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An inexact chance-constrained integer programming (ICIP) method is developed for planning contamination control of fluid
power system (FPS). The ICIP is derived by incorporating chance-constrained programming (CCP) within an interval mixed
integer linear programming (IMILP) framework, such that uncertainties presented in terms of probability distributions and discrete
intervals can be handled. It can also help examine the reliability of satisfying (or risk of violating) system constraints under
uncertainty. The developed method is applied to a case of contamination control planning for one typical FPS. Interval solutions
associated with risk levels of constraint violation are obtained. They can be used for generating decision alternatives and thus
help designers identify desired strategies under various environmental, economic, and system reliability constraints. Generally,
willingness to take a higher risk of constraint violation will guarantee a lower system cost; a strong desire to acquire a lower risk will
run into a higher system cost. Thus, the method provides not only decision variable solutions presented as stable intervals but also
the associated risk levels in violating the system constraints. It can therefore support an in-depth analysis of the tradeoff between
system cost and system-failure risk.

1. Introduction

Contamination has long been recognized as one of the
major causes of components’ wear, work-failure, and related
downtime of fluid power system (FPS). Although a number of
studies were undertaken for dealing with the contamination
problems in the FPS [1–7], they focused on the contami-
nant sensitivity analysis for single system component, the
ingression estimation of contaminant particle, and the online
monitoring of cleanliness level. They had difficulties in
reflecting the filtration systems from the perspective of the
whole FPS as well as analyzing the economic effects of system
maintenance.

Actually, in contamination control of FPS, uncertain-
ties may exist in related costs and impact factors such
as the contaminant-ingression/generation rate, component’s
contaminant-sensitivity, and filter’s contaminant-holding
capacity. These complexities may be further multiplied by
not only interactions among uncertain components, but also

their associations with economic penalties if major contam-
ination accidents occur. It is thus desirable to develop effec-
tive optimization methods for reflecting the inherent com-
plexities and uncertainties as well as effective management
measures for mitigating the effect of contamination in FPS.
Nie et al. developed several inexact optimizationmethods for
addressing uncertainties and nonlinearities in the contami-
nation control and filter management strategies of the fluid
power systems [8–11]. For example, Nie et al. developed an
interval-parameter integer nonlinear programming method
to deal with the uncertainties in the contamination control
of FPS, where the uncertainties have been presented into
interval numbers [8]. Nie et al. developed an interval-fuzzy
quadratic programming method for planning contamination
control of the fluid power systems under uncertainty, which
incorporated techniques of interval-parameter programming
(IPP) and fuzzy quadratic programming within a general
framework to handle uncertainties expressed in terms of
interval values and fuzzy sets; multiple control variables were
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adopted to tackle independent uncertainties in the model’s
right-hand side, and fuzzy quadratic terms were used to
minimize the variation of satisfaction degrees among the
constraints [9]. Nie et al. proposed an independent variables
controlled interval-fuzzy nonlinear programming method
for the assessment of filter allocation and replacement strate-
gies in FPS under uncertainty; by introducing independent
control variables and L-R fuzzy numbers into the interval
nonlinear programming model framework, the developed
method can address the independent characteristics of con-
straints uncertainty [10]. Nie et al. advanced an interval-fuzzy
chance-constrained integer programming (IFCIP) approach
for dealingwith uncertainties presented in terms of fuzzy sets,
intervals, and random variables [11].

Stochastic mathematical programming (SMP) can deal
with uncertainties based on the probability theory, in which
probabilistic information for a limited number of uncertain
parameters can be incorporated within the optimization
framework. The SMP methods are effective when the left-
hand-side coefficients are deterministic while the right-hand-
side coefficients are uncertain but with known probabil-
ity distributions [12]. The SMP methods include chance-
constrained programming, two-stage stochastic program-
ming, and multistage stochastic programming (abbreviated
as CCP, TSP, and MSP). CCP can effectively reflect the
reliability of satisfying (or risk of violating) system constraints
under uncertainty [13, 14]. In fact, CCP does not require that
all of the constraints be totally satisfied. Instead, they can
be satisfied in a proportion of cases with given probabilities
[15–18]. There have been many applications of CCP methods
to environmental management problems [19–24]. Huang
advanced two fuzzy chance-constrained programmingmeth-
ods for capital budgeting and investment problems that are
involved in fuzzy-random parameters [25, 26]; Li et al. pro-
posed a multistage fuzzy chance-constrained programming
approach for dealing with uncertainties expressed as fuzzy
sets and probabilities inwater resourcesmanagement systems
[17]. Although the CCP can deal with uncertainties presented
as probability distributions, linear constraints in the CCP can
only reflect the case when the left-hand-side coefficient is
deterministic, while the set of feasible constraints becomes
much more complicated or numerous if both left- and right-
hand sides are both random variables [21, 27–30]. However,
the CCP is effective in reflecting probability distributions
of the constraints’ right-hand sides but not so much for
independent uncertainties of the left-hand-side coefficients
in each constraint or the objective function; moreover, the
quality of many uncertainties is often not good enough to be
presented as probability distributions [21]. These difficulties
may affect practical applicability of the CCP method.

Interval-parameter programming (IPP) is an alternative
for handling uncertainties presented as interval numbers in
the model’s left- and/or right-hand sides as well as those that
cannot be quantified asmembership or distribution functions
[31]. IPP can be transformed into two deterministic submod-
els, which correspond to upper- and lower-bounds of the
desired objective function value. However, an IPPmodelmay
become infeasible when its right-hand-side parameters are
highly uncertain [32]. In fact, in the contamination control

process of FPS, many parameters may appear uncertain
and their interrelationships are complicated, such as fluid
flow, filtration ratio, contaminant ingression rate, contami-
nant generation rate, component tolerance level, filter costs,
and system maintenance fees. These uncertainties can be
quantified as probability density functions (PDFs), while the
others may exist as discrete intervals. For example, an engi-
neering designer/manager may know that the contaminant-
generation-rate in a FPS fluctuates within a certain interval,
but he/she may find it difficult to state its reliable probability
distribution [33].Therefore, one potential approach for better
accounting for the uncertainties, as well as the relevant
system reliabilities, is to incorporate the CCP into the interval
mixed integer linear programming (IMILP) framework.This
would then lead to an inexact chance-constrained integer
programming (ICIP) method.

As an extension of the previous works, this study aims
to develop such an inexact chance-constrained integer pro-
gramming (ICIP) method for contamination control and
filter management under uncertainty. This method will
incorporate techniques of interval, integer, and chance-
constrained programming within a general framework to
reflect a variety of uncertainties existing in the system param-
eters. It can also help examine the reliability of satisfying
(or risk of violating) system constraints under uncertainty
and thus quantify the cost of violating the constraints under
varied risk levels. The method will then be applied to a case
of contamination control planning for FPS. The results can
be used for generating a range of decision alternatives under
various system conditions and thus helping FPS managers to
identify desired contamination control policies.

2. Methodology

2.1. Interval Integer Programming. According to Huang et al.
[34], an interval mixed integer liner programming (IMILP)
problem can be expressed as follows:

Minimize 𝑓± = 𝐶±𝑋±

Subject to: 𝐴±𝑋± ≤ 𝐵±

𝑋± ≥ 0,

(1)

where 𝐴± ∈ {𝑅±}
𝑚×𝑛, 𝐵± ∈ {𝑅±}

𝑚×1, 𝐶± ∈ {𝑅±}
1×𝑛, 𝑋± ∈

{𝑅±}
𝑛×1, 𝑅± denotes a set of interval numbers, 𝑓± refers to an

interval objective function, and the decision variables (𝑋±)
can be sorted into two categories: continuous and binary.
The IMILP model can be transformed into two deterministic
submodels corresponding to upper- and lower-bounds of the
objective function value [34]. By solving the two submodels,
interval solutions can be obtained.

