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The dual Ito equation can be seen as a two-component generalization of the well-known Camassa-Holm equation. By using the
theory of planar dynamical system, we study the existence of its traveling wave solutions. We find that the dual Ito equation has
smooth solitary wave solutions, smooth periodic wave solutions, and periodic cusp solutions. Parameter conditions are given to
guarantee the existence.

1. Introduction

Study on two-component equations has drawn a lot of interest
among researchers [1–6]. The two-component equation we
are going to discuss in the present paper is the dual Ito
equation [7]
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The dual Ito equation (1) is of interest due to the connection
of the Ito equation with the KdV equation.

The Ito equation [8],
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(2)

is a prototypical example of a two-component KdV equation.
It is shown that the coupled equation possesses infinitely
many symmetries and conservation laws. It is also shown that
these symmetries define a hierarchy of the coupled equation
each of which is a Hamiltonian system.

By the sense of “tri-Hamiltonian duality” [7], the cele-
brated Camassa-Holm equation [9, 10]
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(3)

can be seen as the dual equation of the KdV equation

𝑢
𝑡
= 𝑢
𝑥𝑥𝑥

+ 3𝑢𝑢
𝑥
. (4)

Taking plus sign in (3) leads to an integrable equation which
supports compactons, whereas minus sign is the water wave
model derived by Camassa-Holm, whose bounded travelling
waves (termed peakons) develop a discontinuity in the first
derivatives [10].

Differentmethods have beenused to study exact solutions
to standard Ito equation or generalized ones as well as higher-
order Ito equation [11–17]. But there are fewer researches
about travelingwave solutions of (1).Wewant to know, for (1),
whether there exist some interesting solutions such as smooth
soliton, peakon, cuspon, and compacton [18] solutions.

In this paper, we will apply the method of dynamical
system [19–24] from a mathematical point of view to study
the traveling wave solutions of (1).

The rest of this paper is organized as follows. In Section 2,
after transforming the two-component dual Ito equation
into a planar dynamical system, we discuss the bifurcation
conditions and possible phase portraits of the planar system.
Based on those phase portraits, Section 3 presents different
types of solutions such as smooth solitary wave solutions,
smooth periodic wave solutions, and periodic cusp solutions.
The last section is devoted to a short conclusion.
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2. Bifurcation Conditions and Possible
Phase Portraits

In this section, the properties of equilibrium points and
possible phase portraits will be given.

We consider the travelingwave solutions of (1) in the form

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) , V (𝑥, 𝑡) = 𝜓 (𝜉) , 𝜉 = 𝑥 − 𝑐𝑡, (5)

where 𝑐 is the wave speed.
Substituting (5) into (1), we get a system of ordinary

differential equations
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where “” is the derivative with respect to 𝜉.
Integrating (6) once with respect to 𝜉, we obtain
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(7)

where 𝑔, 𝑟 are integration constants.
From the second equation of (7), we get
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𝑟

𝑐 + 𝜙 (𝜉)

. (8)

Plugging (8) into the first equation of (7), we obtain a
nonlinear ODE
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where 𝑎 = 6 when (1) takes plus sign and 𝑎 = 2, minus sign.
Letting 𝑦 = 𝜙, we get the following planar system:
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System (10) is a planar dynamical system defined in a
3-parameter space (𝑐, 𝑔, and 𝑟). Because the phase orbits
defined by the vector fields of system (10) determine all
traveling wave solutions, we will investigate the bifurcations
of phase portraits of these systems in the phase plane (𝜙, 𝑦)
as the parameters are changed.

System (10) has a singular straight line 𝜙 = −𝑐 when
taking plus sign or two singular straight lines 𝜙 = ±𝑐 when

taking minus sign. To avoid the singularity, letting 𝑑𝜉 = 2(𝑐±
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2
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Now we consider the equilibrium points of system (10)
lying on the 𝜙-axis. Let
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We see that 𝐹(𝜙) has at most four real roots 𝜙
𝑖
, 𝑖 = 1, . . . , 4,

since it is a polynomial with order four. Then system (10) has
at most four equilibrium points 𝐸

𝑖
(𝜙
𝑖
, 0).

