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By using the bifurcation theory of dynamical systems, we present the exact representation and topological classification of coherent
matter waves in Bose-Einstein condensates (BECs), such as solitary waves and modulate amplitude waves (MAWs). The existence
andmultiplicity of suchwaves are determined by the parameter regions selected.The results show that the characteristic of coherent
matter waves can be determined by the “angular momentum” in attractive BECs while for repulsive BECs; the waves of the coherent
form are all MAWs. All exact explicit parametric representations of the above waves are exhibited and numerical simulations
support the result.

1. Introduction

Particles in a dilute gas reside in the same quantum (ground)
state at low temperatures, which form a Bose-Einstein con-
densate (BEC). This phenomenon was first observed exper-
imentally in 1995 with vapors of rubidium and sodium [1].
Since then the dynamics of BEChave received intensive inter-
est both in mathematics and physics, including superfluid
and dissipative dynamics [2], Bloch waves [3], the dynamical
stability [4, 5], chaos [6, 7], and dark and bright soliton [8, 9].

Considering only two-body interactions, based on the
mean-field theory, the BEC is described by the Gross-Pitaev-
skii equation (GPE), which is a one-dimensional nonlinear
Schrödinger equation [10]
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where𝑚 is themass of gas particle, 𝑔 = [4𝜋ℎ2𝑎/𝑚][1+O(𝜁2)]
and 𝜁 = √|𝜓|2|𝑎|3 are the dilute gas parameter, and 𝑎 is the
two-body s-wave scattering length, which is determined by

the atomic species in the condensate. Interactions between
atoms are repulsive when 𝑎 > 0 and attractive when 𝑎 < 0.

Realizable potentials 𝑉(𝑥) of particular theoretical and
experimental interest usually include harmonic traps [11],
optical lattices and superlattices [12], and superpositions of
lattices or superlattices with harmonic traps. However, also
in many cases, weak potentials or approximately constant
potentials are typically used, such as𝑉(𝑥) = 𝑉

0
+ 𝜖𝑉
1
(𝑥) with

𝜖 ≪ 1. Therefore, one can use the Lindstedts method and
the multiple scale perturbation theory [13, 14] or the method
of averaging [15–17] to study dynamics of BEC with the high
order approximation. For 𝜖 = 0, the solutions of system (1)
with coherent structures may be equilibrium points, stand-
ing waves, solitary waves, or even unbounded. While the
small perturbed parameter 𝜖 ̸= 0, for example, Bose-Einstein
condensed atoms being perturbed by a weak optical lattice
potential, the dynamical characters of these solutions may
be preserved [14, 15] as periodic or quasiperiodic modulated
amplitude waves. However, under some conditions of the
adjustable parameters such characters may be destroyed, and
the spatial chaos in the BEC occurs [6]. Consequently, it is
important to investigate the dynamics of the unperturbed
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system drastically and entirely. Some related papers we can
refer to are [18, 19].

In this paper, we will give a full topological classifi-
cation of coherent structural solutions for system (1) with
various adjustable parameters, while restricting the external
potentials 𝑉(𝑥) ≡ 𝑉

0
. The plane of parameters is divided

into six regions. Unbounded solutions, modulated amplitude
waves, and solitary waves are determined in different regions.
Moreover, all exact explicit representations of solutions are
exhibited in this paper. For generality, along with our analysis
and derivation, we restrict the complex solutions of system (1)
with nonconstant phases, which leads to nonlinear equations
with singularities. Therefore, the solutions will lose smooth-
ness in phase space. This phenomenon has been studied in
other physical models by some authors (see [20, 21]).

2. Coherent Structures

We consider uniformly propagating coherent structures with
the ansatz

𝜓 (𝑥, 𝑡) = 𝑅 (𝑥) exp (𝑖 [𝜃 (𝑥) − 𝜇𝑡]) , (2)

where 𝑅 gives the amplitude dynamics of the wave function
with |𝑅(𝑥)| = |𝜓(𝑡, 𝑥)|, 𝜃(𝑥) gives the phase dynamics,
k ∝ ∇𝜃 is the particle velocity, and 𝜇 is the BEC’s chemical
potential.When the (temporally periodic) coherent structure
(2) is also spatially periodic, it is called periodic modulated
amplitude waves (MAWs) [22]; while the coherent structure
(2) is also spatially quasiperiodic, it is called quasiperiodic
modulated amplitude waves (QMAWs) [15, 16].

