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This paper investigates the global stabilization problem for a class of nonholonomic systems in chained form with input delay. A
particular transformation is introduced to convert the original time-delay system into a delay-free form.Then, by using input-state-
scaling technique and themethod of slidingmode control, a constructive design procedure for state feedback control is given, which
can guarantee that all the system states globally asymptotically converge to the origin. An illustrative example is also provided to
demonstrate the effectiveness of the proposed scheme.

1. Introduction

Nonholonomic systems, which can model many classes of
mechanical systems such as mobile robots and wheeled vehi-
cles, have attracted intensive attention over the past decades.
However, due to the limitation imposed by Brockett’s condi-
tion [1], this class of nonlinear systems cannot be stabilized by
stationary continuous state feedback, although it is control-
lable. As a consequence, the well-developed smooth nonlin-
ear control theory and methodology cannot be directly used
to such systems. To overcome this obstruction, a novel array
of approaches have been generated; see [2–9]. In literatures,
three methods are adopted for stabilization of nonholonomic
systems, that is, discontinuous time-invariant stabilization [5,
9], smooth time-varying stabilization [3, 6, 7], and hybrid sta-
bilization [4, 7, 8]. By using these methods, the stabilization
problem for several classes of nonholonomic systems is
solvable [10–17].

On the other hand, sliding mode control (SMC), also
known as variable structure control (VSC), in essence, is a
special nonlinear control, and its nonlinearity is reflected in
the noncontinuity of control. Since the properties and param-
eters of the SMC just depend on the design of the switching
hyperplane and have nothing with the external interferences,
the SMC has many advantages such as simple algorithm, fast
response, and robustness to external noise and parameter

perturbation. During the past few years, the SMC strategy has
been also applied to the nonholonomic system control [18–
21]. However, it should be noted that the aforementioned
results do not consider the effect of input delay. In practice,
the delay in the input is often unavoidable due to sensors, cal-
culation, information processing, or transport. Hence, the
problem of global feedback stabilization of nonholonomic
systems with delay in the input is interesting.

In this paper, we introduce a new class of nonholonomic
chained systems with input delay and then study the problem
of robust state feedback stabilization for the concerned sys-
tems. Since the nonholonomic system considered in this
paper contains input delay, therefore it cannot be handled by
general existing methods. By composing linear transforma-
tion and input-state-scaling techniques with the SMC strat-
egy, a state feedback controller is constructed to guarantee
that the states of the closed-loop systems are asymptotically
regulated to the origin.

The rest of this paper is organized as follows. In Section 2,
preliminary knowledge and the problem formulation are
given. Section 3 presents the linear transformation, input-
state-scaling technique, and the main results. Section 4 gives
a simulation example to illustrate the theoretical finding of
this paper. Finally, concluding remarks are proposed in
Section 5.
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Notations. The following notations are to be used throughout
the paper. 𝑅+ denotes the set of all nonnegative real numbers
and 𝑅

𝑛 denotes the real 𝑛-dimensional space. For a given
vector or matrix 𝑋, 𝑋𝑇 denotes its transpose and ‖𝑋‖ is the
Euclidean norm of a vector 𝑋. To simplify the deduction
procedure, sometimes the arguments of the functions will be
omitted, whenever no confusion can arise from the context.
For instance, we sometimes denote a function 𝑓(𝑥(𝑡)) by
simply 𝑓(𝑥) or 𝑓.

2. Problem Formulation and Preliminaries

Since many mechanical systems with nonholonomic con-
straints, such as wheeled mobile robot, can be transformed
to a kind of nonholonomic systems in the so-called chained
form [3], this paper considers the following class of chained
systems with input delay:

𝑥̇
0
= 𝑢
0
(𝑡 − 𝜏) ,

𝑥̇
𝑖
= 𝑢
0
(𝑡 − 𝜏) 𝑥

𝑖+1
, 𝑖 = 1, . . . , 𝑛 − 1,

𝑥̇
𝑛
= 𝑢
1
(𝑡 − 𝜏) ,

(1)

where (𝑥
0
, 𝑥)
𝑇

= (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛+1 and 𝑢 = (𝑢

0
, 𝑢
1
)
𝑇

∈

𝑅
2 are the system state and control input, respectively, and

𝜏 ∈ 𝑅
+ is time delay of the input.

