
Research Article
Blind Channel Estimation Based on Multilevel Lloyd-Max
Iteration for Nonconstant Modulus Constellations

Xiaotian Li,1,2 Jing Lei,2 Wei Liu,2 Erbao Li,2 and Yanbin Li1

1 The 54th Research Institute of CETC, Shijiazhuang 050081, China
2 School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Xiaotian Li; lxtrichard@126.com

Received 8 May 2014; Accepted 9 July 2014; Published 20 July 2014

Academic Editor: Filomena Cianciaruso

Copyright © 2014 Xiaotian Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In wireless communications, knowledge of channel coefficients is required for coherent demodulation. Lloyd-Max iteration is
an innovative blind channel estimation method for narrowband fading channels. In this paper, it is proved that blind channel
estimation based on single-level Lloyd-Max (SL-LM) iteration is not reliable for nonconstant modulus constellations (NMC).Then,
we introduce multilevel Lloyd-Max (ML-LM) iteration to solve this problem. Firstly, by dividing NMC into subsets, Lloyd-Max
iteration is used in multilevel. Then, the estimation information is transmitted from one level to another. By doing this, accurate
blind channel estimation for NMC is achieved. Moreover, when the number of received symbols is small, we propose the lacking
constellations equalization algorithm to reduce the influence of lacking constellations. Finally, phase ambiguity ofML-LM iteration
is also investigated in the paper. ML-LM iteration can be more robust to the phase of fading coefficient by dividing NMC into
subsets properly. As the signal-to-noise ratio (SNR) increases, numerical results show that the proposed method’s mean-square
error curve converges remarkably to the least squares (LS) bound with a small number of iterations.

1. Introduction

In wireless communication systems, channel state infor-
mation (CSI) is necessary for coherent demodulation or
precoding, and channel estimation is required at the receiver.
Data-aid (DA) estimation methods make use of pilot, which
is known both at transmitter and at receiver. On the contrary,
blind estimation (BE) methods do not use any symbols
known priorly at the receiver, thus saving transmitting power
and bandwidth.

In [1], Tong et al. firstly explored cyclostational properties
of an oversampled communication signal and proposed a BE
method based on second-order statistics (SOS) of received
signal. After that a series of BE methods based on statistical
characteristics of received signal was proposed, especially
signal subspaces (SS) method [2–5], which is used widely in
modern communication systems, such asMIMOandOFDM.
However, methods based on statistical characteristics require
estimator to calculate high-order statistics of received signal.

They are reliable only when the number of received symbols
is large. To solve this problem, researchers introduced deter-
ministic methods, such as estimators based on least squares
(LS) principle [6] and estimators based on finite-alphabet
characteristics of constellations [7]. LSmethod is widely used
in wireless communication systems because of its reliability
and simplicity. Our work focuses on it.

LS solution of DA estimation was introduced by Crozier
et al. [6]. With the accurate information of pilot sym-
bols, DA-LS estimator is the optimum estimator which
reaches Cramer-Rao bound (CRB) [8]. Without pilot sym-
bols, decision-directed (DD) LS estimator makes decision
to receive symbols firstly and then uses results to estimate
channel coefficients. For narrowband fading channels,Dizdar
and Ylmaz [9] proposed Lloyd-Max iteration, which achieves
reliable blind channel estimation for constant modulus
constellations (CMC) with less received symbols. Lloyd-
Max iteration is a method based on LS principle. But for
nonconstant modulus constellations (NMC), it is unreliable
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to estimate channel blindly with single-level Lloyd-Max (SL-
LM) iteration. This is due to the fact that nonconstant
modulus of constellations will induce quantization errors in
the first step of iterations.

For this problem, the paper proposes a BE method based
on multilevel Lloyd-Max (ML-LM) iteration. By multilevel
iteration and by transmitting estimation information from
one level to another, the proposed method achieves accu-
rate blind channel estimation for NMC with less received
symbols. Moreover, when the number of received symbols
is small, we introduce lacking constellations equalization
(LCE) algorithm to reduce the influence of lacking constel-
lations (LCs). As the signal-to-noise ratio (SNR) increases,
the proposed method’s mean-square error curve converges
remarkably to the LS boundwith a small number of iterations.