Substituting (2) into theGP equation (1), and equating the
real and the imaginary components of the desired equation,
we obtain
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(3)

which yields the following nonlinear Duffing equation with
regularities:
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The parameter 𝑐 is given by the relation

𝜃

(𝑥) =

𝑐

𝑅2 (𝑥)
, (5)

which indicates conservation of angular momentum [23].
Null angular momentum solutions satisfying 𝑐 = 0 are
standing waves of system (1), which have been described in
detail [14]. Here, we restrict that the parameter 𝑐 is nonzero.To
the best of our knowledge, we have not seen any overall

classification of solutions in this case. Consequently, (4)
becomes

𝑅

+ 𝛿𝑅 −

𝑐
2

𝑅3
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3
= 0, (6)

where 𝛿 = 2𝑚(𝜇ℎ − 𝑉
0
)/ℎ
2 and 𝑔 = 2𝑚𝑔/ℎ2. Consequently,

(6) is equivalent to the two-dimensional system
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with the first integral

𝐻(𝑅, 𝑆) = 𝑆
2
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𝑐
2
+ 𝛿𝑅
4
+ 𝑅
6
𝑔/2

𝑅2
= ℎ. (8)

3. Bifurcations of Phase Portraits

The spatial dynamics of amplitudes 𝑅(𝑥) for the wave func-
tions in BECs are determined by nonlinear system (7), which
depends on the parameter variables 𝑐, 𝑔, 𝛿. The parameter
𝛿 is related to the chemical potential 𝜇 and the external
potential 𝑉

0
, and 𝑔 has the same sign of the scatter length

𝑎. The parameter 𝑐 comes from the constant of integration,
playing the role of “angular momentum”. Without loss of
generality, we assume that 𝑐 > 0.

For a fixed positive constant 𝑐, the characteristics of the
orbits in the phase plane (𝑅, 𝑆) are affected by two parameters
𝑔, 𝛿. Consequently, in the following we shall give an overfull
classification of the orbits by the regions selecting for (𝑔, 𝛿).
The bifurcations of phase portraits will be also investigated.

Let 𝑑𝑥 = 𝑅3𝑑𝜁. Then, excepting the straight line 𝑅 = 0,
the system (7) has the same topological phase portraits as the
following system:

d𝑅
d𝜁

= 𝑅
3
𝑆,

d𝑆
d𝜁

= 𝑐
2
− 𝛿𝑅
4
− 𝑔𝑅
6
. (9)

Now, the straight line 𝑅 = 0 is an integral invariant straight
line of (9). Denote that 𝑓(𝑅) = 𝑐2 − 𝛿𝑅4 − 𝑔𝑅6, then we have
𝑓

(𝑅) = −2𝑅

3
(2𝛿 + 3𝑔𝑅

2
). To find equilibrium points of (9)

which are corresponding to the constant-amplitudewaves, we
have to solve the following algebraic equation:

𝑓 (𝑅) = 𝑐
2
− 𝛿𝑅
4
− 𝑔𝑅
6
= 0. (10)

Note that when 𝑅 = 𝑅
±
= ±√−2𝛿/3𝑔, 𝑓(𝑅

±
) = 0. Thus, we

have 𝑓(𝑅
±
) = 𝑐

2
− 𝛿𝑅
4

±
− 𝑔𝑅
6

±
, which implies the relations

between 𝛿 and 3(𝑐𝑔/2)
2/3 in the (𝑔, 𝛿-) parameter plane

determining the existence and multiplicity of equilibrium
points. An example of the number of roots depending on the
sign of 3(𝑐𝑔/2)2/3-𝛿 is shown in Figure 1.

In the (𝑔, 𝛿-) parameter plane, both the curve 𝐿 : 𝛿 =

3(𝑐𝑔/2)
2/3 and the straight line 𝑔 = 0 partition the plane into

six regions. Thus, we have to take six cases to be considered.