2.2. Chance-Constrained Programming. In a real-world con-
tamination control problem, randomness in other right-
hand-side parameters, such as component contamination
sensitivities and contaminant-holding capacities, also needs
to be reflected. For example, the contaminant-holding capac-
ity may be fixed with a level of probability, which represents
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the admissible risk of violating the uncertain capacity con-
straint. However, the interval mathematical programming
method has difficulties in reflecting uncertainties expressed
as probabilistic distributions. Chance-constrained program-
ming (CCP) method can be used for dealing with the above
type of uncertainty and analyzing the risk of violating the
uncertain constraints [14]. In CCP, it is required that the
constraints should be satisfied under given probabilities [15,
19–24, 35, 36]. Consider a general probabilistic stochastic
linear problem as follows:

Min 𝐶 (𝑡)𝑋

Subject to: 𝐴 (𝑡)𝑋 ≤ 𝐵 (𝑡)

𝑋 ≥ 0,

(2)

where 𝑋 is a vector of decision variables and 𝐴 (𝑡), 𝐵 (𝑡), and
𝐶 (𝑡) are sets with random elements defined on a probability
space 𝑇, 𝑡 ∈ 𝑇 [14, 30]. The CCP approach solves the above
model by converting it into a deterministic version through
(i) fixing a certain level of probability 𝑝

𝑖
(𝑝
𝑖
∈ [0, 1]) for

uncertain constraint 𝑖, which represents the admissible risk
of violating constraint 𝑖, and (ii) imposing the condition that
the constraint should be satisfied with at least a probability
level of 1 − 𝑝

𝑖
. The feasible solution set is thus subject to the

following constraints [21, 37]:

Pr [{𝐴
𝑖
(𝑡) 𝑋 ≤ 𝑏

𝑖
(𝑡)}]

≥ 1 − 𝑞
𝑖
, 𝐴
𝑖
(𝑡) ∈ 𝐴 (𝑡) , 𝑖 = 1, 2, . . . , 𝑚.

(3)

Constraint (3) is generally nonlinear, and the set of
feasible constraints is convex only for some particular distri-
butions and certain levels of 𝑝

𝑖
, such as the cases when (i)

𝑎
𝑖𝑗
are deterministic and 𝑏

𝑖
are random (for all 𝑝

𝑖
values);

(ii) 𝑎
𝑖𝑗
and 𝑏

𝑖
are discrete random coefficient, with 𝑝

𝑖
≥

max
𝑟=1,2,...,𝑅

(1−𝑞
𝑟
), where 𝑞

𝑟
is the probability associatedwith

realization 𝑟; or (iii) 𝑎
𝑖𝑗
and 𝑏
𝑖
have Gaussian distributions,

with 𝑝
𝑖
≥ 0.5 [27]. When elements of 𝑎

𝑖𝑗
are deterministic

and 𝑏
𝑖
(𝑡) are random, constraint (3) can be converted into a

linear one as follows:

𝐴
𝑖
(𝑡) 𝑋 ≤ 𝑏

𝑖
(𝑡)
𝑝𝑖 , ∀𝑖, (4)

where 𝑏
𝑖
(𝑡)𝑝𝑖 = 𝐹−1

𝑖
(𝑝
𝑖
), given the cumulative distribution

function (CDF) of 𝑏
𝑖
(i.e., 𝐹

𝑖
(𝑏
𝑖
)) and the probability of

violating constraint 𝑖 (i.e., 𝑝
𝑖
). The problem with constraint

(4) is that linear constraints can only reflect the case when
the left-hand-side coefficients (𝐴) are deterministic. If both
left- and right-hand sides (𝐴 and 𝐵) are uncertain, the set
of feasible constraints may become more complicated [21,
27–30]. To reflect randomness of the objective function in
IIP model, an “equivalent” deterministic objective is usually
defined in the CCP approach. There are four main options:
(i) optimization of mean value, (ii) minimization of variance
or other dispersion parameters, (iii) minimization of risks,
and (iv) maximization of the fractile (or Kataoka’s problem).
However, these considerations may be unable to effectively
handle independent uncertainties in 𝑐

𝑗
and communicate

them into the constraints.

One potential approach for better accounting formultiple
uncertainties that exist in both left- and right-hand sides
(of the constraints) as well as objective-function coefficients
(i.e., 𝐴, 𝐵, and 𝐶) is to incorporate the CCP within the
above IMILP framework, where intervals and probability
distributions could be reflected. This leads to an interval
chance-constrained integer programming (ICIP) model as
follows:

Maximize 𝜆±

Subject to: 𝐶±𝑋± ≤ 𝑓+ − 𝜆± (𝑓+ − 𝑓−)

𝐴±
𝑖
(𝑡) 𝑋
± ≤ 𝑏
𝑖
(𝑡)𝑞𝑖
±

∀𝑖, 𝑖 = 1, 2, . . . , 𝑚;

𝐴±
𝑖
(𝑡) ∈ 𝐴± (𝑡)

𝑥± ≥ 0, 𝑥±
𝑗
∈ 𝑋±; 𝑗 = 1, 2, . . . , 𝑛

1

0 ≤ 𝜆± ≤ 1,

(5)

where 𝜆± is a control variable, representing the degree of
satisfaction for fuzzy decision. Figure 1 shows the frame-
work of the ICIP. It is indicated that the ICIP integrates
techniques of interval sets, integer and chance-constrained
within a general framework. Each technique has its unique
contribution in enhancing the model’s capacities for tackling
uncertainties and dynamics. The ICIP can thus deal with
uncertainties described as discrete intervals sets and their
combinations. Based on an interactive algorithm, interval
solutions associated with levels of system-failure risk can be
obtained through solving two submodels sequentially. The
solutions are useful in generating desired decision alterna-
tives with the relationships among system cost, satisfaction
degree, and constraint-violation risk being quantified.

3. Case Study

3.1. Statement of Problem. Since the fluid power system can
inevitably be contaminated by large amounts of contami-
nants, filters have to be adopted tomitigate the contamination
level and thus guarantee the critical hydraulic components
not being polluted and/or destroyed. The major functions
of filters are to remove contaminant particles and thus keep
the system contamination at a safe level (i.e., lower than the
tolerance levels of various system components). Assume that
four types of filters (suction, pressure, return, and bypass
filters) would be installed in the study system. The detailed
nomenclatures for the variables and parameters are provided
in the appendix. The binary variables (i.e., decision variables,
𝐹
𝑘
and 𝐴

𝑘𝑛
) can be employed to identify (i) whether or not

particular filter needs to be installed and (ii) whether or not
the existing filter needs to be replaced. For example, if filter 𝑘
exists then 𝐹

𝑘
= 1; otherwise 𝐹

𝑘
= 0; similarly, if filter 𝑘 needs

to be replaced in period, then 𝐴
𝑘𝑛

= 1; otherwise 𝐴
𝑘𝑛

= 0.
Additionally, the filter fineness plays a crucial role in

ensuring the reliability and service life of pump in the
FPS. The management of filters is of importance during the
operation of FPS. Installing new filters and/or replacing the
existing filters frequently may lead to an increased operation
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Figure 1: Framework of the ICIP model.
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Figure 2: Typical hydraulic system with bypass filtration system.

cost. However, misact in installing filters and/or prolonging
the replacement period of the filters may pose serious
contamination threats on the FPS. Several factors such as
operation cost, replacement period, system performance,
service life of pump, and fineness of filters may be complex
and conflicted with each other. Therefore, it is desirable
to select filter fineness and plan the replacement period of
filters properly and to identify how to choose suitable filters
(including filter housing and filter element) and/or when to
replace the existing filters at an appropriate timewhich would
make a tradeoff between operation cost and system-failure
risk.

Consider a problemwherein a decisionmaker is responsi-
ble for the selection, installation, and replacement of filters in
a FPS with a bypass filtration circuit. Figure 2 presents such
a FPS, which includes an oil reservoir, a hydraulic pump, a
suction filter, a pressure filter, a return filter, a bypass filter
and several control components, and an actuator. To simplify

the formal deduction ofmodel these control components and
actuator are regarded to be a complex component here.

Several assumptions are made when formulating the
model, which includes the following. (1) Contaminants are
evenly distributed in each segment of the fluid power system
and the contamination level in any segment will not vary
within aworking period of filter; (2) filtration ratio of the filter
is constant at any time for a given particle parameter range;
(3) the other components after those filters cannot remove
the contaminant particles; (4) the flow rate is assumed to be
constant and the effect of system pressure and flow on the
filtration efficiency is negligible; (5) all of the contaminants
are considered spherical when calculating their granular
mass; (6) the settling effect of the contaminants in the
oil reservoir is negligible; (7) the effect of cavitation on
the performance of hydraulic components due to the flow
resistance of the filters is negligible; (8) the replacement of
oil is out of consideration in this study.
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3.2. Model Formulation. In such a typical hydraulic system
(as shown in Figure 2), contaminantmainly comes from both
outside environment and inside hydraulic components. Since
the contamination ingression rate (CIR) plays an important
part in removing contaminant, a further research should be
conducted concerning more details about CIR. It is known
that CIR is not a constant during the operation of the system.
At the threshold of the system running, the value of CIR is at
the top and starts to decrease with an increased speed because
of intense friction. Gradually, the friction surfaces become
smoother and thus the reducing rate of the speed slows down
and finally ends upwith zero, whichmeans that theCIR keeps
being a constant.