We need to find the bifurcation conditions for the
parameters. Equation 𝐹


(𝜙) = 0 has three roots −𝑐, 𝜙
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for 𝐹, and there is no equilibrium point. If 𝑔 = (1/4)𝑐2, then
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Now consider singular equilibrium points on the singular
lines. On the singular line 𝜙 = −𝑐 there are no singular
equilibria if 𝑟 ̸= 0. When (1) takes the minus sign and 𝐹(𝑐) =
20𝑐
4
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2
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2
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)
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corresponding to plus sign in (1) and

𝐽 (𝜙, 𝑦) = −2(𝜙 + 𝑐)
2

×(4𝑦
2
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corresponding tominus sign in (1).We can get 𝐽(𝜙, 0) = 2(𝜙±
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2
(𝑑/𝑑𝜙)𝐹(𝜙) and 𝑝 = trace(𝐽) = 4(𝑐 ± 𝜙)(𝑐 + 𝜙)𝑦,

respectively.
By the theory of planar dynamical systems [22], we know

that an equilibrium point of a planar Hamiltonian system is a
saddle point in the case of 𝐽 < 0, a center in the case of 𝐽 > 0,
and a cusp in the case of 𝐽 = 0, and its Poincare index is 0.

2.1. Equilibrium Points and Phase Portraits of (10) When
Taking Plus Sign in (1). Except for the straight line 𝜙 = −𝑐

or 𝜙 = ±𝑐, systems (10) and (11) have the same first integral
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where 𝑏 = (𝜙 + 𝑐)2 corresponding to plus sign in (1) and 𝑏 =
𝑐
2
− 𝜙
2 corresponding to minus sign.

Let ℎ
𝑖
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𝑖
, 0), ℎ

𝑠
= 𝐻(𝑐, ±𝑦

𝑐
). We can get ℎ

𝑠
=

−𝐺(𝑐)/2𝑐, where 𝐺(𝑐) = 4𝑐4 + 4𝑔𝑐2 − 𝑟2.
System (11) has the same phase portraits as system (10)

except for 𝜙 = −𝑐 corresponding to plus sign or 𝜙 = ±𝑐

corresponding to minus sign.

Lemma 1. When 𝐹(𝜙
+
) < 0 and −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐

2,
there are two equilibrium points 𝐸

1
(𝜙
1
, 0) and 𝐸

2
(𝜙
2
, 0) (𝜙

1
<

𝜙
2
). 𝐸
1
is a saddle point and 𝐸

2
is a center point. In this

parameter condition, a branch of the level curve𝐻(𝜙, 𝑦) = ℎ
1

defines a homoclinic orbit to the saddle point 𝐸
1
, and a branch

of the level curve 𝐻(𝜙, 𝑦) = ℎ with ℎ ∈ (ℎ
2
, ℎ
1
) gives rise to a

family of smooth periodic orbits of (10) (see Figure 1(a)).

Lemma 2. When 𝑔 < −(1/2)𝑐
2, the equilibrium points of

system (10) can be described by the following cases.

(1) If 𝐹(𝜙
−
) < 0 and 𝐹(𝜙

+
) < 0, there are four equilibrium

points 𝐸
𝑖
(𝜙
𝑖
, 0), 𝑖 = 1, . . . , 4, (𝜙

1
< 𝜙
−
< 𝜙
2
< −𝑐 <

𝜙
3
< 𝜙
+
< 𝜙
4
). 𝐸
1
and 𝐸

4
are centers and 𝐸

2
and 𝐸

3

are saddle points. There is a homoclinic orbit defined
by 𝐻(𝜙, 𝑦) = ℎ

𝑖
, 𝑖 = 2, 3, passing through 𝐸

2
and 𝐸

3
,

respectively. There is a family of smooth periodic orbits
of (10) enclosing the center 𝐸

1
and 𝐸

4
, respectively (see

Figure 1(b)).
(2) If 𝐹(𝜙

−
) > 0 and 𝐹(𝜙

+
) < 0, there are two equilibrium

points 𝐸
1
(𝜙
1
, 0) and 𝐸

2
(𝜙
2
, 0) (𝜙

−
< −𝑐 < 𝜙

1
< 𝜙
+
<

𝜙
2
).𝐸
1
is a saddle point while𝐸

2
is a center point.There

is a homoclinic orbit defined by 𝐻(𝜙, 𝑦) = ℎ
1
passing

through 𝐸
1
. There is a family of smooth periodic orbits

of (10) defined by 𝐻(𝜙, 𝑦) = ℎ, ℎ ∈ (ℎ
2
, ℎ
1
) enclosing

the center 𝐸
2
(see Figure 1(c)).