(i) If 𝛿 = 3(𝑐𝑔/2)
2/3, 𝑔 > 0, there are two equilibrium

points of (9):
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√𝑔, 0) . (11)
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(ii) If 𝛿 = 3(𝑐𝑔/2)
2/3, 𝑔 < 0, there are two equilibrium

points of (9):
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(iv) If 𝛿 > 3(𝑐𝑔/2)
2/3, 𝑔 > 0, there are two equilibrium
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(15)

where

𝑟 =
𝛿
3

27𝑔3
, cos𝜙 =

𝑐
2
− 2𝛿
3
/27𝑔
2

2𝑔𝑟
, sin𝜙 =

√−Δ

𝑟
.

(16)

(v) If 𝛿 > 3(𝑐𝑔/2)
2/3, 𝑔 < 0, there are four equilibrium

points of (9):

𝐸
1
(−𝑅
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, 0) , 𝐸

2
(−𝑅
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, 0) , 𝐸

3
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4
(𝑅
2
, 0) ,

(17)

where 𝑅
1
> 𝑅
2
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𝑅
1
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1/3 cos
𝜙 + 2𝜋

3
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𝑅
2
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1/3 cos
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3
−
𝛿

3𝑔
.

(18)

(vi) If 𝛿 < 3(𝑐𝑔/2)
2/3, 𝑔 < 0, there are no equilibrium

points of (9).

Let 𝑀(𝑅
𝑒
, 𝑆
𝑒
) be the coefficient matrix of the linearized

system of (9) at an equilibrium point (𝑅
𝑒
, 𝑦
𝑒
). Then, we have

𝐽 (𝑅
𝑒
, 0) = det (𝑀 (𝑅

𝑒
, 0)) = −2𝑅

6

𝑒
(2𝛿 + 3𝑔𝑅
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Figure 1: An example of the number of roots for 𝑓(𝑅) depending
on the sign of 3(𝑐𝑔/2)2/3 − 𝛿 with 𝑐 = 1, 𝑔 = −1. There are 4 roots
for 𝛿 > 1.8899, 2 roots for the threshold 𝛿 = 1.8899, and no root for
𝛿 < 1.8899.

Table 1: Type of equilibria of (7).

Regions of (𝑔, 𝛿) Equilibria Type

(I): 𝛿 = 3(
𝑐𝑔

2
)

2/3

, 𝑔 > 0 𝐴
1
, 𝐴
2

Center, center

(II): 𝛿 = 3(
𝑐𝑔

2
)

2/3

, 𝑔 < 0 𝐵
1
, 𝐵
2

Saddle, saddle

(III): 𝛿 < 3(
𝑐𝑔

2
)

2/3

, 𝑔 > 0 𝐶
1
, 𝐶
2

Center, center

(IV): 𝛿 > 3(
𝑐𝑔

2
)

2/3

, 𝑔 > 0 𝐷
1
, 𝐷
2

Center, center

(V): 𝛿 > 3(
𝑐𝑔

2
)

2/3

, 𝑔 < 0
𝐸
1
, 𝐸
2

Saddle, center

𝐸
3
, 𝐸
4

Center, saddle

(VI): 𝛿 < 3(
𝑐𝑔

2
)

2/3

, 𝑔 < 0 None None

By the theory of planar dynamical systems, we know that for
an equilibrium point of a planar integrable system if 𝐽 < 0,
then the equilibrium point is a saddle point; if 𝐽 > 0 and
Trace(𝑀(𝑅

𝑒
, 𝑦
𝑒
)) = 0, then it is a center point; if 𝐽 > 0 and

(Trace(𝑀(𝑅
𝑒
, 𝑦
𝑒
)))
2
−4𝐽(𝑅

𝑒
, 𝑦
𝑒
) > 0, then it is a node; if 𝐽 = 0

and the index of the equilibrium point is 0, then it is a cusp;
otherwise, it is a high order equilibrium point.

For the function defined by (8), we denote that

ℎ
𝑖
= 𝐻 (±𝑅

𝑖
, 0) =

𝑐
2
+ 𝛿𝑅
4

𝑖
+ (𝑔/2) 𝑅

6

𝑖

𝑅
2

𝑖

, 𝑖 = 1, 2. (20)

We next use the above statements to consider the bifur-
cations of the phase portraits of (7). The possible qualitative
dynamics (for 𝑐 ̸= 0) are illustrated in Figure 2 and summa-
rized in Table 1.