In the CCP, the required level of probability represents
the admissible risk of violating the constraints [14, 21].
Thus, the CCP can be incorporated into the concept of
IIP into a general framework to deal with uncertainties in
the contaminant-holding capacity of filters and component
contaminant sensitivity. Based on the preceding research [8],
a chance-constrained programming (CCP) model (A) can be
formulated as follows:

Minimize 𝐹cost =
4

∑
𝑘=1

𝐵
𝑘
𝐹
𝑘

+
4

∑
𝑘=1

𝑁

∑
𝑛=1

(ER
𝑘
+WM

𝑘
+ LM
𝑘
) 𝐴
𝑘𝑛

(6a)

subject to

Pr {𝑁𝐹
1𝑛𝑚

≤ 𝑆
1𝑛𝑚

} ≥ 1 − 𝑝
𝑖
, ∀𝑛,𝑚, (6b)

Pr {𝑁𝐹
2𝑛𝑚

≤ 𝑆
2𝑛𝑚

} ≥ 1 − 𝑝
𝑖
, ∀𝑛,𝑚, (6c)

Pr{
𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
1
× 𝑁𝐹
0𝑛𝑚

× (1 −
1

𝛽
1𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

] ≤
𝑡

∑
𝑛=1

𝐴
1𝑛
𝐶
1
× 1015}

≥ 1 − 𝑝
𝑖
, ∀𝑡 = 1, 2, . . . , 𝑁,

(6d)

Pr{
𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
2
(𝑁𝐹
1𝑛𝑚

+
𝑅
1(𝑛−1)𝑚

𝑄
)

× (1 −
1

𝛽
2𝑚

)𝑄𝑇[
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
2𝑛
𝐶
2
× 1015}

≥ 1 − 𝑝
𝑖
, ∀𝑡 = 1, 2, . . . , 𝑁,

(6e)

Pr{
𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
3
(𝑁𝐹
2𝑛𝑚

+
𝑅
2(𝑛−1)𝑚

𝑄
)

× (1 −
1

𝛽
3𝑚

)𝑄𝑇[
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
3𝑛
𝐶
3
× 1015}

≥ 1 − 𝑝
𝑖
, ∀𝑡 = 1, 2, . . . , 𝑁,

(6f)

Pr{
𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
4
(𝑁𝐹
3𝑛𝑚

+
𝑅
3(𝑛−1)𝑚

𝑄
)

× (1 −
1

𝛽
4𝑚

)𝑄𝑇[
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
4𝑛
𝐶
4
× 1015}

≥ 1 − 𝑝
𝑖
, ∀𝑡 = 1, 2, . . . , 𝑁,

(6g)

𝑁𝐹
0(𝑛+1)𝑚

= (𝑁𝐹
3𝑛𝑚

− 𝑁𝐹
0𝑛𝑚

)
𝑄𝑇

𝑉

+
𝑅
3𝑛𝑚

𝑇

𝑉
+ 𝑁𝐹
0𝑛𝑚

+ (𝑁𝐹
4𝑛𝑚

− 𝑁𝐹
3𝑛𝑚

)
𝑄
𝑏
𝑇

𝑉
,

(6h)

𝐹
𝑘
= {

1 if filter needs to be installed
0 otherwise,

∀𝑘,

(6i)

𝐴
𝑘𝑛

= {
1 if filter needs to be replaced
0 otherwise,

∀𝑘, 𝑛,

(6j)

𝐴
𝑘𝑛

≤ 𝐹
𝑘

∀𝑘, 𝑛. (6k)

The chance constraints can be converted into determin-
istic and linear ones through (1) fixing a certain level of
probability 𝑝

𝑖
, 𝑝
𝑖
∈ [0, 1], for constraint 𝑖, and (2) imposing

the condition that constraint 𝑖 is satisfied with at least a
probability of 1 − 𝑝

𝑖
[15, 21]. Thus, the chance constraints

[Pr(𝐴
𝑖
𝑥 ≤ 𝑏
𝑖
) ≥ 1 − 𝑝

𝑖
] can be specified into

𝐴
𝑖
𝑋 ≤ 𝑏

𝑖

𝑝𝑖 , ∀𝑖, (7)

where 𝑏
𝑖

𝑝𝑖 = 𝐹
𝑖

−1(𝑝
𝑖
), given the cumulative distribution

function (CDF) of 𝑏
𝑖
(i.e., 𝐹

𝑖
(𝑏
𝑖
)) and the probability of
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violating constraint 𝑖 (i.e., 𝑝
𝑖
). Consequently, the above CCP

model can be converted into a linear model (B) as follows:

Minimize 𝐹cost =
4

∑
𝑘=1

𝐵
𝑘
𝐹
𝑘

+
4

∑
𝑘=1

𝑁

∑
𝑛=1

(ER
𝑘
+WM

𝑘
+ LM
𝑘
) 𝐴
𝑘𝑛

(8a)

subject to

𝑁𝐹
1𝑛𝑚

≤ 𝑆
(𝑝𝑖)

1𝑛𝑚
, ∀𝑛,𝑚, (8b)

𝑁𝐹
2𝑛𝑚

≤ 𝑆
(𝑝𝑖)

2𝑛𝑚
, ∀𝑛,𝑚, (8c)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
1
× 𝑁𝐹
0𝑛𝑚

(1 −
1

𝛽
1𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
1𝑛
𝐶
(𝑝𝑖)

1
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(8d)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
2
(𝑁𝐹
1𝑛𝑚

+
𝑅
1(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
2𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
2𝑛
𝐶
(𝑝𝑖)

2
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(8e)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
3
(𝑁𝐹
2𝑛𝑚

+
𝑅
2(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
3𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
3𝑛
𝐶
(𝑝𝑖)

3
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(8f)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
4
(𝑁𝐹
3𝑛𝑚

+
𝑅
3(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
4𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴
4𝑛
𝐶
(𝑝𝑖)

4
× 1015 ∀𝑡 = 1, 2, . . . , 𝑁,

(8g)

𝑁𝐹
0(𝑛+1)𝑚

= (𝑁𝐹
3𝑛𝑚

− 𝑁𝐹
0𝑛𝑚

)
𝑄𝑇

𝑉
+
𝑅
3𝑛𝑚

𝑇

𝑉

+ 𝑁𝐹
0𝑛𝑚

+ (𝑁𝐹
4𝑛𝑚

− 𝑁𝐹
3𝑛𝑚

)
𝑄
𝑏
𝑇

𝑉
,

(8h)

𝐹
𝑘
= {

1 if filter needs to be installed
0 otherwise,

∀𝑘,

(8i)

𝐴
𝑘𝑛

= {
1 if filter needs to be replaced
0 otherwise,

∀𝑘, 𝑛,

(8j)

𝐴
𝑘𝑛

≤ 𝐹
𝑘
, ∀𝑘, 𝑛. (8k)

The above CCP model can handle all right-hand-side
uncertainties expressed as probability distributions. How-
ever, the linear constraints only correspond to cases when
the left-hand-side coefficients are deterministic. Although
the CCP approach can deal with left-hand-side uncertainties
presented as probability density functions, three limitations
exist: (1) the resulting nonlinear model would be associated
with a number of difficulties in global-optimum acquisition;
(2) it is unable to handle independent uncertainties in
objective coefficients [38]; (3) for many practical problems,
the quality of information that can be obtained for these
uncertainties is mostly not good enough to be presented as
probability distributions.Thus, for uncertainties in left-hand-
side parameters (e.g., contamination level and component
contamination sensitivity and contaminant retaining capac-
ity), an extended consideration would be the introduction
of interval parameters into the model (C). This leads to
an inexact chance-constrained integer programming (ICIP)
model as follows:

Minimize 𝐹±cost =
4

∑
𝑘=1

𝐵±
𝑘
𝐹±
𝑘

+
4

∑
𝑘=1

𝑁

∑
𝑛=1

(ER±
𝑘
+WM±

𝑘
+ LM±
𝑘
) 𝐴±
𝑘𝑛

(9a)

subject to

𝑁𝐹±
1𝑛𝑚

≤ 𝑆
(𝑝𝑖)±

1𝑛𝑚
, ∀𝑛,𝑚, (9b)

𝑁𝐹±
2𝑛𝑚

≤ 𝑆
(𝑝𝑖)±

2𝑛𝑚
, ∀𝑛,𝑚, (9c)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
1
× 𝑁𝐹±
0𝑛𝑚

(1 −
1

𝛽
1𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴±
1𝑛
𝐶
(𝑝𝑖)±

1
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(9d)
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𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
2
(𝑁𝐹±
1𝑛𝑚

+
𝑅±
1(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
2𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴±
2𝑛
𝐶
(𝑝𝑖)±

2
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(9e)
𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
3
(𝑁𝐹±
2𝑛𝑚

+
𝑅±
2(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
3𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴±
3𝑛
𝐶
(𝑝𝑖)±

3
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(9f)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
4
(𝑁𝐹±
3𝑛𝑚