The paper is organized as follows. Section 2 gives the
system model, SL-LM iteration algorithm, and proves that
SL-LM iteration is unreliable for NMC. In Section 3, we
introduce ML-LM iteration algorithm, LCE algorithm, and
analyze the phase ambiguity. Numerical results are shown in
Section 4, and Section 5 concludes the paper.

The notation is defined as follows: 𝑗 = √−1.The notations
{⋅}, exp(⋅), (⋅)∗, and 𝐸{⋅} stand for set, exponent, complex
conjugation, and expectation, respectively. Specially, | ⋅ |
denotes the amplitude if the element is a complex number.
If the element is a set, | ⋅ | denotes the cardinality of the set,
namely, the number of elements in the set.

2. Preliminaries

2.1. SystemModel. When the coherence time of the channel is
large enough, channel coefficients will change very slowly in
time domain.Then fading coefficients are invariant in certain
intervals. When the bandwidth of the channel is narrow, the
channel is frequency-nonselective, namely, flat-fading.Under
this condition, the system model is established as

𝑦
𝑘
= ℎ ⋅ 𝑟

𝑘
+ 𝑛
𝑘
, 𝑘 = 1, 2, . . . , 𝐿, (1)

where 𝑘: indices of received symbols in time domain; 𝑟
𝑘
:

transmitted constellation; 𝑛
𝑘
: zero-mean circularly symmet-

ric complex Gaussian (ZMCSCG) random variable with vari-
ance𝑁

0
; 𝐿: number of received symbols; ℎ: fading coefficient,

which is invariant in the interval of received symbols.
Suppose that ℎ = 𝑎 ⋅ exp(𝑗𝜃), where 𝑎 is the fading

amplitude, which satisfies Rayleigh distribution. 𝜃 is the offset
phase, which satisfies uniform distribution.

2.2. Single-Level Lloyd-Max Iteration. Lloyd-Max iteration
[10] is a quantization algorithm using a LS approximation.
The algorithm is developed as a solution to the problem of
minimizing the overall quantization noise when an analog
signal is pulse code modulated. It was introduced into blind
channel estimation in [9]. Suppose that modulation mode is
MPSK; the algorithm procedure is the following.

(1) Suppose that the initial quanta are the MPSK constel-
lation points:

𝑞
0

𝑚
= 𝛼
𝑚
= exp(𝑗2𝜋 (𝑚 − 1)

𝑀
) , 𝑚 = 1, 2, . . . ,𝑀. (2)

(2) Defining 𝑀 sets of received symbols 𝑆
𝑚
, received

symbols fall into the region 𝑆
𝑚
based on the following

criterion:

𝑆
𝑚
= {𝑦
𝑘
|
󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑞𝑚

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑞𝑝

󵄨󵄨󵄨󵄨󵄨 , ∀𝑝 ̸= 𝑚} . (3)

For every 𝑆
𝑚
, the center of mass of the points in it is

calculated by

𝑞
1

𝑚
=

1
󵄨󵄨󵄨󵄨𝑆𝑚
󵄨󵄨󵄨󵄨
∑
𝑦𝑘∈𝑆𝑚

𝑦
𝑘
, 𝑚 = 1, 2, . . . ,𝑀, (4)

which is found as a set of new quanta.
By repeating steps (1) and (2) until a stopping criterion is

met or for a desired number of iterations, final quanta can be
obtained as follows:

𝑞
𝑚
= ℎ ⋅ 𝛼

𝑚
, 𝑚 = 1, 2, . . . ,𝑀. (5)

Then, the estimator can be deduced as

ℎ̂ =
∑
𝑀

𝑚=1
𝑞
𝑚
⋅ 𝛼∗
𝑚

𝑀
. (6)

It can be noted that Lloyd-Max algorithm is based on
the principle of DD-LS. In step (2), the algorithm uses the
distance between 𝑦

𝑘
and 𝑞
𝑚
as the decision criterion. If 𝑦

𝑘
has

a minimum distance to 𝑞
𝑚
compared to other quanta, it falls

into the region 𝑆
𝑚
. It is the same asmaximum likelihood (ML)

decision. Furthermore, Lloyd-Max algorithm uses iteration
to reduce the influence of noise and fading and has a better
performance than DD-LS method.