The control objective is to find a state feedback controller
which makes the closed-loop system be globally asymptoti-
cally regulated at origin.

Before the analysis of system (1), we first introduce the fol-
lowing technical linear transformation, whichwill be the base
of the coming control design and performance analysis.

Consider the following linear system with input delay:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (𝑡 − 𝜏) , (2)

where 𝑥 ∈ 𝑅𝑛 and 𝑢 ∈ 𝑅𝑚 are the state vector and the control
input, respectively, 𝜏 is bounded constant delay, and 𝐴 and 𝐵
are system matrices with appropriate dimensions.

For system (2) containing the input delay, now we make
some transformation that the system with delayed input is
transformed into a non-input-delayed system.

Let

𝑧 = 𝑥 + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝜏−𝜃)

𝐵𝑢 (𝜃) 𝑑𝜃. (3)

Taking the derivative of (3) with respect to time 𝑡, we obtain

𝑧̇ = 𝑥̇ + 𝐴∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝜏−𝜃)

𝐵𝑢 (𝜃) 𝑑𝜃 + 𝑒
−𝐴𝜏

𝐵𝑢 − 𝐵𝑢 (𝑡 − 𝜏) .

(4)

Substituting (2) into (4) yields

𝑧̇ = 𝐴𝑧 + 𝐵𝑢, (5)

where 𝐴 = 𝐴 and 𝐵 = 𝑒
−𝐴𝜏

𝐵. If (𝐴, 𝐵) is completely control-
lable, it can be proved that (𝐴, 𝐵) is also completely control-
lable. So the following lemma is obtained.

Lemma 1. If there exists a state feedback controller in the form
𝑢 = 𝐾𝑧 such that system (5) is asymptotically stable, then sys-
tem (2) is also asymptotically stable.

Proof. From the linear transformation (3), we have

‖𝑥 (𝑡)‖ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝜏−𝜃)

𝐵𝑢 (𝜃) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖𝑧 (𝑡)‖ +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝜏−𝜃)

𝐵𝑢 (𝜃) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖𝑧 (𝑡)‖ + 𝜏 max
−𝜏≤𝜃≤0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝜃󵄩󵄩󵄩󵄩󵄩

‖𝐵‖ ‖𝑢 (𝑡 + 𝜃)‖

≤ ‖𝑧 (𝑡)‖ + 𝜏 max
−𝜏≤𝜃≤0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝜃󵄩󵄩󵄩󵄩󵄩

‖𝐵‖ ‖𝐾‖ ‖𝑧 (𝑡 + 𝜃)‖ .

(6)

Since system (5) is asymptotically stable, it follows that

lim
𝑡→∞

𝑧 (𝑡) = 0. (7)

Putting together (6) and (7), we have

lim
𝑡→∞

𝑥 (𝑡) = 0 (8)

which means that system (2) is asymptotically stable. This
completes the proof of Lemma 1.

3. Robust Controller Design

In this section, we present a systematic controller design pro-
cedure for the system (1). For clarity, the case that 𝑡 ∈ [0, 𝜏) is
considered first, while the case that 𝑡 ≥ 𝜏 is dealt with later.

3.1. The Case That 𝑡 ∈ [0,𝜏). Consider the control input 𝑢
0
as

𝑢
0
= 𝜆
0
sgn (𝑥

0
(0)) + 𝑢

∗

0
, (9)

where 𝜆
0
and 𝑢∗
0
are positive design constants satisfying 𝜆

0
>

𝑢
∗

0
.

Remark 2. Under the control law (9), the solution of 𝑥
0
-

subsystem can be expressed as 𝑥(𝑡) = (𝜆
0
sgn(𝑥

0
(0)) + 𝑢

∗

0
)𝑡.

By the fact that𝜆
0
> 𝑢
∗

0
, we obtain that𝑥

0
(𝜏) ̸= 0 and𝑥

0
(𝑡) not

crossing zero for all 𝑡 ∈ (0, 𝜏) are guaranteed irregardless of
the initial value of 𝑥

0
(0).

Under the control law (9), the𝑥-subsystem is transformed
into

𝑥̇
𝑖
= 𝑑
𝑖
𝑥
𝑖+1
, 𝑖 = 1, . . . , 𝑛 − 1,

𝑥̇
𝑛
= 𝑢
1
(𝑡 − 𝜏) ,

(10)

where 𝑑
𝑖
= 𝜆
0
sgn(𝑥

0
(0)) + 𝑢

∗

0
.