2.2. Equilibrium Points and Phase Portraits of (10) When
Taking Minus Sign in (1). When taking minus sign, there
are two singular lines of (10). Two more equilibrium points
appear. When 𝐹(𝑐) > 0, no equilibrium points exist on the
singular line 𝜙 = 𝑐. If 𝐹(𝜙

+
) < 0 and −(1/2)𝑐2 < 𝑔 < (1/4)𝑐2,

we have −𝑐 < 𝜙
−
< 𝜙
1
< 𝜙
+
< 𝜙
2
. When 𝑔 = −(1/2)𝑐

2, we
have 𝜙

−
= −𝑐 < 𝜙

1
< 𝜙
+
< 𝜙
2
. If 𝐹(𝜙

+
) = 0, there is only one

equilibrium point 𝐸
1
(𝜙
1
, 0), (−𝑐 < 𝜙

−
< 𝜙
1
= 𝜙
+
) which is a

saddle piont. If 𝐹(𝜙
+
) > 0, there are no equilibrium points.

Lemma 3. When 𝐹(𝑐) > 0, 𝐹(𝜙
+
) < 0 and −(1/2)𝑐2 ≤ 𝑔 <

(1/4)𝑐
2, system (10) has two equilibrium points 𝐸

1
(𝜙
1
, 0) and

𝐸
2
(𝜙
2
, 0). 𝐸

1
is a center point while 𝐸

2
is a saddle point. There

is a homoclinic orbit defined by𝐻(𝜙, 𝑦) = ℎ
2
to the saddle 𝐸

2
.

There is a family of smooth periodic orbits defined by𝐻(𝜙, 𝑦 =
ℎ, ℎ ∈ (ℎ

1
, ℎ
2
)) surrounding 𝐸

2
(see Figure 2(a)).

When 𝐹(𝑐) < 0, there is equilibrium at 𝜙 = 𝑐. When 𝑔 <
−(1/2)𝑐

2, we have 𝜙
+
> 0 and 𝜙

−
< −𝑐 < 𝜙

+
; then𝑓(−𝑐) > 0,

where −𝑐 is minimum.

Lemma 4. When 𝐹(𝑐) < 0 and 𝑔 < −(1/2)𝑐2, the equilibrium
points of system (10) can be described by the following cases.

(1) If 𝐹(𝜙
−
) < 0 and 𝐹(𝜙

+
) < 0, there are six

equilibrium points𝐸
𝑖
(𝜙
𝑖
, 0), 𝑖 = 1, . . . , 4,𝐸

5
(𝑐, 𝑦
𝑐
), and

𝐸
6
(𝑐, −𝑦

𝑐
) (𝜙
1
< 𝜙
−
< 𝜙
2
< −𝑐 < 𝜙

3
< 𝜙
+
< 𝜙
4
).

𝐸
1
, 𝐸
3
, and 𝐸

4
are centers; 𝐸

2
, 𝐸
5
, and 𝐸

6
are saddle

points. Equilibrium points 𝐸
5
and 𝐸

6
lie on the singular

line 𝜙 = 𝑐. There is a homoclinic orbit passing through
𝐸
2
enclosing the center 𝐸

1
. There is a family of periodic

orbits surrounding each center point.There is a singular
close orbit passing the singular saddle points 𝐸

5
and

𝐸
6
(Figure 2(b)).