Traditional Lloyd-Max iteration, which is called SL-LM
iteration, is reliable for CMC. If the offset phase satisfies

𝜃 ∈ (−
𝜋

𝑀
,
𝜋

𝑀
) , (7)

phase ambiguity [9] will be eliminated. Consequently it can
be ensured that, in the first step of iterations, received symbols
have a minimum distance to their transmitted constellations
for any value of 𝑎 and then fall into the right region 𝑆

𝑚
with

(3), which ensure that the following iterations are correct.
On the conditions of SNR 30 dB, QPSK modulation with

initial phase 𝜋/4, received symbols with different fading
coefficients are shown in Figure 1. In the figure arrows denote
the constellations withminimum distance to the regions, and
𝜃 = 𝜋/𝑃. It can be seen that when 𝜃 satisfies the restriction
of no phase ambiguity, all received symbols fall into the right
regions either with a large (2.2) or with a small (0.55) 𝑎.

However, when the modulus of constellations is noncon-
stant, even if 𝜃 satisfies the restriction of no phase ambiguity,
different 𝑎 also may induce the fact that the received symbols
have a minimum distance to other constellations rather than
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Figure 1: QPSK symbols with different fading coefficients.

their transmitted constellations, then fall into a wrong region
𝑆
𝑚
with (3), and lead to the false estimation.
On the conditions of SNR 30 dB, square 16QAM constel-

lations, received symbols with different fading coefficients are
shown in Figure 2. In order to illuminate clearly, Figure 2 only
shows the first quadrant. It is the same for other quadrants.

As we can see in Figure 2, quantization errors will be
caused by a large (2.2) or small (0.55) 𝑎 in the first step of
iterations. When 𝑎 = 2.2, 𝜃 = −𝜋/16, received symbols
whose transmitted constellations are 𝑞1 and 𝑞2 fall into the
region 𝑆1; received symbols whose transmitted constellations
are 𝑞3 and 𝑞4 fall into the region 𝑆4. The center of 𝑆1 and the
center of 𝑆4 are two new quanta. No symbol falls into 𝑆2 and
𝑆3; the new quanta are still 𝑞2 and 𝑞3. Wrong iterations and
false estimation will be caused by the four wrong quanta. It is
the same for 𝑎 = 0.55, 𝜃 = 𝜋/16.

It is proved that SL-LM iteration is unreliable for NMC.
In order to solve this problem, we introduceML-LM iteration
in the following section.

3. Multilevel Lloyd-Max Iteration

3.1. Algorithm Procedure. In order to solve the problem
above, we propose a BE method based on ML-LM iteration
for NMC. For example, if the modulation mode is square
16QAM, the iteration process can be divided into two levels
as follows.

Level 1 (L1). Divide 16QAM constellations into 4 subsets
according to quadrants. Defining initial L1 quanta are the
center of every subset. Received symbols fall into L1 regions
with (3). We can calculate new L1 quanta and obtain the L1
estimator with (4) and (6).

Level 2 (L2). For every subset in L1, multiply constellations by
the L1 estimator; the results are initial L2 quanta. For every L1
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Figure 2: Square 16QAM symbols with different fading coefficients
(first quadrant).

region, received symbols fall into L2 regions with (3). We can
calculate new L2 quanta and obtain the L2 estimator with (4)
and (6) in every L1 region. All the new L2 quanta are divided
into new subsets according to L1 regions; then return to L1.

The two-level Lloyd-Max iteration consists of L1 and L2.
By repeating L1 and L2 until a stopping criterion is met or
for a desired number of iterations, the mean value of four L2
estimators is the final estimator.