4. Exact Explicit Representations of
Matter Waves

In this section, we give all exact explicit parametric represen-
tations of solitary wave solutions and periodic wave solutions
(MAWs or QMAWs). Denote sn(V, 𝑘) the Jacobian elliptic
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Figure 2: The phase portraits of (7).

function with the modulus 𝑘 and ∏(𝜑, 𝛼
2
, 𝑘) the Legendre

incomplete elliptic integral of the third kind (see [24]). Two
types of BECs will be considered, respectively.

4.1. Attractive BECs (𝑔 < 0). (a) Suppose that (𝑔, 𝛿) ∈ (V);
that is, 𝑔 < 0, 𝑐 > 0, 𝛿 > 3(𝑐𝑔/2)2/3. In this case, we have the
phase portrait of (7) as shown in Figure 2(e).

(1) Notice that 𝐻(±𝑅
1
, 0) = ℎ

1
with 𝑅

1
> 0, correspond-

ing to the curve defined by 𝐻(𝑅, 𝑆) = ℎ
1
, and there is a

homoclinic orbit connecting the equilibrium point 𝐸
1
(𝑅
1
, 0)

or 𝐸
4
(−𝑅
1
, 0). The arch curve has the algebraic equation

𝑆
2
=

ℎ
1
𝑅
2
− (𝑐
2
+ 𝛿𝑅
4
+ (𝑔/2) 𝑅

6
)

𝑅2

= −
𝑔

2𝑅2
(𝑅
2
− 𝑅
2

1
)
2

(𝑅
2
+
2𝑐
2

𝑔𝑅
4

1

) .

(21)

By using the first equation of (7), for (6), we obtain the
parametric representation of a smooth solitary wave solution
of valley type and a smooth solitary wave solution of peak
type as follows:

𝑅 (𝑥) = ±√−
2𝑐
2

𝑔𝑅
4

1

+ (𝑅
2

1
+
2𝑐
2

𝑔𝑅
4

1

) tanh2(
Ω
1/2

1
𝑥

𝑅
1

)

= ±
1

𝑅
1

√𝑅
4

1
+
2Ω
1

𝑔
[1 − tanh2(

Ω
1/2

1
𝑥

𝑅
1

)],

(22)

whereΩ
1
= 𝛿𝑅
2

1
− ℎ
1
.

Thus, by integrating (5) on both sides we have

𝜃 (𝑥) = ∫
𝑐𝑔𝑅
2

1
d𝑥

𝑔𝑅
4

1
+ 2Ω
1
[1 − tanh2 (Ω1/2

1
𝑥/𝑅
1
)]

=
𝑥

𝑅
2

1

+
2Ω
1

𝑅
2

1

∫
d𝑥

2Ω
1
+ 𝑔𝑅
4

1
cosh2 (Ω1/2

1
𝑥/𝑅
1
)

=
𝑥

𝑅
2

1

+
2Ω
1/4

1

𝑅
1
√−Ω
2

arctan
𝑔𝑅
4

1
(𝑒
(2√Ω

1
/𝑅
1
)𝑥
− 1) + Ω

2

−2√−Ω
1
√Ω
2

,

(23)

where

Ω
1
= 𝛿𝑅
2

1
− ℎ
1
, Ω

2
= 2 (𝑔𝑅

4

1
+ 2√Ω

1
) . (24)

Therefore, system (1) has the following solution:

𝜓 (𝑡, 𝑥) = 𝑅 (𝑥) exp [𝑖 (𝜃 (𝑥) − 𝜇𝑡)] (25)

with

𝑅 (𝑥) = ±
1

𝑅
1

√
1

𝑔
(𝑔𝑅
4

1
+ 2Ω
1
− 2Ω
1
tanh2 [𝜙 (𝑥)]),

𝜃 (𝑥) =
𝑥

𝑅
2

1

+
2Ω
1/4

1

𝑅
1
√−Ω
2

arctan
𝑔𝑅
4

1
(𝑒
(2√Ω

1
/𝑅
1
)𝑥
− 1) + Ω

2

−2√−Ω
1
√Ω
2

.

(26)
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Figure 3: Dynamical evolution of the dark and bright solitons for an attractive condensate with 𝑔 = −1, 𝛿 = 50. With the increasing of 𝑐
(“angular momentum”), the height of solitons decreases. The phase is monotonously increasing with respect to the spatial 𝑥.