(2) If 𝐹(𝜙
−
) > 0 and 𝐹(𝜙

+
) < 0, there are four equilibrium

points 𝐸
𝑖
(𝜙
1
, 0), 𝑖 = 1, 2, 𝐸

3
(𝑐, 𝑦
𝑐
), and 𝐸

4
(𝑐, −𝑦

𝑐
)

(𝜙
−
< −𝑐 < 𝜙

1
< 𝜙
+
< 𝜙
2
). 𝐸
1
and 𝐸

2
are center

points while𝐸
3
and𝐸

4
are saddle points on the singular

line 𝜙 = 𝑐. There is a family of smooth periodic orbits
surrounding the centers 𝐸

1
and 𝐸

2
, respectively. There

are two bizarre periodic orbits passing through 𝐸
3
and

𝐸
4
(see Figure 2(c)).

3. Different Kinds of Traveling Solutions to (1)
In this section we will give some types of interesting solutions
to (1).

Suppose that 𝑢 = 𝜙(𝜉) is a traveling wave solution for (9)
for 𝜉 ∈ (−∞,∞), lim

𝜉→−∞
𝜙(𝜉) = 𝛼, and lim

𝜉→∞
𝜙(𝜉) = 𝛽,

where 𝛼 and 𝛽 are two constants. If 𝛼 = 𝛽, then 𝜙(𝜉) is called
a solitary wave solution. Usually, a solitary wave solution for
(9) corresponds to a homoclinic orbit of system (10) while
a periodic solution for (9) corresponds to a closed orbit of
system (10).
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Figure 1: Phase portraits of (10) for 𝜙 ̸= −𝑐. (a) The case for −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐
2, 𝐹(𝜙

+
) < 0. (b) The case for 𝑔 < −(1/2)𝑐

2, 𝐹(𝜙
−
) <

0, 𝐹(𝜙
+
) < 0. (c) The case for 𝑔 < −(1/2)𝑐2, 𝐹(𝜙

−
) > 0, 𝐹(𝜙

+
) < 0.

By using the results of the above lemmas and the basic
theory of the singular nonlinear traveling wave equations
[22], we obtain the dynamical behavior of the traveling wave
solutions of (1) as follows.

3.1. Solitary Waves Solutions to (1)

Proposition 5. There exists a smooth bell-shape solitary wave
solution of the first component of (1) if one takes plus sign in (1)
and one of the following conditions is satisfied:

(1) −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐2, 𝐹(𝜙
+
) < 0;

(2) 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0;

(3) 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) > 0, 𝐹(𝜙

+
) < 0.

Those solitary wave solutions are corresponding to the
homoclinic orbit given by 𝐻(𝜙, 𝑦) = ℎ

1
to the saddle point

𝐸
1
in Figures 1(a) and 1(c) and by𝐻(𝜙, 𝑦) = ℎ

3
to the saddle

point𝐸
3
in Figure 1(b). For simplicity, we only give one planar

profile of the first component 𝑢 in Figure 3(a). The second
component of (1) is then given according to (8).

Proposition 6. There exists a smooth valley-shape solitary
wave solution of the first component of (1) and one of the
following conditions is satisfied:

(1) 𝑔 < −(1/2)𝑐
2, 𝐹(𝜙

−
) < 0, 𝐹(𝜙

+
) < 0 and taking plus

sign in (1);

(2) 𝐹(𝑐) > 0, −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐
2, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1);

(3) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐
2, 𝐹(𝜙

−
) < 0, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1).



Abstract and Applied Analysis 5

4

2

0

0 0.5 1 21.5

−2

−4

−1.5 −1 −0.5

y

𝜙

(a)

−15 −10 −5

40

20

0

0 5 1510

−20

−40

y

𝜙

(b)

0 3 41 2−1

−10

−5

0

5

10

y

𝜙

(c)

Figure 2: Phase portraits of (10) for 𝜙 ̸= −𝑐, taking minus sign. (a) The case for 𝐹(𝑐) > 0, −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐2, 𝐹(𝜙
+
) < 0. (b)The case for

𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0. (c) The case for 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐2, 𝐹(𝜙

−
) > 0, 𝐹(𝜙

+
) < 0.

