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This paper presents an adaptive fuzzy sliding mode control design for a class of uncertain horizontal platform systems (HPSs).
Firstly, a nonsingular terminal sliding surface is proposed for HPSs.Then, a fuzzy logic system is introduced to estimate the system
uncertainties. The adaptive fuzzy sliding mode controller can guarantee the stability of the closed-loop system.The corresponding
numerical simulations are demonstrated to verify the effectiveness of the proposed method.

1. Introduction

Over the past two decades, many mechanical systems with
chaotic phenomena have been developed [1, 2]. One of the
most interesting and attractive nonlinear dynamical systems
is the horizontal platform system (HPS). It is a mechanical
device that can freely rotate around the horizontal axis. The
horizontal platform devices are widely used in earthquake
engineering and offshore. In [3], the horizontal platform
system displays diverse chaotic behavior. So, how to suppress
chaotic phenomenon is a hot research topic. Until now, a
wide variety of approaches have been proposed for stabilizing
chaotic systems such as adaptive control [4, 5], observer-
based control [6], sliding mode control [7, 8], backstepping
control [9, 10], and fuzzy control [11, 12]. In [3], two identical
HPSs can be synchronized by using linear, sinusoidal, and
exponential state error feedback controllers. Wu et al. [13]
proposed a sufficient criterion for global chaos synchroniza-
tion between two identical HPSs coupled by using linear
state error feedback controller. Meanwhile, they achieved
the robust synchronization of the chaotic HPS with phase
difference and parameter mismatches in [14]. Based on the
Lyapunov stability theorem and Sylvester criterion, some
algebraic sufficient criteria for synchronization of two HPSs
coupled by sinusoidal state error feedback control have been
derived in [15].

Sliding mode control (SMC) has been studied extensively
for over 50 years andwidely used in practical applications due

to its simplicity and robustness against parameter variations
and disturbances. Despite the extensive research activities
carried out, the key technical problems associated with SMC
remain as challenging research questions due to demands
for new industrial applications and technological advances.
Yu and Kaynak [7] provided the state of the art of recent
developments in SMC systems with soft computing (SC)
and examined key technical research issues and future per-
spectives. For the horizontal platform system, Pai and Yau
[16] proposed an integral-type sliding mode controller for
generalized projective synchronization of two HPSs with
uncertainties.

However, most of the above-mentioned methods have
been proposed to synchronize two identical HPSs asymp-
totically. Nevertheless, from a practical engineering point
of view, it is more reasonable to stabilize the HPS in finite
time under the affection of uncertainties. In order to achieve
finite time stabilization, the terminal sliding mode (TSM)
concept has been proposed [17]. TSM is a fast response
control scheme. The advantage of using TSM is that the
states of the controlled system can reach zero in a finite
time. For the HPS nonlinear system, how to design the
TSM is still an open problem. Fuzzy control schemes have
been found to be particularly useful to model unknown
functions in nonlinear systems rather than only unknown
parameters. There have been significant research efforts on
adaptive fuzzy control for nonlinear systems. For example,
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Figure 1: Physical model of the horizontal platform system.

Tong and Li [18] developed the stable adaptive fuzzy sliding
mode controller for nonlinear multivariable systems with
unavailable states. Very recently, M. P. Aghababa and H. P.
Aghababa [19] proposed adaptive controllers to achieve finite
time synchronization of two nonautonomous chaotic HPSs.
However, the bounds of uncertainties of HPSs are assumed
to be known. In practical engineering, we could not obtain
the bounds of the uncertainties. In order to overcome this
limitation, we employ fuzzy system to approximate the HPS’s
unknown nonlinear functions and adaptive laws are derived
based on Lyapunov stability analysis for online updating the
parameter of the model. So, the major contribution of this
paper is that a nonsingular terminal sliding mode control
scheme incorporating fuzzy control technique is proposed to
stabilize uncertain HPS.

The organization of this paper is described as follows.
In Section 2, system model is derived, and the problem
statement is also given. In Section 3, the design of the pro-
posed control strategies is discussed. The simulation results
are presented to demonstrate the effectiveness of proposed
control scheme in Section 4. Conclusion is presented in
Section 5.

