𝑗
,𝛽𝑗)
𝑀+1,𝑄

]

]

.

(11)

(ii) If we put 𝑟 = 1, 𝑀 = 1, 𝑁 = 𝑃
𝑖
= 𝑃, 𝑄

𝑖
= 𝑄 + 1, 𝑏󸀠

1
=

0, 𝛽
1

= 1, 𝑎󸀠
𝑗

= 1 − 𝑎
󸀠

𝑗
, 𝑏󸀠
𝑗𝑖

= 𝑏
󸀠

𝑗
, and 𝛽

𝑗𝑖
= 𝛽
𝑗
,
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𝐼-function reduces to Wright’s generalized hypergeo-
metric function [9, p. 33, (2.3.8)].Then themain result
(8) takes the following form:

∞

∑

𝜔=0

𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑛

;(∇(𝑠,−𝜔),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,−𝜔),0)1,𝑠
]

×
𝑃+𝑠

𝜓
𝑄
[

(𝑎
󸀠

𝑗
, 𝛼
𝑗
)
1,𝑃

; (∇ (𝑠, 𝜎 + 𝜔) , 1)
1,𝑠

(𝑏
󸀠

𝑗
, 𝛽
𝑗
)
1,𝑄

; −𝑦]
𝑧
𝜔

𝜔!

= (1 −
𝑧

𝑠
)

−𝜎

𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠

× [𝑥(1 −
𝑠

𝑧
)

−𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎𝑗 ,𝐴𝑗)1,𝑛
;(∇(𝑠,𝜎),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,𝜎),0)1,𝑠

]

×
𝑃+𝑠

𝜓
𝑄
[

(𝑎
󸀠

𝑗
, 𝛼
𝑗
)
1,𝑃

; (∇ (𝑠, 𝜎) , 1)
1,𝑠

(𝑏
󸀠

𝑗
, 𝛽
𝑗
)
1,𝑄

; −𝑦(1 −
𝑧

𝑠
)

−𝑠

] .

(12)

(iii) If we put 𝑟 = 1, 𝑀 = 1, 𝑁 = 𝑃
𝑖
= 𝑃, 𝑄

𝑖
= 𝑄 +

1, 𝑏󸀠
1
= 0, 𝛽

1
= 1, 𝑎󸀠

𝑗
= 1 − 𝑎

󸀠

𝑗
, 𝑏󸀠
𝑗𝑖
= 1 − 𝑏

󸀠

𝑗
, and 𝛼

𝑗
=

𝛽
𝑗
= 𝛼
𝑗𝑖
= 𝛽
𝑗𝑖
= 1, 𝐼-function reduces to generalized

hypergeometric function [9, p. 33, (2.3.11)]. Then the
main result (8) takes the following form:

∞

∑

𝜔=0

{

𝑠

∏

𝑘=1

Γ (∇ (𝑠, 𝜎 + 𝜔))}

× 𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥|
(𝑎𝑗 ,𝐴𝑗)1,𝑛

;(∇(𝑠,−𝜔),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,−𝜔),0)1,𝑠
]

×
𝑃+𝑠

𝐹
𝑄
[

(𝑎
󸀠

𝑗
, 1)
1,𝑃

; (∇ (𝑠, 𝜎 + 𝜔) , 1)
1,𝑠

(𝑏
󸀠

𝑗
, 1)
1,𝑄

; −𝑦]
𝑧
𝜔

𝜔!

= (1 −
𝑧

𝑠
)

−𝜎

{

𝑠

∏

𝑘=1

Γ (∇ (𝑠, 𝜎))}

× 𝐻
𝑚,𝑛+𝑠

𝑝+𝑠,𝑞+𝑠
[𝑥(1 −

𝑠

𝑧
)

−𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑎𝑗 ,𝐴𝑗)1,𝑛
;(∇(𝑠,𝜎),1)1,𝑠 ;(𝑎𝑗 ,𝐴𝑗)𝑛+1,𝑝

(𝑏𝑗 ,𝐵𝑗)1,𝑞 ;(∇(𝑠,𝜎),0)1,𝑠

]

×
𝑃+𝑠

𝐹
𝑄
[

(𝑎
󸀠

𝑗
, 1)
1,𝑃

; (∇ (𝑠, 𝜎) , 1)
1,𝑠

(𝑏
󸀠

𝑗
, 1)
1,𝑄

; 𝑦(1 −
𝑧

𝑠
)

−𝑠

] .

(13)

4. Concluding Remark

We conclude our present investigation by remarking that the
results obtained here are useful in deriving numerous other
generating functions involving various special functions due
to presence of the 𝐼-function given by (8). The 𝐼-function,
used in our results, is quite basic in nature. Therefore, on
specializing the parameters of this function, we may obtain
various other special functions such as Fox 𝐻-function,
Meijer’s 𝐺-function, Wright’s generalized Bessel function,

Wright’s generalized hypergeometric function, Mac-Robert’s
𝐸-function, generalized hypergeometric function, Bessel
function of first kind, modified Bessel function, Whittaker
function, exponential function, and binomial function as
its special cases, and, therefore, the result thus derived in
this paper is general in character and likely to find certain
applications in the theory of special functions.
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