+
𝑅±
3(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
4𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴±
4𝑛
𝐶
(𝑝𝑖)±

4
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(9g)

𝑁𝐹±
0(𝑛+1)𝑚

= (𝑁𝐹±
3𝑛𝑚

− 𝑁𝐹±
0𝑛𝑚

)
𝑄𝑇

𝑉
+
𝑅±
3𝑛𝑚

𝑇

𝑉

+ 𝑁𝐹±
0𝑛𝑚

+ (𝑁𝐹±
4𝑛𝑚

− 𝑁𝐹±
3𝑛𝑚

)
𝑄
𝑏
𝑇

𝑉
,

(9h)

𝐹
𝑘
= {

1 if filter needs to be installed
0 otherwise,

∀𝑘,

(9i)

𝐴±
𝑘𝑛

= {
1 if filter needs to be replaced
0 otherwise,

∀𝑘, 𝑛,

(9j)

𝐴±
𝑘𝑛

≤ 𝐹
𝑘
, ∀𝑘, 𝑛, (9k)

where 𝐹±cost, 𝐵
±

𝑘
, ER±
𝑘
, WM±

𝑘
, LM±
𝑘
, 𝐴±
𝑘𝑛
, 𝐶(𝑞𝑖)±
𝑖

, 𝑆(𝑞𝑖)±
𝑖𝑛𝑚

, 𝑁𝐹±
𝑖𝑛𝑚

,
and 𝑅±

𝑖𝑛𝑚
are interval parameters and variables; the “−” and

“+” superscripts represent lower- and upper-bounds of the
parameters, respectively.This ICIPmodel can be transformed
into two deterministic submodels that correspond to the

lower- and upper-bounds of the desired objective. Interval
solutions, which are feasible and stable in the given decision
space, can then be obtained by solving the two submodels
sequentially [34]. According to Huang [21], the submodel
corresponding to the lower-bound objective (𝐹−cost) can be
firstly formulated as follows:

Minimize 𝐹−cost =
4

∑
𝑘=1

𝐵−
𝑘
𝐹−
𝑘

+
4

∑
𝑘=1

𝑁

∑
𝑛=1

(ER−
𝑘
+WM−

𝑘
+ LM−
𝑘
) 𝐴−
𝑘𝑛

(10a)

subject to

𝑁𝐹−
1𝑛𝑚

≤ 𝑆
(𝑝𝑖)−

1𝑛𝑚
, ∀𝑛,𝑚, (10b)

𝑁𝐹−
2𝑛𝑚

≤ 𝑆
(𝑝𝑖)−

2𝑛𝑚
, ∀𝑛,𝑚, (10c)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
1
× 𝑁𝐹−
0𝑛𝑚

(1 −
1

𝛽
1𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴−
1𝑛
𝐶
(𝑝𝑖)−

1
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(10d)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
2
(𝑁𝐹−
1𝑛𝑚

+
𝑅−
1(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
2𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴−
2𝑛
𝐶
(𝑝𝑖)−

2
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(10e)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
3
(𝑁𝐹−
2𝑛𝑚

+
𝑅−
2(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
3𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴−
3𝑛
𝐶
(𝑝𝑖)−

3
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(10f)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
4
(𝑁𝐹−
3𝑛𝑚

+
𝑅−
3(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
4𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴−
4𝑛
𝐶
(𝑝𝑖)−

4
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(10g)
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𝑁𝐹−
0(𝑛+1)𝑚

= (𝑁𝐹−
3𝑛𝑚

− 𝑁𝐹−
0𝑛𝑚

)
𝑄𝑇

𝑉
+
𝑅−
3𝑛𝑚

𝑇

𝑉

+ 𝑁𝐹−
0𝑛𝑚

+ (𝑁𝐹−
4𝑛𝑚

− 𝑁𝐹−
3𝑛𝑚

)
𝑄
𝑏
𝑇

𝑉
,

(10h)

𝐹
𝑘
= {

1 if filter needs to be installed
0 otherwise,

∀𝑘,

(10i)

𝐴−
𝑘𝑛

= {
1 if filter needs to be replaced
0 otherwise,

∀𝑘, 𝑛,

(10j)

𝐴−
𝑘𝑛

≤ 𝐹
𝑘
, ∀𝑘, 𝑛. (10k)

Correspondingly, the submodel corresponding to the
upper-bound objective (𝐹+cost) can be formulated as follows:

Minimize 𝐹+cost =
4

∑
𝑘=1

𝐵+
𝑘
𝐹+
𝑘

+
4

∑
𝑘=1

𝑁

∑
𝑛=1

(ER+
𝑘
+WM+

𝑘
+ LM+
𝑘
) 𝐴+
𝑘𝑛

(11a)

subject to

𝑁𝐹+
1𝑛𝑚

≤ 𝑆
(𝑝𝑖)+

1𝑛𝑚
, ∀𝑛,𝑚, (11b)

𝑁𝐹+
2𝑛𝑚

≤ 𝑆
(𝑝𝑖)+

2𝑛𝑚
, ∀𝑛,𝑚, (11c)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
1
× 𝑁𝐹+
0𝑛𝑚

(1 −
1

𝛽
1𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴+
1𝑛
𝐶
(𝑝𝑖)+

1
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(11d)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
2
(𝑁𝐹+
1𝑛𝑚

+
𝑅+
1(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
2𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴+
2𝑛
𝐶
(𝑝𝑖)+

2
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(11e)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
3
(𝑁𝐹+
2𝑛𝑚

+
𝑅+
2(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
3𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴+
3𝑛
𝐶
(𝑝𝑖)+

3
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(11f)

𝑡

∑
𝑛=1

𝑀

∑
𝑚=1

𝐹
4
(𝑁𝐹+
3𝑛𝑚

+
𝑅+
3(𝑛−1)𝑚

𝑄
)(1 −

1

𝛽
4𝑚

)𝑄𝑇

× [
4𝜌𝜋

3
× (

𝐷
𝑚

2
)
3

]

≤
𝑡

∑
𝑛=1

𝐴+
4𝑛
𝐶
(𝑝𝑖)+

4
× 1015, ∀𝑡 = 1, 2, . . . , 𝑁,

(11g)

𝑁𝐹+
0(𝑛+1)𝑚

= (𝑁𝐹+
3𝑛𝑚

− 𝑁𝐹+
0𝑛𝑚

)
𝑄𝑇

𝑉
+
𝑅+
3𝑛𝑚

𝑇

𝑉

+ 𝑁𝐹+
0𝑛𝑚

+ (𝑁𝐹+
4𝑛𝑚

− 𝑁𝐹+
3𝑛𝑚

)
𝑄
𝑏
𝑇

𝑉
,

(11h)

𝐹
𝑘
= {

1 if filter needs to be installed
0 otherwise,

∀𝑘,

(11i)

𝐴+
𝑘𝑛

= {
1 if filter needs to be replaced
0 otherwise,

∀𝑘, 𝑛,

(11j)

𝐴+
𝑘𝑛

≤ 𝐹
𝑘
, ∀𝑘, 𝑛. (11k)

The above solutions provide stable intervals for the objec-
tive function value and the decision variables under different
levels of risk in violating the constraints. They can be easily
interpreted for generating multiple decision alternatives. The
detailed solution process can be summarized as follows.

Step 1. Acquire distribution information for the system
constraints (e.g., contaminant retaining capacity and contam-
ination sensitivity of filters).

Step 2. Formulate ICIP model.

Step 3. Transform ICIP model into two submodels, where
the submodel corresponding to 𝐹−cost should be firstly solved
(to obtain the most optimistic decision option within the
decision space) since the objective is to minimize 𝐹±cost.

Step 4. Formulate 𝐹−cost submodel, including the objective
function and the relevant constraints.

Step 5. Solve the 𝐹−cost submodel and obtain 𝐹−cost-opt under
different 𝑞

𝑖
levels.
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Step 6. Formulate 𝐹+cost submodel, including the objective
function and the relevant constraints.

Step 7. Solve the 𝐹+cost submodel and obtain 𝐹+cost-opt under
different 𝑞

𝑖
levels.

Step 8. Calculate 𝐹±opt = [𝐹−cost-opt, 𝐹
+

cost-opt] under each given 𝑞
𝑖

level.

Step 9. Stop.