Since the time-delay nonlinear system (10) is the absence
of the disturbances, it can be dealt with bymanymethods. For
instance, we can simply choose 𝑢

1
= 𝑢
∗

1
, where 𝑢∗

1
is a positive

design constant.

3.2. The CaseThat 𝑡 ≥ 𝜏. The inherent structure of system (1)
suggests that we should design the control inputs 𝑢

0
and 𝑢
1
in

two separate stages.
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3.2.1. Design 𝑢
0
for 𝑥
0
-Subsystem. For 𝑥

0
-subsystem, we

introduce linear transformation

𝑧
0
(𝑡) = 𝑥

0
(𝑡) + ∫

𝑡

𝑡−𝜏

𝑒
𝑡−𝜏−𝜃

𝑢
0
(𝜃) 𝑑𝜃. (11)

So the 𝑥
0
-subsystem is transformed into

𝑧̇
0
(𝑡) = 𝑒

−𝜏

𝑢
0
(𝑡) . (12)

Obviously, the control input 𝑢
0
can be chosen as

𝑢
0
(𝑡) = −𝑘

0
𝑧
0
(𝑡) , (13)

where 𝑘
0
is a positive design constant.

As a result, the following lemma can be easily established
by direct calculation.

Lemma 3. For any initial 𝑡
0
≥ 𝜏, the corresponding solution

𝑥
0
(𝑡) exists for each 𝑡 ≥ 𝑡

0
and satisfies lim

𝑡→∞
𝑥
0
(𝑡) = 0. Fur-

thermore, the control 𝑢
0
given by (13) does not cross zero for all

𝑡 ∈ [𝑡
0
,∞) and satisfies lim

𝑡→∞
𝑢
0
(𝑡) = 0.

Proof. Substituting (13) into (12), we have

𝑧
0
(𝑡) = 𝑧

0
(𝑡
0
) 𝑒
−𝑘
󸀠

0
(𝑡−𝑡
0
)

, (14)

where 𝑘󸀠
0
= 𝑘
0
𝑒
−𝜏. Obviously, 𝑧

0
(𝑡) exponentially tends to zero

as 𝑡 → ∞.
Furthermore, from (11) and (13), we can get

𝑥
0
(𝑡) = 𝑧

0
(𝑡) + 𝑘

0
∫

𝑡

𝑡−𝜏

𝑒
𝑡−𝜏−𝜃

𝑧
0
(𝜃) 𝑑𝜃 (15)

which together with (14) implies that 𝑥
0
(𝑡) exists and satisfies

lim
𝑡→∞

𝑥
0
(𝑡) = 0. (16)

Since (14) implies that 𝑧
0
(𝑡) does not cross zero for all 𝑡 ∈

[𝑡
0
,∞), from this and (13), we have that the 𝑢

0
does not cross

zero for all 𝑡 ∈ [𝑡
0
,∞) and satisfies lim

𝑡→∞
𝑢
0
(𝑡) = 0.

Hence, we can see that the𝑢
0
(𝑡−𝜏) also does not cross zero

for all 𝑡 ∈ [𝑡
0
−𝜏,∞) and lim

𝑡→∞
𝑢
0
(𝑡−𝜏) = 0 independent of

the 𝑥-subsystem.

3.2.2. Input-State-Scaling Transformation. The design in
Section 3.2.1 can ensure that 𝑥

0
-state in (1) can be globally

regulated to zero via 𝑢
0
in (13) as 𝑡 → ∞. However, it is

troublesome in controlling the 𝑥-subsystem via the control
input𝑢

1
, because, in the limit (i.e.,𝑢

0
= 0 ), the𝑥-subsystem is

uncontrollable. This problem can be avoided by utilizing the
following discontinuous input-state-scaling transformation:

𝑦
𝑖
=

𝑥
𝑖

𝑢
𝑛−𝑖

0
(𝑡 − 𝜏)

, 1 ≤ 𝑖 ≤ 𝑛. (17)

Under the new 𝑦-coordinates, the 𝑥-subsystem is trans-
formed into

̇𝑦
𝑖
= 𝑦
𝑖+1

+ (𝑛 − 𝑖) 𝑘
0
𝑒
−𝜏

𝑦
𝑖
,

̇𝑦
𝑛
= 𝑢
1
(𝑡 − 𝜏) .