(2) Recall that ℎ
2
= 𝐻(±𝑅

2
, 0) with the equilibriums

𝐸
2
(𝑅
2
, 0), 𝐸

3
(−𝑅
2
, 0), where the function 𝐻(𝑅, 𝑆) is defined

by (8). For each ℎ ∈ (ℎ
2
, ℎ
1
),𝐻(𝑅, 𝑆) = ℎ defines two families

of periodic orbits of system (7) enclosing the center (𝑅
2
, 0)

or (−𝑅
2
, 0), which lie on both sides of the straight line 𝑅 = 0.

Those orbits determine infinitelymany (positivemeasure set)
periodic wave solutions of system (1). Using factorization of
polynomial, the arch curve has the algebraic equation

𝑆
2
= −

𝑔

2𝑅2
(𝑅
6
+
2𝛿

𝑔
𝑅
4
−
2ℎ

𝑔
𝑅
2
+
2𝑐
2

𝑔
)

= −
𝑔

2𝑅2
(𝑅
2
− 𝑅
𝑀
) (𝑅
2
− 𝑅
𝑚
) (𝑅
2
− 𝑅
𝑙
) ,

(27)

where 0 < 𝑅
𝑚
< 𝑅
𝑙
< 𝑅
𝑀
. From (7), we obtain the parametric

representation of the periodic wave solutions as follows:

𝑅 (𝑥) = ±√𝑅
𝑚
+ (𝑅
𝑙
− 𝑅
𝑚
) sn2 (𝑈

𝑀𝑚
𝑥, 𝑉
𝑀𝑚
), (28)

where

𝑈
𝑀𝑚

=
1

2
√−2𝑔 (𝑅

𝑀
− 𝑅
𝑚
), 𝑉

𝑀𝑚
= √

𝑅
𝑙
− 𝑅
𝑚

𝑅
𝑀
− 𝑅
𝑚

. (29)

The least positive period 𝑇 of 𝑅(𝑥) is given by

𝑇 =
2

𝜋
∫

𝜋/2

0

d𝑡

√1 − 𝑉
2

𝑀𝑚
sin2𝑡

. (30)

Similarly, we have

𝜃 (𝑥) = ∫
𝑐d𝑥

𝑅
𝑚
+ (𝑅
𝑙
− 𝑅
𝑚
) sn2 (𝑈

𝑀𝑚
𝑥, 𝑉
𝑀𝑚
)

= Π(𝜑, 𝛼
2
, √

𝑅
𝑙
− 𝑅
𝑚

𝑅
𝑀
− 𝑅
𝑚

) ,

(31)

where 𝛼2 = 𝑅
𝑚
− 𝑅
𝑙
/𝑅
𝑚
.

Consequently, system (1) has the following solution of the
MAW:

𝜓 (𝑡, 𝑥) = 𝑅 (𝑥) exp [𝑖 (𝜃 (𝑥) − 𝜇𝑡)] , (32)

with

𝑅 (𝑥) = ±√𝑅
𝑚
+ (𝑅
𝑙
− 𝑅
𝑚
) sn2 (𝑈

𝑀𝑚
𝑥, 𝑉
𝑀𝑚
),

𝜃 (𝑥) = Π(𝜑, 𝛼
2
, √

𝑅
𝑙
− 𝑅
𝑚

𝑅
𝑀
− 𝑅
𝑚

) .

(33)

(b) Suppose that (𝑔, 𝛿) ∈ (II) or (VI). In this situation, all
solutions of (6) are unbounded except two equilibriums 𝐵

1
,

𝐵
2
in case of the parameters belonging to the region (II).

4.2. Repulsive BECs (𝑔 > 0). For repulsive BECs, the phase
portraits of amplitude equation (6) have been shown in Fig-
ures 2(a), 2(c), and 2(d), respectively. The equivalent system
(7) always has two center equilibriums (±𝑅

∗
, 0). Let ℎ

∗
=

𝐻(𝑅
∗
, 0). For each ℎ ∈ (ℎ

∗
, +∞), corresponding to𝐻(𝑅, 𝑆) =

ℎ, system (6) have two families of periodic orbits enclosing
the two centers, respectively. All these periodic orbits, filling
the whole plane except for the line𝑅 = 0, determine infinitely
many periodic wave solutions of (1). Similar to Section 4.1,
system (1) have the parametric representation of these arches
as (28) and (31) by the coherent form (2). In this case, none
of solitary waves of the coherent form can exist while the
external potential 𝑉

0
is constant.