3.3. Data Collection. Consider a case wherein a manager is
responsible for designing and managing a hydraulic system
(as shown in Figure 2). The problem to be resolved is how
to keep contamination level by allocating various filters with
a minimal sum of capital to achieve a maximal system safe.
The planning time period is one year.The flow rate is approx-
imately 100 L/min, the maximal pressure is around 35MPa,
and the fluid volume of the reservoir is about 1300 L. Table 1
shows seven different practical combinations under each sce-
nario at low, medium, and high ingression/generation level.
Table 2 presents the diameter intervals of contaminant parti-
cles (according to piecewise linearization approach), average
diameters, and its corresponding initial contamination levels
and contamination tolerance levels which are listed under
four probability distributions.The initial contamination level
of the suction line is considered to meet the cleanliness class
requirement of NAS 1638 Level 7∼9 [8]. It is indicated that the
contaminant ingression/generation rates and the tolerance
levels of the main hydraulic components are both expressed
as interval values.

In addition, the average density of contaminant particles
(𝜌) is approximately 0.5 × 103 kg/m3. Table 3 provides the
types and performance parameters of the filters. It is indicated
that each filter possesses its own contaminant retaining
capacities that are various among four different probability
distributions. The cost for installing/maintaining/replacing
filters and the economic losses denoted by their correspond-
ing mean values due to maintaining/replacing filters are
presented in Table 4 [8, 35].

According to NAS 1638 contamination level, the contam-
inant ingression/generation rates of hydraulic components
are divided into low, medium, and high levels. Table 5
presents the distributions of different contaminant ingres-
sion/generation levels corresponding to different particle
diameters (low level corresponding to NAS 1638 Level 1∼4,
medium level corresponding to Level 5∼7, and high level
corresponding to Level 8∼10). Interactive relationships exist
among a variety of impact factors and contamination-related
processes, and many parameters in the studied system are
uncertain.Therefore, the developed ICIPmethod is supposed
to tackle this type of contamination control management
problem.

3.4. Result Analysis. The above models can be solved
through software package LINGO. Representative outcomes
(as shown in Tables 6 to 8) are explicated to demonstrate
important findings. Since it is a one-year plan, an estimated

Table 1: Practicable filter combinations.

Filter Scenario
1 2 3 4 5 6 7

𝐹
1

0 0 0 1 1 1 1
𝐹
2

0 1 1 0 0 1 1
𝐹
3

1 0 1 0 1 0 1
𝐹
4

1 0 0 1 1 0 0
Code 0011 0100 0110 1001 1011 1100 1110

replacement period was offered according to final contami-
nation level of the hydraulic oil when the actual replacement
period is longer than one year.

Tables 6(a)–6(d) show results at low ingression/genera-
tion level. Optimized system costs correspond with four
probabilities. That is because none of those filters call for any
replacement with four probabilities. Optimized system costs
have achieved the bottom values, which means they cannot
be lower any more, but there are still some tiny differences
among results with four different probabilities. Take Scenario
1, for example; four results are [376.3, 382.2], [376.5, 382.8],
[377.3, 385.3], and [392.5, 404.0] days corresponding to four
probabilities. The solutions indicate that the system costs
would decrease with 𝑝

𝑖
, where 𝑝

𝑖
= 0.10, 0.15, 0.20, 0.30

(𝑖 = 1, 2, 3, 4), respectively. The replacement periods would
become longer as 𝑝

𝑖
increases (𝑝

1
< 𝑝
2
< 𝑝
3
< 𝑝
4
). In

fact, an increased 𝑝
𝑖
means more relaxed constraints, such

as contaminant retaining capacity of filters and component
contaminant sensitivity, and thus a raised risk in violating the
two constrains.

Tables 7(a)–7(d) show results at medium ingression/
generation level. It is obvious that these results are interrupted
by occasionally some bad results, the values of which do
not agree with normal tendency. For example, the results
under Scenario 2 are [178, 187], [166, 357.7], [175, 358.1],
and [87, 360.8] days. The general trend is that replacement
periods go up as 𝑝

𝑖
increases except that 178 days with

𝑝
𝑖
distribution is not on the track. However, the data still

represents the principle perfectly.The samephenomenon also
appears under other scenarios.

Tables 8(a)–8(d) show results at high ingression/genera-
tion level. Since the contamination/generation level is high,
any change in 𝑝

𝑖
would yield different contaminant retaining

capacities of filters and component contaminant sensitivities
and thus obviously result in different system costs. Under a
probability level of 𝑝

𝑖
= 𝑝
1
= 0, the violation of the system

cost and replacement period would be zero.The system costs
under Scenarios 1, 2, 3, 5, 6, and 7 are RMB ¥ [44500, 50150],
[59000, 67400], [49950, 56550], [41600, 46850], [38250,
39750], and [42250, 47800], respectively. Under a significance
level of 𝑝

𝑖
= 𝑝
2
, the system costs under Scenarios 1, 2, 3, 5,

6, and 7 are RMB ¥ [52150, 59150], [50750, 57950], [45000,
51350], [50600, 55100], [36350, 35700], and [40600, 43200],
respectively. The costs are a little lower than those under the
probability of 𝑝

1
due to a slightly increased risk.Then 𝑝

𝑖
rises

up to 𝑝
3
and the corresponding costs go down accordingly.

Under a probability level of 𝑝
𝑖
= 𝑝
3
, the system costs under

Scenarios 1, 2, 3, 5, 6, and 7 are RMB ¥ [49450, 58000],
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Table 2: Particle diameters, initial contamination, and contamination tolerance levels.

Contaminant particle divisions 1 2 3 4 5 6 7 8 9
Range of diameters (𝜇m) 0∼5 5∼10 10∼15 15∼20 20∼25 25∼30 30∼50 50∼100 100∼
Initial contamination level𝑁±

01m
(number of particles/mL) [1000, 1500] [300, 500] [150, 250] [60, 100] [30, 50] [10, 15] [6, 10] [2.5, 4.0] [0.5, 0.8]

Contamination tolerance level
𝑆±
1 nm (number of particles/mL)
𝑞
1

[4000, 6000] [1200, 2000] [600, 1000] [250, 400] [140, 230] [50, 67] [30, 43] [12, 17] [5, 7]

𝑞
2

[4300, 6300] [1300, 2100] [680, 1080] [300, 460] [120, 200] [40, 60] [25, 40] [10, 15] [4, 6]

𝑞
3

[4600, 6500] [1500, 2200] [720, 1200] [350, 530] [160, 260] [60, 71] [35, 45] [14, 19] [6, 8]

𝑞
4

[8000, 12000] [2400, 4000] [1200, 2000] [500, 800] [240, 400] [80, 120] [50, 80] [20, 30] [8, 12]

Contamination tolerance level
𝑆±
2 nm (number of particles/mL)
𝑞
1

[2000, 3000] [600, 1000] [300, 500] [120, 200] [60, 100] [20, 30] [12, 20] [5, 8] [2, 3]

𝑞
2

[2100, 3100] [700, 1200] [380, 560] [150, 210] [70, 105] [30, 35] [16, 23] [7, 10] [3, 4]

𝑞
3

[2200, 3200] [800, 1280] [450, 630] [180, 220] [80, 110] [40, 40] [20, 26] [9, 12] [4, 5]

𝑞
4

[4000, 6000] [1200, 2000] [600, 1000] [240, 400] [120, 200] [40, 60] [24, 40] [10, 16] [4, 6]

Table 3: Type and performance parameters of filters.

Filters Type of filters Fineness of
filters (𝜇m)

Rated flow
(L/min)

Maximum
pressure (MPa)

Contaminant-holding capability 𝐶
𝑘
(g)

𝑝
1

𝑝
2

𝑝
3

𝑝
4

Suction filter AS 150-01 100 200 Low [100, 120] [105, 125] [110, 130] [200, 240]

Pressure filter HD 414-56 10 210 35 [50, 60] [60, 71] [65, 75] [100, 120]

Return filter E 211-58 20 210 Low [70, 85] [72, 86] [80, 90] [140, 170]

Bypass filter FNA 016-553 1E 16 0.4 [65, 80] [67, 82] [72, 86] [130, 160]

Table 4: Cost data.

Filters Price of filters 𝐵
𝑘

(RMB ¥)
Replacement

expenditure 𝐸
𝑘
(RMB ¥)

Wage of maintenance
worker𝑀

𝑘
(RMB ¥)

per time

Downtime cost 𝑃
𝑘

(RMB ¥) per time

Suction filter [1000, 1300] [500, 600] 50 200
Pressure filter [8000, 9500] [1100, 1400] 50 200
Return filter [2000, 2500] [900, 1100] 50 200
Bypass filter 9000 1300 50 200

Table 5: Initial contaminant ingression/generation rates of hydraulic components.