(18)

The differential equations (18) can be rewritten into the com-
pact form

̇𝑦 = 𝐴𝑦 + 𝐵𝑢
1
(𝑡 − 𝜏) , (19)

𝐴 =

(
(
(
(

(

𝑘
1

1 0 0 ⋅ ⋅ ⋅ 0

0 𝑘
2

1 0 ⋅ ⋅ ⋅ 0

... 0 𝑘
3

1 d 0

...
... d d d 0

0
...

... d 𝑘
𝑛−1

1

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0

)
)
)
)

)

, 𝐵 =
(
(

(

0

0

0

...
0

1

)
)

)

,

(20)

where 𝑘
𝑖
= (𝑛 − 𝑖)𝑘

0
𝑒
−𝜏.

Obviously, (𝐴, 𝐵) is completely controllable. Now, we
introduce linear transformation

𝑧 = 𝑦 + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝜏−𝜃)

𝐵𝑢
1
(𝜃) 𝑑𝜃. (21)

Putting together (19) and (21) yields

𝑧̇ = 𝐴𝑧 + 𝐵𝑢
1
, (22)

where𝐴 = 𝐴 and𝐵 = 𝑒
−𝐴𝜏

𝐵. Furthermore by introducing the
linear transformation

𝜂 = 𝑒
𝐴𝜏

𝑧 (23)

we have

̇𝜂 = 𝐴𝜂 + 𝐵𝑢
1
, (24)

where

𝐴 = 𝑒
𝐴𝜏

𝐴𝑒
−𝐴𝜏

= (
𝐶 𝑑

𝑒 𝑓
) , 𝐵 = 𝐵. (25)

Let 𝜂
[𝑛−1]

= (𝜂
1
, . . . , 𝜂

𝑛−1
); thus the system (24) can be rewrit-

ten as
̇𝜂
[𝑛−1]

= 𝐶𝜂
[𝑛−1]

+ 𝑑𝜂
𝑛
,

̇𝜂
𝑛
= 𝑒𝜂
[𝑛−1]

+ 𝑓𝜂
𝑛
+ 𝑢
1
.

(26)

In terms of Lemma 1 and the equivalence property of
linear transformation, we obtain that the control problem for
system (18) with delayed control is transformed into a control
problem for delay-free system (26).

3.2.3. Design 𝑢
1
by Using SMC Technique. To fulfill the con-

troller design of 𝑢
1
, we choose the switching function as

𝑠 = 𝜂
𝑛
. (27)

Control input 𝑢
1
in system (26) should be appropriately

designed such that the state can be driven to the sliding sur-
face. The SMC law in this paper is derived as follows:

𝑢
1
= −𝑒𝜂

[𝑛−1]
− 𝑓𝜂
𝑛
− 𝛽, (28)

where 𝛽 > 0 is a constant.
The above proposed control scheme will drive the state to

approach the slidingmode surface 𝑠 = 0 in a finite time, and it
is stated in the following lemma.
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Lemma 4. Under the control law (28), the trajectories of the
system (26) converge to the sliding surface 𝑠 = 0 in a finite time.

Proof. From (26), (27), and (28), we have

̇𝑠 = −𝛽. (29)

Letting 𝑉
1
= 𝑠
2
/2, it follows from (29) that

𝑉̇
1
= 𝑠 ̇𝑠 = −𝛽𝑠 (30)

from which we prove the finite time convergence of system
(26) toward the surface 𝑠 = 0. Thus, the proof is completed.

Substituting (28) into the system (26), the sliding mode
dynamics can be obtained as follows:

̇𝜂
[𝑛−1]

= 𝐶𝜂
[𝑛−1]

. (31)

In the following lemma, the sufficient condition for the
asymptotic stability of the system (31) is given.

Lemma 5. If there exists a positive definite matrix 𝑃 such that
the following inequality holds:

𝐶
𝑇

𝑃 + 𝑃𝐶 < 0, (32)

then system (26) and (28) is globally asymptotically stable.

Proof. It is straightforward and thus is omitted here.