These smooth valley-shape solitary wave solutions are corre-
sponding to the homoclinic orbit given by 𝐻(𝜙, 𝑦) = ℎ

2
to

the saddle point 𝐸
2
in Figures 3(a), 2(a), and 2(b). A planar

profile of the first component 𝑢 is shown in Figure 4(a).

3.2. Smooth Periodic Solutions

Proposition 7. There is a family of smooth periodic wave
solutions of (1) if one of the following conditions is satisfied:

(1) −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐
2, 𝐹(𝜙

+
) < 0 and taking plus

sign in (1);
(2) 𝑔 < −(1/2)𝑐

2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0 and taking plus

sign in (1);
(3) 𝑔 < −(1/2)𝑐

2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0 and taking plus

sign in (1);

(4) 𝑔 < −(1/2)𝑐
2, 𝐹(𝜙

−
) > 0, 𝐹(𝜙

+
) < 0 and taking plus

sign in (1);
(5) 𝐹(𝑐) > 0, −(1/2)𝑐2 ≤ 𝑔 < (1/4)𝑐

2, 𝐹(𝜙
+
) < 0 and

taking minus sign in (1);
(6) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐

2
, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1);
(7) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐

2
, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1);
(8) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐

2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1);
(9) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐

2, 𝐹(𝜙
−
) > 0, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1);
(10) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐

2
, 𝐹(𝜙
−
) > 0, 𝐹(𝜙

+
) < 0 and

taking minus sign in (1).
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Figure 3: Smooth bell-shape solitary wave solution.
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Figure 4: Smooth valley-shape solitary wave solution.

Those periodic traveling wave solutions correspond to the
family of smooth periodic orbits surrounding the centers in
Figures 1 and 2. A planar profile of the first component 𝑢 is
shown in Figure 5(a).

3.3. Nonsmooth Periodic Wave Solution. In Figures 1(b) and
1(c), the singular straight line 𝜙 = 𝑐 intersects with the
close orbit. By theory of the singular nonlinear traveling wave
equations [22], there are nonsmooth wave solutions to (1).

Proposition 8. There is a peaked periodic cusp wave solution
if one takesminus sign in (1) and one of the following conditions
is satisfied:

(1) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0;

(2) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) > 0, 𝐹(𝜙

+
) < 0.

These peaked periodic cuspwave solutions are corresponding
to the arch curve in the left side of 𝜙 = 𝑐 passing through
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Figure 5: Smooth periodic wave solutions.
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Figure 6: Peaked periodic cusp wave solution.

the singular saddle points 𝐸
5
and 𝐸

6
and surrounding the

center𝐸
3
in Figure 2(b) and that passing through the singular

saddle points 𝐸
3
and 𝐸

4
and surrounding the center 𝐸

1
in

Figure 2(c), respectively. Profiles are shown in Figure 6(a).

Proposition 9. There is a valley-shape periodic cusp wave
solution if one takes minus sign in (1) and one of the following
conditions is satisfied.

(1) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) < 0, 𝐹(𝜙

+
) < 0;

(2) 𝐹(𝑐) < 0, 𝑔 < −(1/2)𝑐2, 𝐹(𝜙
−
) > 0,𝐹(𝜙

+
) < 0.

Those valley-shape periodic cusp wave solutions are corre-
sponding to the arch curve in the right side of 𝜙 = 𝑐 passing
through the singular saddle points 𝐸

5
and 𝐸

6
and surround-

ing the center 𝐸
4
in Figure 2(b) and that passing through the

singular saddle points 𝐸
3
and 𝐸

4
and surrounding the center

𝐸
2
in Figure 2(c). Profiles are shown in Figure 7(a).

4. Conclusions

By using theory of the singular nonlinear traveling wave
equations, we found the existence of several different kinds
of traveling wave solutions of (1). It is shown that the signs
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Figure 7: Valley-shape periodic cusp wave solution.

had some influence on the type of solution. There are only
smooth traveling wave solutions when taking plus sign.
Nonsmooth traveling wave solutions arise when the sign
changes to minus. Furthermore, no peakons have been found
in our work although the two-component dual Ito equation is
analogous to the two-component Camassa-Holm equation.
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