Contaminant particle
divisions 1 2 3 4 5 6 7 8 9

Low level (×103 number of particles/min)
𝑅±
1 nm [25, 35] [7, 8] [2.5, 3.5] [0.7, 1.6] [0.55, 0.65] [0.18, 0.3] [0.07, 0.15] [0.03, 0.09] [0.017, 0.025]

𝑅±
2 nm [100, 400] [28, 32] [10, 14] [2.8, 6.4] [2.2, 2.6] [0.72, 1.14] [0.28, 0.6] [0.12, 0.36] [0.068, 0.1]

𝑅±
3 nm [50, 70] [14, 16] [5, 7] [1.4, 3.2] [1.1, 1.3] [0.36, 0.52] [0.14, 0.2] [0.06, 0.18] [0.034, 0.05]

Medium level (×104 number of particles/min)
𝑅±
1 nm [33, 36] [9, 13] [3, 7] [1, 3] [0.5, 1.5] [0.2, 0.45] [0.1, 0.25] [0.08, 0.11] [0.007, 0.027]

𝑅±
2 nm [132, 144] [36, 52] [12, 28] [4, 12] [2, 6] [0.8, 1.8] [0.4, 1] [0.32, 0.44] [0.028, 0.108]

𝑅±
3 nm [66, 72] [18, 26] [6, 14] [2, 6] [1, 3] [0.4, 0.9] [0.2, 0.5] [0.16, 0.22] [0.014, 0.054]

High level (×104 number of particles/min)
𝑅±
1 nm [255, 270] [85, 100] [40, 50] [10, 20] [7.5, 8.5] [2.5, 3.5] [1, 2] [0.5, 1] [0.1, 0.2]

𝑅±
2 nm [1020, 1080] [340, 400] [160, 200] [40, 80] [30, 32] [10, 14] [4, 8] [2, 4] [0.4, 0.8]

𝑅±
3 nm [510, 540] [170, 200] [80, 100] [20, 40] [15, 16] [5, 7] [2, 4] [1, 2] [0.2, 0.4]
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Table 6: (a) Results for optimized system cost and filter-replacement period under low ingression/generation rate (8 hours per day) (when
𝑝
1
= 0.10). (b) Results for optimized system cost and filter-replacement period under low ingression/generation rate (8 hours per day) (when

𝑝
2
= 0.15). (c) Results for optimized system cost and filter-replacement period under low ingression/generation rate (8 hours per day) (when

𝑝
3
= 0.20). (d) Results for optimized system cost and filter-replacement period under low ingression/generation rate (8 hours per day) (when

𝑝
4
= 0.30).

(a)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3

1 [2000, 2500] — — [376.3, 382.2]

2 [8000, 9500] — [385.8, 398.8] —
3 [10000, 12000] — [413, 433.5] [403, 419.1]

4 [1000, 1300] [366.6, 367.2] — —
5 [3000, 3800] [384.1, 390.6] — [379.2, 385.7]

6 [9000, 10800] [379.9, 385.2] [415.2.8, 415] —
7 [11000, 13300] [399.1, 409.2] [425.0, 446.9] [404.7, 420.1]

(b)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
k = 1 k = 2 k = 3

1 [2000, 2500] — — [376.5, 382.8]
2 [8000, 9500] — [392.4, 408.4] —
3 [10000, 12000] — [424.03.1, 449.4] [404.5.0, 420.8]

4 [1000, 1300] [366.7, 367.3] — —
5 [3000, 3800] [384.9, 391.9] — [379.5, 386.4]

6 [9000, 10800] [380.6, 386.3] [409.6, 426.3] —
7 [11000, 13300] [400.6, 411.5] [437.1, 464.4] [405.2, 421.8]

(c)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
k = 1 k = 2 k = 3

1 [2000, 2500] — — [377.3, 385.3]

2 [8000, 9500] — [394.8, 413.2] —
3 [10000, 12000] — [428.0.0, 457.3] [406.7.5, 427.8]

4 [1000, 1300] [366.8, 367.5] — —
5 [3000, 3800] [385.8, 393.2] — [380.3, 389.2]

6 [9000, 10800] [381.3, 387.4] [412.4, 431.8] —
7 [11000, 13300] [402.1, 413.8] [441.5, 473.2] [407.5, 428.9]

(d)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3

1 [2000, 2500] — — [392.5, 404.0]

2 [8000, 9500] — [422.0, 446.6] —
3 [10000, 12000] — [472.8.0, 512.8] [450.6.7, 480.0]

4 [1000, 1300] [368.6, 367.7] — —
5 [3000, 3800] [404.3, 395.9] — [397.7, 410.2]

6 [9000, 10800] [397.3, 389.7] [444.2, 470.7] —
7 [11000, 13300] [435.0, 418.4] [491.2, 534.6] [452.1, 482.0]
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Table 7: (a) Results for optimized system cost and filter-replacement period under medium ingression/generation rate (8 hours per day)
(when 𝑝

1
= 0.10). (b) Results for optimized system cost and filter-replacement period under medium ingression/generation rate (8 hours

per day) (when 𝑝
2
= 0.15). (c) Results for optimized system cost and filter-replacement period under medium ingression/generation rate (8

hours per day) (when 𝑝
3
= 0.20). (d) Results for optimized system cost and filter-replacement period under medium ingression/generation

rate (8 hours per day) (when 𝑝
4
= 0.30).

(a)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3

1 [5200, 6600] — — [361.3, 362.9]

2 [14450, 14750] — [178, 187] —
3 [15000, 15000] — [358.1, 362.3] [192, 244]

4 [2150, 2500] [178, 187] — —
5 [5150, 6450] [365.4, 366.4] — [362.1, 363.7]

6 [12450, 13300] [128, 274] [147, 253] —
7 [14650, 14650] [194, 367.5] [363.1, 366.8] [232, 361.2]

(b)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3

1 [5200, 6600] — — [67, 256]

2 [12800, 13400] — [166, 357.7] —
3 [15000, 15000] — [241, 250] [247, 364.2]

4 [2150, 2500] [231, 364.9] — —
5 [5150, 6450] [174, 186] — [362.1, 363.7]

6 [10800, 11100] [364.3, 365.1] [151, 365.5] —
7 [14650, 14650] [230, 367.6] [239, 364.0] [124, 364.2]

(c)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3

1 [3850, 5450] — — [70, 142]

2 [12800, 13400] — [175, 358.1] —
3 [15000, 15000] — [127, 364.2] [361.4, 364.7]

4 [2150, 2500] [202, 364.9] — —
5 [5150, 6450] [186, 365.5] — [91, 363.9]

6 [10800, 11100] [364.3, 365.2] [159, 366.0] —
7 [14650, 14650] [365.9, 367.8] [260, 368.9] [130, 265]

(d)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3

1 [3850, 4300] — — [362.5, 364.6]

2 [11150, 10700] — [187, 360.8] —
3 [12000, 12500] — [244, 369.0] [187, 364.9]

4 [1750, 2150] [187, 364.9] — —
5 [3800, 4150] [366.7, 366.8] — [363.4, 365.6]

6 [10800, 10350] [365.1, 365.4] [364.6, 369.1] —
7 [12150, 13300] [246, 368.2] [373.8, 367.7] [364.3, 369.1]
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Table 8: (a) Results for optimized system cost and filter-replacement period under high ingression/generation rate (8 hours per day) (when
𝑝
1
= 0.10). (b) Results for optimized system cost and filter-replacement period under high ingression/generation rate (8 hours per day)

(when 𝑝
2
= 0.15). (c) Results for optimized system cost and filter-replacement period under high ingression/generation rate (8 hours per

day) (when 𝑝
3
= 0.20). (d) Results for optimized system cost and filter-replacement period under high ingression/generation rate (8 hours

per day) (when 𝑝
4
= 0.30).

(a)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

1 [53500, 59150] — — [12, 17] [98, 105]

2 [59000, 67400] [7, 9]

3 [49950, 56550] [17, 47] [26, 27]

4 — — —
5 [50600, 55850] [71, 110] [16, 22] [107, 114]

6 [38250, 39750] [19, 88] [19, 46]

7 [42250, 47800] [24, 33] [17, 47] [27, 70]

(b)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

1 [52150, 59150] — — [12, 18] [101, 108]

2 [50750, 57950] [22, 22]

3 [45000, 51350] [7, 17] [48, 69]

4 — — —
5 [50600, 55100] [74, 115] [16, 23] [110, 117]

6 [36350, 35700] [26, 65] [13, 22]

7 [40600, 43200] [32, 88] [17, 269] [42, 49]

(c)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

1 [49450, 58000] — — [13, 20] [105, 116]

2 [47450, 55250] [16, 58]

3 [42000, 50000] [34, 80] [34, 75]

4 — — —
5 [46350, 53950] [77, 121] [17, 25] [115, 126]

6 [35000, 34950] [14, 61] [46, 67]

7 [38400, 43200] [18, 54] [34, 46] [92, 136]

(d)

Scenario Optimized system cost (RMB ¥) Replacement period of filter element (days)
k = 1 k = 2 k = 3 k = 4

1 [35500, 38800] — — [24, 34] [196, 209]

2 [34250, 37700] [13, 18]

3 [30300, 32700] [47, 65] [27, 192]

4 [54850, 59100] [40, 44] [16, 21]

5 [35850, 36700] [132, 142] [31, 44] [214, 227]

6 [24200, 23700] [65, 112] [22, 37]

7 [26700, 28450] [33, 71] [47, 65] [97, 187]
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, [42000, 50000], [46350, 53950], [35000, 34950], and [38400,
43200], respectively. Under a probability level of 𝑝

𝑖
= 𝑝
4
, the

system risks the most while the costs of the system promi-
nently fall. The system costs under seven scenarios are RMB
¥ [35500, 38800], [34250, 37700], [30300, 32700], [54850,
59100], [35850, 36700], [24200, 23700], and [26700, 28450],
respectively.