Based on the input-state-scaling transformation and
Lemmas 1–5, the main theorem of our paper can be summa-
rized here.

Theorem6. If there exists a positive definitematrix𝑃 such that
(32) holds, then system (1) is globally asymptotically regulated
at origin by the proposed control design procedure together with
the above switching control strategy.

Considering the robustness of SMC, the following result
is a slight extension of Theorem 6.

Corollary 7. For the uncertain chained system with input
delay

𝑥̇
0
= 𝑢
0
(𝑡 − 𝜏) ,

𝑥̇
𝑖
= 𝑢
0
(𝑡 − 𝜏) 𝑥

𝑖+1
,

𝑥̇
𝑛
= 𝑢
1
(𝑡 − 𝜏) + 𝑔,

𝑖 = 1, . . . , 𝑛 − 1

(33)

there is a continuous function 𝑔 > 0 such that |𝑔| ≤ 𝑔. Then,
global asymptotic stabilization of (33) is achievable by the
state feedback controllers of the form the (9), (13), and 𝑢

1
=

−𝑒𝜂
[𝑛−1]

− 𝑓𝜂
𝑛
− 𝑔 − 𝛽.

x

y

y
c

x
c

𝜃

Figure 1: Schematic of the mobile robot.

4. Simulation Example

Consider a car-like mobile robot as shown in Figure 1. The
kinematic model of the mobile robot can be written as

𝑥̇
𝑐
= V cos 𝜃,

̇𝑦
𝑐
= V sin 𝜃,

̇𝜃 = 𝜔,

(34)

where (𝑥
𝑐
, 𝑦
𝑐
) denotes the position of the center of mass of

the robot, 𝜃 is the heading angle of the robot, V is the forward
velocity and 𝜔 is the angular velocity, of the robot.

Using the same modeling method in [22], the first-order
approximation of system (34) near the origin is given by

𝑥̇
𝑙
= V,

̇𝑦
𝑙
= V𝜃
𝑙
,

̇𝜃
𝑙
= 𝜔,

(35)

where (𝑥
𝑙
, 𝑦
𝑙
, 𝜃
𝑙
) stands for the state of the locally approximate

model (35).
Considering that the delay in the input is often unavoid-

able due to sensors, calculation, information processing, or
transport, here we assume that the forward velocity V and the
angular velocity 𝜔 are subject to some time delay 𝜏; therefore
the above plant model is transformed into

𝑥̇
𝑙
= V (𝑡 − 𝜏) ,

̇𝑦
𝑙
= V (𝑡 − 𝜏) 𝜃

𝑙
,

̇𝜃
𝑙
= 𝜔 (𝑡 − 𝜏) .

(36)

By taking the following state and input transformation:

𝑥
0
= 𝑥
𝑙
, 𝑥

1
= 𝑦
𝑙
, 𝑥

2
= 𝜃
𝑙
, 𝑢

0
= V, 𝑢

1
= 𝜔,

(37)
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(a) System states

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time (s)

u0
u1

(b) Control inputs

Figure 2: Transient responses of the closed system.

we obtain

𝑥̇
0
= 𝑢
0
(𝑡 − 𝜏) ,

𝑥̇
1
= 𝑢
0
(𝑡 − 𝜏) 𝑥

2
,

𝑥̇
2
= 𝑢
1
(𝑡 − 𝜏) .

(38)

Clearly, system (38) is a simple form of (1). Hence our pro-
posed control design procedure is straightforward to apply.

Assume that 𝜏 = 0.1 and the design parameters are
chosen as 𝜆

0
= 𝑘
1
= −1, respectively. The simulation results

for initial condition (𝑥
0
(0), 𝑥
1
(0), 𝑥
2
(0)) = (2, 1, −1) are

shown in Figure 2. From the figure, it is clear that all the
closed-loop system states converge to zero, as well as the
designed controller.

5. Conclusion

In this paper, we consider the global stabilization problem for
a class of nonholonomic systems in chained form with input
delay via state feedback. First, a particular linear transforma-
tion is introduced to convert the original time-delay system
into a delay-free form. Then, by using input-state-scaling
technique and the SMC approach to design control laws,
global asymptotic regulation of the closed-loop system is
guaranteed. Simulation results demonstrate the effectiveness
of the proposed scheme.
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