Supposing that the NMC are

𝛼
𝑚
= 𝑎
𝑚
⋅ exp (𝑗𝜑

𝑚
) , 𝑚 = 1, 2, . . . ,𝑀, (8)

and received symbols satisfy (1), the procedure of two-level
Lloyd-Max algorithm can be concluded as the following.

(1) Divide NMC 𝛼
𝑚
into 4 subsets:

𝐴
1
= {𝛼
1,1
, 𝛼
1,2
, . . . , 𝛼

1,𝑀/4
} ,

𝐴
2
= {𝛼
2,1
, 𝛼
2,2
, . . . , 𝛼

2,𝑀/4
} ,

𝐴
3
= {𝛼
3,1
, 𝛼
3,2
, . . . , 𝛼

3,𝑀/4
} ,

𝐴
4
= {𝛼
4,1
, 𝛼
4,2
, . . . , 𝛼

4,𝑀/4
} ,

(9)

which satisfy
󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝐴2
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝐴3
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝐴4
󵄨󵄨󵄨󵄨 . (10)

The mean value of a set 𝐴 is the center of 𝐴:

𝐸 {𝐴} =
1

|𝐴|
∑
𝛼𝑖∈𝐴

𝛼
𝑖
. (11)
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Then, the subsets satisfy
󵄨󵄨󵄨󵄨𝐸 {𝐴1}

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝐸 {𝐴2}

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝐸 {𝐴3}

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝐸 {𝐴4}

󵄨󵄨󵄨󵄨 . (12)

(2) Define initial L1 quanta as

𝑞
1

1
= 𝐸 {𝐴

1
} , 𝑞

1

2
= 𝐸 {𝐴

2
} ,

𝑞
1

3
= 𝐸 {𝐴

3
} , 𝑞

1

4
= 𝐸 {𝐴

4
} .

(13)

(3) Define L1 regions of received symbols 𝑆1
𝑖
as

𝑆
1

𝑖
= {𝑦
𝑘
|
󵄨󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑞

1

𝑖

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑞

1

𝑗

󵄨󵄨󵄨󵄨󵄨 , ∀𝑗 ̸= 𝑖} . (14)

If 𝑆1
𝑖
is null set, then

𝑆
1

𝑖
= {𝑞
1

𝑖
} . (15)

Calculate the L1 estimator of fading coefficient as follows:

ℎ̂
1
=
1

4
⋅
4

∑
𝑖=1

𝐸 {𝑆1
𝑖
} ⋅ 𝐸 {𝐴

𝑖
}
∗

󵄨󵄨󵄨󵄨𝐸 {𝐴 𝑖}
󵄨󵄨󵄨󵄨
2

. (16)

(4) Initial L2 quanta are deduced as

𝑞
2

𝑖,𝑗
= 𝛼
𝑖,𝑗
⋅ ℎ̂
1
, 𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, . . . ,

𝑀

4
. (17)

(5) Define L2 regions of received symbols 𝑆2
𝑖,𝑗
for every 𝑖

as follows:

𝑆
2

𝑖,𝑗
= {𝑦
𝑘
|
󵄨󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑞

2

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑞

2

𝑖,𝑙

󵄨󵄨󵄨󵄨󵄨 , ∀𝑙 ̸= 𝑗, 𝑦
𝑘
∈ 𝑆
1

𝑖
} . (18)

If 𝑆2
𝑖,𝑗
is null set, then

𝑆
2

𝑖,𝑗
= {𝑞
2

𝑖,𝑗
} . (19)

Calculate the L2 estimator of fading coefficient as follows:

ℎ̂
2
=
1

4
⋅
4

∑
𝑖=1

((4/𝑀)∑
𝑀/4

𝑗=1
𝐸 {𝑆2
𝑖,𝑗
}) ⋅ 𝐸 {𝐴

𝑖
}
∗

󵄨󵄨󵄨󵄨𝐸 {𝐴 𝑖}
󵄨󵄨󵄨󵄨
2

. (20)

If a desired number of iterations are met, (20) is the final
estimator. If not, then new L1 quanta are deduced as

𝑞
1

𝑖
=
4

𝑀

𝑀/4

∑
𝑗=1

𝐸 {𝑆
2

𝑖,𝑗
} , (21)

and return to step (3).
In practice, the number of iteration levels should be set

properly. For some high-order modulation modes, such as
256QAM, wemust increase the number of levels to guarantee
the well performance of the algorithm.