Figure 3 presents outcomes for system optimal cost of
all scenarios under low contaminant ingression/generation
rates. When contaminant ingression/generation rate is low,
the system maintenance cost achieves the optimal one.
Accordingly, results under four probabilities denote the
general trend and some tiny differences among results with
different probabilities. Obviously, the system shows good
characteristic of resisting violation.

Figure 4 presents outcomes for system optimal cost of all
scenarios under medium contaminant ingression/generation
rates under four probabilities. Take scenario 001, for example;
the cost under probability 𝑝

1
is 0 less than that under

probability 𝑝
2
; the cost under probability 𝑝

2
is [1150, 1350]

less than that under probability 𝑝
3
; the cost under probability

𝑝
3
is RMB ¥ [0, 1150] less than that under probability 𝑝

4
. All

the increments are small which means the system is good at
resisting risk. Take scenario 010, for example; the cost under
probability 𝑝

1
is RMB ¥ [1350, 1650] less than that under

probability 𝑝
2
; the cost under probability 𝑝

2
is 0 less than

that under probability 𝑝
3
; the cost under probability 𝑝

3
is

RMB ¥ [2100, 2250] less than that under probability 𝑝
4
. Small

increments showgood risk-resisting ability. Take scenario 011,
for example; the cost under probability 𝑝

1
is 0 less than that

under probability 𝑝
2
; the cost under probability 𝑝

2
is 0 less

than that under probability 𝑝
3
; the cost under probability 𝑝

3

is RMB ¥ [2500, 3000] less than that under probability 𝑝
4
.

Environment violation has little influence on cost change.
Take scenario 100, for example; the cost under probability
𝑝
1
is 0 less than that under probability 𝑝

2
; the cost under

probability 𝑝
2
is 0 less than that under probability 𝑝

3
; the cost

under probability 𝑝
3
is RMB ¥ [350, 400] less than that under

probability 𝑝
4
. Under scenario 101, the cost under probability

𝑝
1
is 0 less than that under probability 𝑝

2
; the cost under

probability 𝑝
2
is 0 less than that under probability 𝑝

3
; the

cost under probability 𝑝
3
is RMB ¥ [1350, 2300] less than

that under probability 𝑝
4
. Under scenario 110, the cost under

probability 𝑝
1
is RMB ¥ [1650, 2200] less than that under

probability 𝑝
2
; the cost under probability 𝑝

2
is 0 less than that

under probability 𝑝
3
; the cost under probability 𝑝

3
is RMB ¥

[300, 450] less than that under probability 𝑝
4
. Under scenario

111, the cost under probability 𝑝
1
is 0 less than that under

probability 𝑝
2
; the cost under probability 𝑝

2
is 0 less than that

under probability 𝑝
3
; the cost under probability 𝑝

3
is RMB ¥

[1350, 2500] less than that under probability 𝑝
4
.

Figure 5 presents outcomes for system optimal cost of
all scenarios under high contaminant ingression/generation
rates under four probabilities. Take scenario 001, for example;
the cost under probability 𝑝

1
is RMB ¥ [0, 1350] less than that

under probability 𝑝
2
; the cost under probability 𝑝

2
is RMB

¥ [−5100, 2700] less than that under probability 𝑝
3
; the cost

under probability 𝑝
3
is [13950, 25450] less than that under

probability 𝑝
4
. All the increments are large which means the
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Figure 3: Optimal costs under low contaminant ingression/genera-
tion level.
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Figure 4: Optimal costs under medium contaminant ingression/
generation level.

system is bad at resisting risk. Take scenario 010, for example;
the cost under probability 𝑝

1
is RMB ¥ [8250, 9450] less

than that under probability 𝑝
2
; the cost under probability 𝑝

2

is RMB ¥ [3300, 2700] less than that under probability 𝑝
3
;

the cost under probability 𝑝
3
is RMB ¥ [13200, 17550] less

than that under probability 𝑝
4
. Small increments show bad

risk-resisting ability. Take scenario 011, for example; the cost
under probability 𝑝

1
is RMB ¥ [50, 5200] less than that under

probability 𝑝
2
; the cost under probability 𝑝

2
is RMB ¥ [1350,

3000] less than that under probability 𝑝
3
; the cost under

probability 𝑝
3
is RMB ¥ [11700, 17300] less than that under

probability 𝑝
4
. Environment violation has great influence on

cost changes. Results under scenario 100 are infeasible except
for that under probability 𝑝

4
because of severe violation.

Under scenario 101, the cost under probability 𝑝
1
is [0, 750]

less than that under probability 𝑝
2
; the cost under probability

𝑝
2
is RMB ¥ [1150, 4250] less than that under probability 𝑝

3
;

the cost under probability 𝑝
3
is RMB ¥ [10500, 17250] less

than that under probability 𝑝
4
. Under scenario 110, the cost

under probability 𝑝
1
is RMB ¥ [2550, 3400] less than that

under probability 𝑝
2
; the cost under probability 𝑝

2
is RMB ¥

[750, 1350] less than that under probability 𝑝
3
; the cost under

probability 𝑝
3
is RMB ¥ [10800, 11250] less than that under

probability 𝑝
4
. Under scenario 111, the cost under probability

𝑝
1
is RMB ¥ [1650, 4600] less than that under probability 𝑝

2
;

the cost under probability𝑝
2
is RMB ¥ [0, 2200] less than that

under probability 𝑝
3
; the cost under probability 𝑝

3
is RMB ¥

[11700, 14750] less than that under probability 𝑝
4
. Generally
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Figure 5: Optimal costs under high contaminant ingression/gene-
ration level.

speaking, when contamination ingression/generation rate is
high, the hydraulic system ismore vulnerable to any violation
from environment.

The 𝑝
𝑖
levels represent a set of probabilities at which

the constraints will be violated (i.e., the admissible risk of
violating the constraints). Thus, the relation between 𝐹± and
𝑝
𝑖
would demonstrate a tradeoff between system cost and

constraint-violation risk. An increased 𝑝
𝑖
means a raised risk

of constraint violation and, at the same time, it will lead to a
decreased strictness for the constraints and thus a decreased
system cost. Such a decreased cost, however, would be linked
to a potentially increased threat of component failure and
thus a raised risk of constraint violation. Figures 3, 4, 5,
6, 7, 8, 9, 10, and 11 indicate that, as the actual values of
the decision variables vary within their two bounds, the
expected system cost will change correspondingly between
𝐹−cost-opt and 𝐹+cost-opt with different reliability levels. Decisions
at a lower 𝑝

𝑖
level would lead to an increased reliability in

fulfilling the system requirements but with a higher cost; in
comparison, decisions at a higher 𝑝

𝑖
level would result in

a lower cost, but the risk of violating the constraints would
be increased. These demonstrate a tradeoff between the filter
maintenance cost and the system-failure risk due to the
dual uncertainties that exist in various system components
(i.e., interval and probabilistic information). In practice,
planning with a higher system cost may guarantee that
hydraulic system requirements and economic budget are met
with higher system reliability; however, when the plan aims
towards a lower system cost, these requirements may not be
adequately met because of higher system risk.

3.5. Discussion. Solutions of the inexact chance-constrained
integer linear programming (ICIP) model (Tables 6(a), 7(a),
and 8(a)) provide two extremes of the expected system cost.
In practice, decisions for a lower cost may correspond to
advantageous system conditions (e.g., lower contaminated
ingression/generation rate), while those with a higher cost
correspond to more demanding conditions. In comparison
with the interval-fuzzy chance-constrained integer program-
ming (IFCIP) method, the ICIP does not integrate the fuzzy
programming within a general framework. Accordingly, the
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Figure 6: Filter replacement periods for Scenario 1 under high
contaminant ingression/generation level.
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Figure 7: Filter replacement periods for Scenario 2 under high
contaminant ingression/generation level.

analytical approaches havemany differences between the two
methods.