5. Numerical Simulations

In order to explain the previous results better, we perform
numerical simulations for solutions of solitary waves and
MAWs. We emphasize the best complex case; that is, (𝛿, 𝑔) ∈
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Figure 4: Dynamical evolution of MAWs for an attractive condensate with 𝑔 = −1, 𝛿 = 50, 𝑐 = 1. For each ℎ ∈ (14.1321, 1250.02), the curve
defined by (8) in the phase space is corresponding to a MAW.The period 𝑇(ℎ) of amplitude 𝑅 is increasing with ℎ.

(V), and other cases can be dealt with similarly. Now let us fix
the parameters 𝑔 = −1, 𝛿 = 50 which are corresponding to
the attractive interactions in BECs.

While taking the “angular momentum” 𝑐 ∈ (0, 136.0828),
we have four equilibriums for system (7). For example,
when taking the constant of integration 𝑐 = 100, we have
𝐸
1
: (−6.71409, 0), 𝐸

2
: (−4.19004, 0), 𝐸

3
: (4.19004, 0), and

𝐸
4
: (6.71409, 0). As shown in Figure 2(e), there are two

homoclinic orbits lying in the intersection of the stable
manifold and the unstable manifold of the equilibriums 𝐸

1

and 𝐸
4
, respectively. More precisely, there exist two solutions

(𝑅
𝑖
(𝑥), 𝑆
𝑖
(𝑥)), 𝑖 = 1, 4 such that

(𝑅
𝑖
(𝑥) , 𝑆

𝑖
(𝑥)) → 𝐸

𝑖
, as 𝑥 → ±∞, 𝑖 = 1, 4. (34)

For each fixed “angular momentum” 𝑐 ∈ (0, 136.0828),
near 𝐸

1
the homoclinic orbit is corresponding to a dark

soliton, while near 𝐸
4
the homoclinic orbit is corresponding

to a bright soliton. The height of solitons, sup𝑅(𝑥; 𝑐) −
inf 𝑅(𝑥; 𝑐), is varying as the value of 𝑐 and the phase 𝜃(𝑥)
is also monotonous increasing with respect to the spatial 𝑥,
which can be shown in Figure 3.

Also, for each fixed 𝑐 ∈ (0, 136.0828), near the equilibri-
ums𝐸

2
and𝐸

3
, there are infinitelymany periodic orbits of (7)

as shown in Figure 4.
While the constant 𝑐 exceeds or arrives at the threshold

𝑐 = 136.0828, all those periodic orbits or solitons are
destroyed and become unbounded. This indicates that the
characteristic of coherent matter waves can be determined by
the “angular momentum”.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Thiswork is supported by theNational Natural Science Foun-
dation of China (Grants nos. 11301106, 11226130, 11361017, and
11261013).

References

[1] K. B. Davis, M.-O. Mewes, M. R. Andrews et al., “Bose-Einstein
condensation in a gas of sodium atoms,” Physical Review Letters,
vol. 75, no. 22, pp. 3969–3973, 1995.

[2] S. Burger, F. S. Cataliotti, C. Fort et al., “Superfluid and dissi-
pative dynamics of a Bose-Einstein condensate in a periodic
optical potential,” Physical Review Letters, vol. 86, no. 20, pp.
4447–4450, 2001.

[3] B. Wu, R. B. Diener, and Q. Niu, “Bloch waves and bloch
bands of Bose-Einstein condensates in optical lattices,” Physical
Review A, vol. 65, no. 2, Article ID 025601, 4 pages, 2002.

[4] A. Chen, S. Wen, andW. Huang, “Existence and orbital stability
of periodic wave solutions for the nonlinear Schrödinger
equation,”The Journal of Applied Analysis andComputation, vol.
2, no. 2, pp. 137–148, 2012.

[5] B. Deconinck, B. A. Frigyik, and J. N. Kutz, “Dynamics and sta-
bility of Bose-Einstein condensates: the nonlinear Schrödinger
equation with periodic potential,” Journal of Nonlinear Science,
vol. 12, no. 3, pp. 169–205, 2002.

[6] G. Chong, W. Hai, and Q. Xie, “Spatial chaos of trapped Bose-
Einstein condensate in one-dimensional weak optical lattice
potential,” Chaos, vol. 14, no. 2, pp. 217–223, 2004.