3.2. Lacking Constellations Equalization. If the number of
received symbols is small, it is a high probability event that
transmitted constellations of all received symbols have not
included all NMC. If a constellation has not been transmitted
in the interval of received symbols, we call it lacking constel-
lation (LC). If LCs exist, 𝐸{𝑆1

𝑖
} will be a biased estimator of

fading L1 quantum in (16), and the L1 estimator will be biased.
As shown in Figure 3, square 16QAM constellations in the
first quadrant, 𝑞1 is a LC, and the mean value of 𝑆1 is biased
from fading L1 quantum.

For this case, we introduce LCE algorithm. For square
16QAM constellations, the L1 quantum can be determined
only by 3 constellations in an L1 region 𝑆1

𝑖
. If 1 LC exists only,

the fading L1 quantum can still be determined. If over 2 LCs
exist, 𝑆1

𝑖
is useless for L1 estimator. Then, we can delete it in

(16) and eliminate the influence of biased fading L1 quantum.
LCE can be used after (15). If not every L1 region has over 2
LCs, LCE can eliminate the influence of LCs.

For square 16QAM constellations, LCE algorithm can be
concluded as follows.

(1) For every 𝑆1
𝑖
(𝑖 = 1, 2, 3, 4), calculate the maximum

distance between symbols as follows:

𝑑 = max {𝑑
𝑠,𝑡
=
󵄨󵄨󵄨󵄨𝑦𝑠 − 𝑦𝑡

󵄨󵄨󵄨󵄨 | 𝑦𝑠, 𝑦𝑡 ∈ 𝑆
1

𝑖
,

𝑠, 𝑡 = 1, 2, ⋅ ⋅ ⋅ ,
󵄨󵄨󵄨󵄨󵄨𝑆
1

𝑖

󵄨󵄨󵄨󵄨󵄨} .

(22)

(2) Define the number of transmitted constellations
𝑐
𝑖
(𝑖 = 1, 2, 3, 4) in every 𝑆1

𝑖
. As shown in Figure 3, if

𝑐
𝑖
= 3 or 4, 𝑑 = 𝑑1; if 𝑐

𝑖
= 2, 𝑑 = 𝑑2. Ignore 𝑐

𝑖
= 0 or 1

because of their low probability. So 𝑐
𝑖
can be estimated

as follows.

Initialize𝑁
1
,𝑁
2
,𝑁
3
, and𝑁

4
as null sets. For 𝑦

𝑘
∈ 𝑆1
𝑖
, 𝑦
1

falls into𝑁
1
. For 𝑘 = 2, 3, . . . , |𝑆1

𝑖
|, calculate

𝑑
𝑡
=
󵄨󵄨󵄨󵄨𝑦𝑘 − 𝐸 {𝑁𝑡}

󵄨󵄨󵄨󵄨 , if 𝑁
𝑡
is not null. (23)

If 𝑑
𝑡
≤ 𝑑/4, 𝑦

𝑘
falls into 𝑁

𝑡
; if 𝑑
𝑡
> 𝑑/4, for every 𝑡, 𝑦

𝑘
falls

into null set𝑁
𝑠
. Finally, 𝑐

𝑖
equals the number of nonnull sets.

If the transmitted constellations of received symbols are the
same, received symbols fall into same sets.

(3) For every 𝑆1
𝑖
, if 𝑐
𝑖
= 3, define sets𝑁

𝑢
, 𝑁V which satisfy

󵄨󵄨󵄨󵄨𝐸 {𝑁𝑢} − 𝐸 {𝑁V}
󵄨󵄨󵄨󵄨 = max {󵄨󵄨󵄨󵄨𝐸 {𝑁𝑠} − 𝐸 {𝑁𝑡}

󵄨󵄨󵄨󵄨 | 𝑠, 𝑡 = 1, 2, 3} .