2. Description of HPS Dynamics
and Problem Statement

The HPS is a mechanical device composed of a platform
and an accelerometer located on the platform (see Figure 1).
The platform can freely rotate about the horizontal axis,
which penetrates its mass center.The accelerometer produces
an output signal to the actuator, subsequently generating a
torque to inverse the rotation of the platform to balance the
HPS, when the platform deviates from horizon. The motion
equations of the HPS are given by [18]

𝐴 ̈𝑦 + 𝐷 ̇𝑦 + 𝑘𝑔 sin𝑦 −
3𝑔

𝑅
(𝐵 − 𝐶) cos𝑦 sin𝑦 = 𝐹 cos𝜔𝑡,

(1)

where 𝑦 is the rotation of the platform relative to horizon,
𝐴, 𝐵, and 𝐶 are inertia moment of the platform, 𝐷 is the
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Figure 2: Phase plane trajectory of system (1).

damping coefficient, 𝑘 is the proportional constant of the
accelerometer, 𝑔 is the acceleration constant of gravity, 𝑅 is
the radius of Earth, and 𝐹 cos𝜔𝑡 is the harmonic torque.
System (1) exhibits chaotic behavior with 𝐴 = 0.3, 𝐵 = 0.5,
𝐶 = 0.2, 𝑘 = 0.11559633, 𝑅 = 6378000, 𝐹 = 3.4, and 𝜔 = 1.8
(see Figure 2).

For simplicity, we introduce the following notations: 𝑥 =
[𝑥
1
, 𝑥
2
]
𝑇
= [𝑦, ̇𝑦]

𝑇; then the dynamic model of (1) with
unknown disturbances can be described by the following
equations:

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= 𝑓 (𝑥, 𝑡) + 𝑑 (𝑡, 𝑥) + 𝑢 (𝑡) ,

(2)

where 𝑥 is the state vector which is assumed available for
measurement, 𝑢(𝑡) ∈ 𝑅 is the control input, and 𝑑(𝑡, 𝑥)
is unknown external disturbance. Consider that 𝑓(𝑥, 𝑡) =
−𝑎𝑥
2
− 𝑏 sin𝑥

1
+ 𝑙 cos𝑥

1
sin𝑥
1
+ ℎ cos𝜔𝑡 is assumed to be

unknown, 𝑎 = 𝐷/𝐴, 𝑏 = 𝑘𝑔/𝐴, 𝑙 = 3𝑔(𝐵 − 𝐶)/𝑅𝐴, and
ℎ = 𝐹/𝐴.
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3. Adaptive Fuzzy TSM Control Design

In order to design an adaptive fuzzy terminal sliding mode
controller for the system (1), the following terminal sliding
surface is defined [8]:

𝑠 (𝑡) = 𝑥
2
+ 𝑥
1
+ 𝑥
𝛼

1
= 0, (3)

where 0 < 𝛼 = 𝑞/𝑝 < 1 and 𝑞, 𝑝 > 0 are odd integers. Then,
for any initial value of the state𝑥(𝑡) at 𝑡 = 0, the solution of (3)
will reach 𝑠 = 0 in finite time and 𝑡

𝑠
= (1/(1−𝛼)) ln𝑥(0)1−𝛼+1.

Notice that, for 𝛼𝑥𝛼−1
1
𝑥
2
, due to 𝑞 − 𝑝 < 0, singularity will

occur as 𝑥
1
= 0 and 𝑥

2
̸= 0. To avoid the singularity problem

and guarantee that the system (2) will reach the sliding mode
surface (3) in finite time, we redefine 𝛼𝑥𝛼−1

1
𝑥
2
as follows:

𝛼𝑥
𝛼−1

1
𝑥
2
=

{{{{

{{{{

{

𝛼𝑥
𝛼−1

1
𝑥
2
, if 𝑥

1
̸= 0, 𝑥
2
̸= 0,

𝛼𝜖
𝛼−1
𝑥
2
, if 𝑥

1
= 0, 𝑥

2
̸= 0,

0, if 𝑥
1
= 0, 𝑥

2
= 0,

(4)

where 𝜖 is a small positive constant. To implement the TSM
controller, we define the following TSM-type teaching law:

̇𝑠 (𝑡) = −𝑘
1
𝑠 − 𝑘
2
𝑒
−𝜆𝑡 𝑠

|𝑠|
𝛽
, (5)

with 𝑘
1
> 0, 𝑘

2
> 0, 𝜆 > 0, and 𝛽 > 0. Differentiating (3) gives

̇𝑠 (𝑡) = 𝑥
2
+ 𝛼𝑥
𝛼−1

1
𝑥
2
+ 𝐹 (𝑡, 𝑥) + 𝑢 (𝑡) . (6)

And according to (2) and (5), the equivalent control law can
be given by

𝑢eq (𝑡) = −𝑥2 − 𝛼𝑥
𝛼−1

1
𝑥
2
− 𝐹 (𝑡, 𝑥)

− 𝑘
1
𝑠 − 𝑘
2
𝑒
−𝜆𝑡 𝑠

|𝑠|
𝛽
,

(7)

where 𝐹(𝑡, 𝑥) = 𝑓(𝑡, 𝑥) + 𝑑(𝑡, 𝑥). Owing to 𝑓(𝑡, 𝑥) and 𝑑(𝑡, 𝑥)
being unknown, so 𝐹(𝑡, 𝑥) is unknown.Thus, the control law
(7) is usually difficult to be obtained. Here, we use fuzzy logic
system to approximate the nonlinear unknown function.

3.1. Fuzzy Approximator. The fuzzy IF-THEN rules are
used to perform a mapping from an input vector x =

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇
∈ 𝑅
𝑛 to an output𝑦 ∈ 𝑅.The 𝑟th fuzzy rule is

written as𝑅𝑟: if 𝑥
1
is𝐴𝑟
1
(𝑥
1
) and. . . and 𝑥

𝑛
is𝐴𝑟
𝑛
(𝑥
𝑛
), then 𝑦 is

𝐵
𝑟, where𝐴𝑟 and𝐵𝑟 are fuzzy setswithmembership functions
𝜇
𝐴
𝑟

𝑖

(𝑥
𝑖
) and 𝜇

𝐵
𝑟

𝑖

(𝑦), respectively, and x belongs to a compact
set. If we use the product-inference rule, singleton fuzzifier,
and center-average defuzzifier, then the output of fuzzy logic
system can be defined as

𝑦 =

∑
𝑛
𝑟

𝑖=1
𝑦
𝑖
(∏
𝑛

𝑗=1
𝜇
𝐴
𝑖

𝑗

(𝑥
𝑗
))

∑
𝑛
𝑟

𝑖=1
(∏
𝑛

𝑗=1
𝜇
𝐴
𝑖

𝑗

(𝑥
𝑗
))

= 𝜂
𝑇
Ψ (x) , (8)

where 𝑛
𝑟
is the number of total fuzzy rules, 𝑦𝑖 is the point

at which 𝜇
𝐵
𝑟

𝑖

(𝑦
𝑖
) = 1, 𝜇

𝐴
𝑖

𝑗

(𝑥
𝑗
) is the membership function

of the fuzzy variable 𝑥
𝑗
characterized by Gaussian, 𝜂 =

[𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
𝑟]
𝑇 is an adjustable parameter vector, and Ψ =

[𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
𝑟]
𝑇 is a fuzzy basis vector, where 𝜓𝑖 is defined

as

𝜓
𝑖
(x) =

∏
𝑛

𝑗=1
𝜇
𝐴
𝑖

𝑗

(𝑥
𝑗
)

∑
𝑛
𝑟

𝑖=1
(∏
𝑛

𝑗=1
𝜇
𝐴
𝑖

𝑗

(𝑥
𝑗
))

. (9)

3.2. Adaptive Fuzzy Terminal Sliding Mode Controller Design.
So, by applying the introduced fuzzy systems in (8), approxi-
mation of function 𝐹(𝑡, 𝑥) can be expressed as follows:

𝐹 (𝑥, 𝜂
𝑓
) = [𝑓

1
(𝑥, 𝜂
𝑓
1

) , 𝑓
2
(𝑥, 𝜂
𝑓
2

)]
𝑇

,

𝑓
𝑖
(𝑥, 𝜂
𝑓
𝑖

) = 𝜂
𝑇

𝑓
𝑖

𝜓
𝑓
𝑖

(𝑥) ,

(10)

where 𝜂𝑇
𝑓
𝑖

is adjustable parameter vectors, 𝑖 = 1, 2. Optimal
parameter 𝜂∗

𝑓
𝑖

can be defined such that

𝜂
∗

𝑓
𝑖

= argmin
𝜂
𝑓
𝑖

{ sup
𝑥∈𝐷
𝑥

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑥, 𝜂
𝑓
𝑖

)
󵄨󵄨󵄨󵄨󵄨
} , (11)

where𝐷
𝑥
is an allowable set of the state vector. Andminimum

estimation error can be expressed as

𝜀
𝑓
(𝑡, 𝑥) = 𝐹 (𝑡, 𝑥) − 𝐹

∗
(𝑥, 𝜂
∗

𝑓
) . (12)

It is assumed that minimum estimation errors are
bounded for all 𝑥 ∈ 𝐷

𝑥
: |𝜀
𝑓
(𝑡, 𝑥)| ≤ 𝜀; 𝜀 is positive constant.

According to (7), (10) can be written as

𝑢equ = −𝑥2 − 𝛼𝑥
𝛼−1

1
𝑥
2
− 𝐹 (𝑥, 𝜂

𝑓
) − 𝑘
1
𝑠 − 𝑘
2
𝑒
−𝜆𝑡 𝑠

|𝑠|
𝛽
. (13)

And the proposed controller is designed as

𝑢 = 𝑢equ + 𝑢𝑟, (14)

with 𝑢
𝑟
= −𝜀 sign(𝑠); 𝜀 is an estimate of 𝜀.

To generate the approximation 𝐹(𝑡, 𝑥) and 𝜀 online, we
choose the following adaptation laws:

̇𝜂
𝑓
𝑖

= 𝜆
𝑓
𝑖

𝜓
𝑓
𝑖

𝑠
𝑖
,

̇̂𝜀 = 𝜆
𝜀 |𝑠| ,

(15)

where 𝜆
𝜀
> 0 and 𝜆

𝑓
𝑖

> 0, 𝑖 = 1, 2.

Theorem 1. Consider the uncertain horizontal platform sys-
tem (2). If 𝐹(𝑡, x) is approximated by (10) and input controller
and adaptive laws are selected as (10) and (14), respectively,
then, all signals in the closed-loop system are bounded;
lim
𝑡→∞

𝜂
𝑓
𝑖

= 𝜂
∗

𝑓
𝑖

and lim
𝑡→∞

𝜀 = 𝜀.

Proof. Consider a Lyapunov function as

𝑉
1
=
1

2
𝑠
2
+
1

2𝜆
𝜀

𝜀
2
+
1

2

2

∑

𝑖=1

1

𝜆
𝑓
𝑖

𝜂
𝑇

𝑓
𝑖

𝜂
𝑓
𝑖

, (16)
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where 𝜂
𝑓
𝑖

def
= 𝜂
∗

𝑓
𝑖

− 𝜂
𝑓
𝑖

and 𝜀 def
= 𝜀 − 𝜀. One can obtain the time

derivative of (16) as

𝑉̇
1
= 𝑠 (𝑥 + 2 + 𝛼𝑥

𝛼−1

1
+ 𝐹 (𝑡, 𝑥) + 𝑢)

−
𝜀 ̇̂𝜀

𝜆
𝜀

−

2

∑

𝑖=1

1

𝜆
𝑓
𝑖

𝜂
𝑇

𝑓
𝑖

̇̂𝜂
𝑓
𝑖

= 𝑠(𝐹
∗
(𝑥, 𝜂
∗

𝑓
) + 𝜀
𝑓
(𝑡, 𝑥) − 𝐹 (𝑥, 𝜂

𝑓
)

−𝑘
1
𝑠 − 𝑘
2
𝑒
−𝜆𝑡 𝑠

|𝑠|
𝛽
+ 𝑢
𝑟
)

−
𝜀 ̇̂𝜀

𝜆
𝜀

−

2

∑

𝑖=1

1

𝜆
𝑓
𝑖

𝜂
𝑇

𝑓
𝑖

̇̂𝜂
𝑓
𝑖

≤

2

∑

𝑖=1

𝜂
𝑇

𝑓
𝑖

𝜓
𝑓
𝑖

𝑠
𝑖
+ 𝜀 |𝑠| − 𝑘1|𝑠|

2
− 𝑘
2
𝑒
−𝜆𝑡
|𝑠|
2−𝛽

− 𝜀 |𝑠| −
𝜀 ̇̂𝜀

𝜆
𝜀

−

2

∑

𝑖=1

1

𝜆
𝑓
𝑖

𝜂
𝑇

𝑓
𝑖

̇̂𝜂
𝑓
𝑖

.