[7] G. Chong, W. Hai, and Q. Xie, “Controlling chaos in a weakly
coupled array of Bose-Einstein condensates,” Physical Review E,
vol. 71, no. 1, Article ID 016202, 2005.

[8] P. Dyke, S. Lei, and R. Hulet, “Phase-dependent Interactions of
Bright Matter-Wave Solitons,” Bulletin of the American Physical
Society, vol. 57, no. 5, Article ID U6. 00001, 2012.

[9] Y. Xu, Y. Zhang, and B. Wu, “Bright solitons in spin-orbit-
coupled Bose-Einstein condensates,” Physical Review A, vol. 87,
no. 1, Article ID 013614, 2013.



Abstract and Applied Analysis 7

[10] B. Schlein and H. T. Yau, “Derivation of the Gross-Pitaevskii
equation for the dynamics of Bose-Einstein condensate,”Annals
of Mathematics, vol. 172, no. 1, pp. 291–370, 2010.

[11] W. Krauth, “Quantum Monte Carlo calculations for a large
number of bosons in a harmonic trap,” Physical Review Letters,
vol. 77, no. 18, pp. 3695–3699, 1996.

[12] S. Nascimbène, Y. Chen, M. Atala et al., “Experimental realiza-
tion of plaquette resonating valence-bond states with ultracold
atoms in optical superlattices,” Physical Review Letters, vol. 108,
no. 20, Article ID 205301, 2012.

[13] V. P. Chua andM. A. Porter, “Spatial resonance overlap in Bose-
Einstein condensates in superlattice potentials,” International
Journal of Bifurcation and Chaos, vol. 16, no. 4, pp. 945–959,
2006.

[14] M. A. Porter and P. G. Kevrekidis, “Bose-Einstein condensates
in super-lattices,” SIAM Journal on Applied Dynamical Systems,
vol. 4, no. 4, pp. 783–807, 2005.

[15] Q. Liu and D. Qian, “Modulated amplitude waves with nonzero
phases in Bose-Einstein condensates,” Journal of Mathematical
Physics, vol. 52, no. 8, Article ID 082702, 11 pages, 2011.

[16] Q. Liu and D. Qian, “Construction of modulated ampli-
tude waves via averaging in collisionally inhomogeneous
Bose-Einstein condensates,” Journal of Nonlinear Mathematical
Physics, vol. 19, no. 2, Article ID 1250017, 14 pages, 2012.

[17] M. A. Porter, P. G. Kevrekidis, and B. A. Malomed, “Resonant
and non-resonant modulated amplitude waves for binary Bose-
Einstein condensates in optical lattices,” Physica D, vol. 196, no.
1-2, pp. 106–123, 2004.

[18] X. Li, J. Han, and F. Wang, “The extended Riccati equation
method for travelling wave solutions of ZK equation,” The
Journal of Applied Analysis and Computation, vol. 2, no. 4, pp.
423–430, 2012.

[19] S. Chow, M. Jiang, and X. Lin, “Traveling wave solutions in
coupled Chua’s circuits, part I: periodic solutions,” The Journal
of Applied Analysis and Computation, vol. 3, no. 3, pp. 213–237,
2013.

[20] J. Li andZ. Liu, “Travelingwave solutions for a class of nonlinear
dispersive equations,” Chinese Annals of Mathematics. Series B,
vol. 23, no. 3, pp. 397–418, 2002.

[21] J. Li and G. Chen, “On a class of singular nonlinear traveling
wave equations,” International Journal of Bifurcation and Chaos,
vol. 17, no. 11, pp. 4049–4065, 2007.

[22] L. Brusch, A. Torcini, M. van Hecke, M. G. Zimmermann,
and M. Bär, “Modulated amplitude waves and defect formation
in the one-dimensional complex Ginzburg-Landau equation,”
Physica D, vol. 160, no. 3-4, pp. 127–148, 2001.

[23] J. C. Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz, “Bose-
Einstein condensates in standing waves: the cubic nonlin-
ear Schrödinger equation with a periodic potential,” Physical
Review Letters, vol. 86, no. 8, pp. 1402–1405, 2001.

[24] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals
for Engineers and Scientists, vol. 67 of Die Grundlehren der
mathematischenWissenschaften, Springer, New York, NY, USA,
2nd edition, 1971.