The interval-parameter two-stage stochastic nonlinear
programming (ITSNP) is a hybrid methodology of inexact
optimization and two-stage stochastic programming. Thus,
the method has some advantages over other approaches,
such as the following. (a) It can deal with uncertainties
that exist in FPS through generating scenarios of its future
events; these scenarios correspond to different effects of
varying filter-allocations on the economic objective. (b) It
can reflect the dynamics of system uncertainties and decision
processes under different scenarios. In comparison with the
ICIP, the ITSNP has the following limitations: (i) it can
only generate one interval solution without information
about the risk of violating the capacity constraints; (ii) the
system cost obtained through the ITSNP model is generally
higher than those through the ICIP method (under a range
of 𝑝
𝑖
levels) since no relaxation on capacity constraints is

allowed in the ITSNP [39]. Generally, without the chance
constraints, the ITSNP is unable to support in-depth anal-
ysis of the tradeoff between system cost and system-failure
risk. It may potentially result in system failure and thus
increased system costs. The problem can be solved through
a chance-constrained linear programming method by letting
all left-hand-side interval coefficients (including the cost
coefficients) in the ICIP model be equal to their midvalues.
The system costs from the solutions of chance-constrained
linear programming (CLP) lie within the ICIP solution
intervals, demonstrating the stability of the ICIP solutions.
With the CLP, only one deterministic solution corresponding
to each 𝑝

𝑖
level is generated, since the model’s left-hand-side
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Figure 8: Filter replacement periods for Scenario 3 under high
contaminant ingression/generation level.
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Figure 9: Filter replacement periods for Scenario 5 under high
contaminant ingression/generation level.

coefficients are all assumed to be deterministic. However,
the sensitivity analysis can only provide an individual
response to variations of the uncertain inputs and, thus,
can hardly reflect interactions among various uncertain
parameters. Therefore, in comparison with the CLP, the
ICIP method can incorporate more uncertain information
within its modeling framework. The obtained interval solu-
tions under different risk levels of violating the capacity
constraints can be used to generate decision alternatives and
help hydraulic system managers to identify desired policies
under various condition, economic, and system-reliability
constraints.

4. Conclusions

An inexact chance-constrained integer programming (ICIP)
method has been developed for contaminant control for
hydraulic system. The method improves upon the exist-
ing interval-integer and chance-constrained programming
approaches by allowing uncertainties presented as both prob-
ability distributions and discrete intervals to be effectively
incorporated within the optimization framework. Moreover,
it can help examine the reliability of satisfying (or risk of
violating) system constraints under uncertainty.

The developed method has been applied to a case of
hydraulic system operation. Violations for capacity con-
straints are allowed under a range of significance levels. Inter-
val solutions associated with different risk levels of constraint
violation have been obtained. They were used for generating
decision alternatives and thus helpwastemanagers to identify
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Figure 10: Filter replacement periods for Scenario 6 under high
contaminant ingression/generation level.
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Figure 11: Filter replacement periods for Scenario 7 under high
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desired policies under various environmental, economic, and
system-reliability constraints.

The ICIP can incorporate more uncertain information
within its modeling framework. It can reflect economic
penalties as corrective measures or recourse against any
infeasibilities arising due to a particular realization of uncer-
tainty. Thus, the method provides not only decision variable
solutions presented as stable intervals but also the associated
risk levels in violating the system constraints. It can therefore
support an in-depth analysis of the tradeoff between system
cost and system-failure risk.

Although this study is the first attempt for contamination
control of hydraulic system through developing the ICIP
approach, the results suggest that this integrated technique is
applicable to other hydraulic contamination control problems
that involve uncertainties presented in multiple formats.

Nomenclature

“−”/“+”: Superscripts represent lower- and
upper-bounds of the interval parameters,
respectively

𝛽
𝑘𝑚
: Filtration ratio of filter 𝑘 for a given particle

diameter range𝑚 (𝑘 = 1 for the suction filter,
𝑘 = 2 for the pressure filter, 𝑘 = 3 for the return
filter, and 𝑘 = 4 for the bypass filter)

𝜌: Average density of contaminants (kg/m3)
𝜆±: Degree of satisfaction for the fuzzy objective

and/or constraints
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𝐴
𝑘𝑛
: Binary decision variable, if filter 𝑘 needs to be

replaced in period 𝑛, then 𝐴
𝑘𝑛

= 1; otherwise
𝐴
𝑘𝑛

= 0
𝐵
𝑘
: Purchase price of filter 𝑘 (RMB ¥, 𝑘 = 1, 2, 3)

𝐶
𝑘
: Characteristic parameter of filters which is

obtained from the diagram of filtration
efficiency (if filter with fineness code 𝑘 is
selected as a suction filter then 𝑐

1
= 𝑐
1𝑘
; if filter

with fineness code 𝑙 is selected as a pressure
filter then 𝑐

2
= 𝑐
2𝑙
; if filter with fineness code 𝑢

is selected as a suction filter then 𝑐
3
= 𝑐
3𝑢
)

𝐶
1𝑘
: Contaminant-holding capacity of suction filter

with fineness code 𝑘 (g)
𝐶
2𝑙
: Contaminant-holding capacity of pressure filter

with fineness code 𝑙 (g)
𝐶
3𝑢
: Contaminant-holding capacity of return filter

with fineness code 𝑢 (g)
𝐶
4
: Contaminant-holding capacity of bypass filter

(g)
𝐶
(𝑞𝑖)

𝑘
: Cumulative function of the

contaminant-holding capacity of filter 𝑘 (g)
with the probability 𝑞

𝑖
of violating constraint 𝑖

and 𝑘 = 1, 2, 3, 4
𝐶
𝑘
: Contaminant-holding capacity of filter 𝑘 (g,

𝑘 = 1, 2, 3, 4)
𝐷
𝑚
: Average diameter of particle diameter range𝑚

(𝜇m)
ER
𝑘
: Expenditure for replacement of filter element 𝑘

(RMB ¥)
𝐹cost: Total cost of the filtration system (RMB ¥)
𝐹cost-opt: Optimal objective function values of the total

cost of the filtration system (RMB ¥)
𝐹
𝑘
: Binary variable, if filter 𝑘 exists then 𝐹

𝑘
= 1;

otherwise 𝐹
𝑘
= 0; 𝑘 = 1, 2, 3, 4

LM
𝑘
: Economic loss due to downtime caused by

maintenance of filter element 𝑘 (RMB ¥)
𝑚: Sequential number of a given particle diameter

range,𝑚 = 1, 2, . . . ,𝑀
𝑀: Maximum sequential number of a given

particle diameter range
𝑛: Working period number of filter, 𝑛 = 1, 2, . . . , 𝑁
𝑁: Maximum period number during a planning

horizon
𝑁𝐹
𝑖𝑛𝑚

: Contamination level in segment 𝑖 and period 𝑛
for a given particle diameter range𝑚 (𝑖 = 0 for
the suction line, 𝑖 = 1 for the pump inlet, 𝑖 = 2
for the inlet of the complex component, and
𝑖 = 3 for the return line) (number of
particles/mL)

𝑁𝐹±
0𝑛𝑚

: An initial contamination level in segment 0 and
period 𝑛 for a given particle diameter range𝑚

𝑅
𝑘𝑥𝑖
: Contaminant ingression and generation rates of

contaminant particle diameter larger than 𝑥
𝑖
in

segment 𝑘 (number of particles/min; 𝑘 = 1 for
the pump, 𝑘 = 2 for the complex component,
and 𝑘 = 3 for the oil reservoir)

Pr(𝑥): Probability function
𝑝
𝑖
: Probability 𝑝

𝑖
of violating constraint 𝑖

𝑄: Flow rate through the main circuit
(mL/min)

𝑄
𝑏
: Flow rate of the bypass system (mL/min)

𝑅
𝑗𝑛𝑚

: Contaminant ingression/generation rate of
component 𝑗 in period 𝑛 for a given
particle diameter range𝑚 (number of
particles/min)

𝑆
(𝑞𝑖)

𝑗𝑛𝑚
: Cumulative function of contaminant

tolerance level of component 𝑗 in period 𝑛
for a given particle diameter range𝑚
(𝑗 = 1 for the pump, 𝑗 = 2 for control
components and actuators) with the
probability 𝑞

𝑖
of violating constraint 𝑖

𝑆
𝑗𝑛𝑚

: Contaminant tolerance level of
component 𝑗 (𝑗 = 1, 2) in period 𝑛 for a
given particle diameter range𝑚 (number
of particles/mL)

𝑇: Circulation time in which the fluid flows
through the whole hydraulic system (min)

𝑉: Fluid volume in the oil reservoir (mL)
WM
𝑘
: Worker wage spent on maintaining filter 𝑘
(RMB ¥) and/or constraint degree of
satisfaction for the fuzzy objective and/or
constraint.
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