(24)

Calculate the fading L1 quantum 𝑓
𝑖
as follows:

𝑓
𝑖
=
{

{
{

𝐸{𝑆1
𝑖
} , 𝑐

𝑖
= 4,

𝐸 {𝑁
𝑢
} + 𝐸 {𝑁V}

2
, 𝑐
𝑖
= 3.

(25)

If a region satisfies 𝑐
𝑖
= 3 or 4, it is useful. Suppose the

number of useful regions is 𝐶. If 𝐶 = 0, LCE is false; L1
estimator of fading coefficient can still be calculatedwith (16).
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If 𝐶 = 1, 2, 3, 4, L1 estimator of fading coefficient can be
deduced as

ℎ̂
1
=
1

𝐶
⋅ ∑
𝑖

𝑓
𝑖
⋅ 𝐸 {𝐴

𝑖
}
∗

󵄨󵄨󵄨󵄨𝐸 {𝐴 𝑖}
󵄨󵄨󵄨󵄨
2
, 𝑐
𝑖
= 3 or 4. (26)

For other high-order modulations, the geometry of con-
stellations is more complex. In an L1 region, how many
constellations can determine an L1 quantum is not fixed. In
practice, LCE should be modified based on the modulation
mode.

3.3. Phase Ambiguity Analysis. Phase ambiguity is a classical
problem in blind channel estimation. The reason can be
concluded that we cannot determine the transmitted constel-
lation of a received symbol. Some valuable ideas have been
given to eliminate it, such as differential modulation and
coding [9], few pilot symbols [5], which is called semiblind
estimation (SBE). If we cannot make use of communication
scheme, large distance between constellations can reduce the
influence of phase ambiguity. For ML-LM iteration, we can
make the distance between subsets maximum by dividing
NMC into subsets properly. Then the restriction range of no
phase ambiguity can be maximum.

For square 16QAM constellations, as shown in Figure 4, if
we divide constellations into subsets according to quadrants,
then the minimum phase difference between subsets is 2 ⋅
arctan(1/3), and the 2 nearest constellations are 𝑞

1
and 𝑞

2
.

In the first step of iteration, if we want to ensure that the
received symbols fall into right regions, the restriction range
of no phase ambiguity is

𝜃 ∈ (− arctan 1
3
, arctan 1

3
) . (27)
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Figure 4: Subsets of square 16QAM constellations.

If we divide constellations into subsets according to
Figure 4, then the minimum phase difference between sub-
sets is 𝜋/4 − arctan(1/3), and the 2 nearest constellations are
𝑞
2
and 𝑞

3
. Then, the restriction range of no phase ambiguity

is

𝜃 ∈ (−
1

2
⋅ (
𝜋

4
− arctan 1

3
) ,
1

2
⋅ (
𝜋

4
− arctan 1

3
)) . (28)

Because 1/2 ⋅ (𝜋/4 − arctan 1/3) < arctan 1/3, ML-LM
iteration can be more robust to the offset phase by dividing
NMC into subsets according to quadrants than according to
Figure 4.

4. Numerical Results

In this section, we test the performance of ML-LM iteration
through Monte Carlo simulation. The modulation mode is
square 16QAM. Suppose that the fading coefficient is

ℎ = ℎ
𝐼
+ 𝑗 ⋅ ℎ

𝑄
= 𝑎 ⋅ exp (𝑗𝜃) , (29)

where ℎ
𝐼
and ℎ

𝑄
are zero-mean real Gaussian random

variables with variance 𝜎2 and independent of each other. In
the simulation 𝜎2 = 1. The amplitude 𝑎 of ℎ is a Rayleigh-
distributed random variable; its mean value and variance [11]
are

𝐸 {𝑎} = (2𝜎
2

)
1/2√𝜋

2
, var {𝑎} = (2 − 𝜋

2
) 𝜎
2

. (30)

The offset phase 𝜃 is a uniform-distributed random
variable. Considering the phase ambiguity, we assume that 𝜃
satisfies (27).