(17)

Substituting (15) into above inequality shows that

𝑉̇
1
< −𝑘
1|𝑠|
2
− 𝑘
2
𝑒
−𝜆𝑡
|𝑠|
2−𝛽
< 0, for 𝑠 ̸= 0. (18)

Based on Lyapunov theory, one can show that all signals in
the closed-loop system are bounded and 𝜂

𝑓
𝑖

and 𝜀 converge
to 𝜂∗
𝑓
𝑖

and 𝜀, respectively, when 𝑡 → ∞. This completes the
proof.

Lemma 2. If a Lyapunov function can be defined as

V̇ (𝑥) + 𝑎
1
V (𝑥) + 𝑎

2
𝑒
−𝑎
3
𝑡
≤ 0, (19)

where 𝑎
1
, 𝑎
2
, 𝑎
3
> 0, then the settling time is given by [20]

𝑡
𝑠
≤

{{{{

{{{{

{

1

𝑎
1
− 𝑎
3

ln [1 +
𝑎
1
− 𝑎
3

𝑎
2

V (𝑥
0
)] , if 𝑎

1
̸= 𝑎
3
;

V (𝑥
0
)

𝑎
2

, if 𝑎
1
= 𝑎
3
.

(20)

Theorem 3. If 𝐹(𝑥, 𝜂
𝑓
) = 𝐹

∗
(𝑥, 𝜂
∗

𝑓
), then terminal sliding

mode surface 𝑠 = 0 will be reached in finite time.

Proof. For 𝐹(𝑥, 𝜂
𝑓
) = 𝐹

∗
(𝑥, 𝜂
∗

𝑓
), let 𝑉

1
= (1/2)𝑠

2; then from
(16), we have

̇
𝑉
1
= 𝑠 ̇𝑠 = |s| 𝑑 |𝑠|

𝑑𝑡
< −𝑘
1|𝑠|
2
− 𝑘
2
𝑒
−𝜆𝑡
|𝑠|
2−𝛽
. (21)

So, we get

𝑑 |𝑠|

𝑑𝑡
< −𝑘
1 |𝑠| − 𝑘2𝑒

−𝜆𝑡
|𝑠|
1−𝛽
. (22)

Denoting 𝑤 = |𝑠|𝛽, from (22), the time derivative of 𝑤 yields

𝑑𝑤

𝑑𝑡
= 𝛽|𝑤|

𝛽−1 𝑑 |𝑠|

𝑑𝑡
= −𝛽𝑘

1
𝑤 − 𝑘

2
𝛽𝑒
−𝜆𝑡
. (23)

According to Lemma 2, integral terminal sliding mode sur-
face 𝑠 = 0 will be reached in finite time. This completes the
proof.

Remark 4. If we select another fast TSM manifold: 𝑠 = 𝑥
2
+

𝑥
1
+ 𝜉 sign(𝑥

1
), we can obtain similar results.

Remark 5. The characteristics of the proposed TSM include
the following: (i) the finite convergence time can be easily
adjusted according to (3) and (4); (ii) the singular problem
does not occur on the control law.