In Figures 5, 6, 7, 8, and 9, the 𝑥-axis shows the received
SNR of the channel:

SNR = |ℎ|
2

𝑁
0

. (31)
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Figure 5: NMSE comparisons of SL-LMandML-LM iterationwhen
𝐿 = 20 (with and without LCE).
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Figure 6:NMSE comparisons of SL-LMandML-LM iterationwhen
𝐿 = 40 (with and without LCE).

The 𝑦-axis shows the normalized mean-square error
(NMSE) over 3000 Monte Carlo runs:

NMSE = 1

𝑁
𝑀

𝑁𝑀

∑
𝑖=1

(

󵄨󵄨󵄨󵄨󵄨ℎ𝑖 − ℎ̂𝑖
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨
)

2

, (32)

where𝑁
𝑀
= 3000.

The lower bound in Figures 5–9 is the NMSE bound of LS
estimator [9]:

NMSELS =
𝑁
0

𝐿 ⋅ 𝐸2 {𝑎}
. (33)
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Figure 7:NMSE comparisons of SL-LMandML-LM iterationwhen
𝐿 = 80 (with and without LCE).
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Figure 8:NMSE comparisons of SL-LMandML-LM iterationwhen
𝐿 = 200 (with and without LCE).

The number of iterations 𝐼 = 5. Figures 5–8 show the
NMSE comparisons of SL-LM and ML-LM iteration with
different numbers of received symbols 𝐿. As the figures show,
with less received symbols, SL-LM iteration’s NMSE curves
cannot converge to the LS bound as SNR increases.When 𝐿 ≥
80, ML-LM iteration’s NMSE curves converge remarkably to
the LS bound.Moreover, bothwith andwithout LCE,ML-LM
iteration’s NMSE curves are the same. When 𝐿 < 80, ML-LM
iteration’sNMSE curves decrease as SNR increases but cannot
converge. It is because LCs exist. When SNR ≥ 18 dB, ML-
LM iterationwith LCE has a better performance thanwithout
LCE.The smaller the 𝐿 is, the more obvious the performance
improvement is.
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Figure 9: NMSE comparisons of ML-LM iteration for different
numbers of iterations.

When 𝐿 = 100, NMSE comparisons of ML-LM iteration
for different 𝐼 are shown in Figure 9. As we can see, ML-
LM iteration’s NMSE curves converge remarkably to the LS
bound only by 2 iterations. Comparing with SL-LM iteration,
which needs 10 iterations [9], although in every iterationML-
LMhas a higher complexity, the whole complexity ofML-LM
iteration may lower.

5. Conclusion

Because of its high information rate, NMC are widely used in
modern communication system. For blind channel estima-
tion based on SL-LM iteration, NMC will result in quantiza-
tion errors in the first step of iterations.The paper proposes a
blind channel estimator based onML-LM iteration for NMC.
By dividing NMC into subsets, Lloyd-Max iteration is used in
multilevel. Estimation information is transmitted from one
level to another. Then quantization errors are eliminated.
Moreover, when 𝐿 < 80, LCE algorithm is introduced to
reduce the influence of LCs and improves the performance
of ML-LM iteration. When 𝐿 ≥ 80, the proposed method’s
NMSE curve converges remarkably to the LS bound with a
small number of iterations. Consequently it is suitable for
some modern communication schemes which require high-
speed estimation.

For multipath channels, which produce frequency selec-
tivity, the proposed scheme can be combinedwith orthogonal
frequency division multiplexing (OFDM) scheme to achieve
blind channel estimation. For every subchannel in OFDM,
the channel is flat-fading and still satisfies the model in (1).
Then, ML-LM iteration can be used in every subchannel.

Phase ambiguity of ML-LM iteration is also analyzed
in the paper. The restriction range of no phase ambiguity
can be maximum by dividing NMC into subsets properly.

How to eliminate the restriction of phase ambiguity will be
researched in future work.
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