4. Simulation Studies

In this section, the numerical simulations are performed
to verify and demonstrate the effectiveness of the proposed
control scheme. Firstly, we show the method in [20]. Define
sliding proportional + integral + derivative (PID) surface as
follows:

𝑠 = 𝑘
3
𝑦 + 𝑘
4
∫

𝑡

0

𝑦 (𝜏) 𝑑𝜏 + 𝑘
5
̇𝑦, (24)

where the control gains 𝑘
3
, 𝑘
4
, and 𝑘

5
are properly chosen

such that the characteristic polynomial in 𝑘
3
̇𝑦+𝑘
4
𝑦+𝑘
5
̈𝑦 = 0

is strictly Hurwitz. Assume 𝐹(𝑡, 𝑥) is bounded by |𝐹(𝑡, 𝑥)| ≤
𝐷
∗, 𝐷∗ is unknown positive constant, and 𝑥 = [𝑦, ̇𝑦]𝑇. The

control law is designed as

𝑢 = −
𝑘
3

𝑘
5

̇𝑦 −
𝑘
4

𝑘
5

𝑦 − 𝐷 sign (𝑠) − 𝑘
6
sign (𝑠) ,

̇̂
𝐷 = 𝑘

3 |𝑠| ,

(25)

where 𝐷 is an estimate of 𝐷∗ and 𝑘
𝑗
is designed positive

constant, 𝑗 = 3, 4, 5, 6. We chose parameters𝐴 = 0.3, 𝐵 = 0.5,
𝐶 = 0.2, 𝐷 = 0.4, 𝑘 = 0.11559633, 𝑔 = 9.8, 𝑅 = 6378000,
𝐹 = 3.4, 𝜔 = 1.8, 𝐼

𝛼
= 0.061 kgm2, 𝑘

3
= 5, 𝑘

4
= 6, 𝑘

5
= 1, and

𝑘
6
= 2. The initial conditions [𝑦 ̇𝑦]

𝑇
= [0.1 0.1]

𝑇 and the
external disturbance 𝑑(𝑡, 𝑥) = 0.2 sin 0.2𝑦. Under the control
law (25), Figures 3 and 4 show the time response of the state
[𝑦, ̇𝑦]

𝑇 and 𝑢, respectively.
Now, we chose parameters 𝑘

1
= 3, 𝑘

2
= 4, 𝛼 = 3/5, 𝜖 =

0.01, 𝛽 = 0.08, 𝜆
𝜀
= 𝜆
𝑓
𝑖

= 2, 𝑖 = 1, 2, and 𝜆 = 3. The Gaussian
membership functions are assigned to 𝑥

𝑖
over interval [−6, 6],

and each of the fuzzy systems uses 72 fuzzy rules to model
𝐹(𝑥, 𝜂

𝑓
):

𝜇
𝐴
1

𝑖

= exp[−(𝑥 + 6)
2

2
] , 𝜇

𝐴
2

𝑖

= exp[−(𝑥 + 4)
2

2
] ,

𝜇
𝐴
3

𝑖

= exp[−(𝑥 + 2)
2

2
] , 𝜇

𝐴
4

𝑖

= exp[−(𝑥 + 0)
2

2
] ,

𝜇
𝐴
5

𝑖

= exp[−(𝑥 − 2)
2

2
] , 𝜇

𝐴
6

𝑖

= exp[−(𝑥 − 4)
2

2
] ,

𝜇
𝐴
7

𝑖

= exp[−(𝑥 − 6)
2

2
] .

(26)
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Figure 3: Time response [𝑦, ̇𝑦]𝑇 of system (1) under the method of
[21].
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Figure 4: Time response𝑢(𝑡) of system (1) under themethod of [20].

The states of controlled system (1) are shown in Figure 5.
One can see that the states are all driven to zero quickly by
using the proposed adaptive terminal sliding mode control
(13)–(15). Figure 6 displays the time response of 𝑢(𝑡). By
comparison, we can conclude that it is an effective method
proposed in this paper to reduce the chattering phenomenon.
The robustness and stability of system are improved.

5. Conclusion

In this paper, an adaptive fuzzy terminal sliding mode
control scheme has been proposed for HPSs. Based on
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̇
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y
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),
ẏ
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)

Figure 5: Time response [𝑦, ̇𝑦]𝑇 of system (1) with the control
scheme (13)–(15).
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Figure 6: Time response 𝑢(𝑡) of system (1) with the control scheme
(13)–(15).

fuzzy system rules, the proposed control approach guarantees
the boundedness of all the signals in closed-loop system.
Comparative examples have shown the effectiveness of the
proposed method. Our next research direction is how to
design finite time control scheme for uncertain HPS with
unknown control gain.
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